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Abstract— The choice of representation for circuits and
boolean formulae in a formal verification tool is important
for two reasons. First of all, representation compactness is
necessary in order to keep the memory consumption low. This
is witnessed by the importance of maximum processable design
size for equivalence checkers. Second, many formal verification
algorithms are sensitive to redundancies in the design that
is processed. To address these concerns, three different auto-
compressing representations for boolean circuit networks and
formulas have been suggested in the literature. In this paper,
we attempt to find a blend of features from these alternatives
that will allow us to remove as much redundancy as possible
while not sacrificing runtime. By studying how the network
representation size varies when we change parameters, we show
that the use of only one operator node is suboptimal, and
demonstrate that the most powerful of the proposed reduction
rules, two-level minimization, actually can be harmful. We correct
the bad behavior of two-level optimization by devising a simple
linear simplification algorithm that can remove tens of thousands
of nodes on examples where all obvious redundancies already
have been removed. The combination of our compactor with the
simplest representation outperforms all of the alternatives we
have studied, with a theoretical runtime bound that is at least as
good as the three studied representations.

I. INTRODUCTION

Binary Decision Diagrams (BDDs) [1] have become a very
important representation for boolean functions in the verifica-
tion domain. However, since this representation is exponential
for many functions of interest, it is not a good general purpose
representation for a circuit under analysis. In many tools, the
netlist itself therefore forms the key representation for a circuit,
and when formal models for satisfiability checking or model
checking needs to be constructed, this model is massaged and
translated into whichever form is necessary.

The netlist representation, however, is non-canonical in the
sense that it allows many implementations of a particular
boolean network, and many of the netlists generated for formal
verification purposes are very redundant [2]. Representation
redundancy is bad for two reasons. First of all, a redundant
representation will increase the memory foot-print of the
formal verification tool. This may cause problems, considering
the fact that we not only will rely on our datastructure to
represent the system under analysis (which might mean tens
of millions of network nodes) but that we also may generate
many times more formula operations if we apply SAT-based
model checking procedures like McMillans’s Interpolation
algorithm [3].
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Retiming example.

Fig. 1.

Second, the quality of results of many formal verification
algorithms are sensitive to redundancies in the representation
of the model under analysis. For example, consider the net-
work in Figure 1, where the boxes containing R’s are registers,
and the inputs to the network are free inputs. Assume that we
want to retime this network in the Leiserson-Saxe sense [4].
As it stands the number of registers can not be improved as
the OR gate does not have registers on both inputs. However,
if we study the combinational logic network, our example in
Section II-B shows that this network is redundant, and could be
represented using a single AND operator fed by two registers.
This implementation could hence be retimed to a network with
a single register at the output. This example is not an anomaly.
In practice, removing combinational redundancies is crucial to
achieving good retiming results [5].

The sensitivity to redundancies is unfortunately not unique
to retiming: Consider building a BDD representing a netlist
containing a multiplier whose outputs are thrown away due
to environment constraints for the current verification run.
The sensitivity also extends to CNF-based approaches to
satisfiability checking where the removal of redundancies prior
to the invocation of a SAT checker can speed up problems with
orders of magnitude [6].

Moreover, the redundancy sensitivity problem is not abating:
Many of the state-of-the-art approaches to model checking are
sensitive to redundancies in the circuit. One example would
be the heuristics used to do localization reduction [7] which
can be fooled by redundant logic and registers. Moreover,
as the underlying SAT solvers are sensitive to redundancies,



algorithms that analyze proofs from SAT-solvers will also be
sensitive—consider the use of proof cores to do abstraction
refinement [8], compute reachability images [3] and to do SAT-
based predicate abstraction [9].

While it is important to have a representation for boolean
circuit network that is as free from redundancies as possible,
it is also important to not make representation construction a
large part of the runtime of a formal verification tool—some
circuits are free from redundancies and it would be unaccept-
able to slow down the verification of these circuits with hours
of needless attempts at compaction. The representation that is
used therefore needs to be built with little overhead in terms
of runtime.

A popular approach to the solution of the low-overhead
compact representation problem is auto-compacting DAG cir-
cuit representations. Examples of such representations include
Boolean Expression Diagrams (BEDs) [10], And-Inverter
graphs [2], and Reduced Boolean Circuits (RBCs) [11]. These
three representation are all variations on the theme of a data
structure that uses hashing to share all structurally isomorphic
parts of a circuit, and that applies a set of fast rewriting rules
transparently during network construction.

Since BEDS, And-Inverter graphs, and RBCS all have been
devised to solve the representation problem with very small
time overhead, they are all in principle good choices for
representations. However, since the differences between the
three approaches mainly consists of variations on what boolean
operators are allowed as nodes in the representation, and what
minimization operations are performed, the question is where
the sweet spot is in terms of features for the kind of circuit
networks found in industrial applications.

In this paper, we introduce the three different representations
and study the impact of varying the different parameters when
building the representation for seven industrial examples. Led
by the experimental results, we diagnose a problem with the
most powerful reduction rule used, two-level recursive rewrit-
ing, and propose a new compacting algorithm that remedies
this problem.

Our contribution has three parts. First of all, we introduce
and contrast the different approaches to auto-compacting cir-
cuit representations that have appeared in the literature. Sec-
ond, we present the first experimental study of the impact of
different choices of operations and rewriting rules in boolean
circuit compaction for verification. Third, we present a new
compaction algorithm that is powerful enough to be able
to remove tens of thousands of nodes in negligible time on
large designs even after all the standard minimization tricks
utilized by BEDs, RBCs and And-Inverter graphs have been
performed.

The paper is organized as follows. In Section II, we present
an overview of the three different representations. In Sec-
tion III, we study the impact of the number of operator nodes
in the representation and present experimental evidence that
demonstrate the two-level rewriting rule that is a fundamental
part of the BED and And-Inverter representations actually can
be harmful. We then present an analysis in Section IV of why
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this happens, and propose an improved two-level minimization
algorithm that remedies the problem. In Section V we present
the related work, and in Section VI we conclude.

II. OVERVIEW OF BOOLEAN CIRCUIT REPRESENTATIONS

In this section we introduce the three different function
representations that we will study, and demonstrate how they
are all variations on a common concept. We use RBCS as
our base line representation, as it conceptually is the simplest
representation.

A. Reduced Boolean Circuits (RBCS)

The easiest way to understand Reduced Boolean Circuits
(RBCS) is as a restricted class of directed acyclic graphs
constructed from nodes and edges. RBCS have two different
sorts of nodes: Operator nodes and variable nodes. An operator
node has two children and an operator attribute (A, V, or <),
whereas a variable node has no children and a variable name
attribute. There is one special variable node, T, which is taken
to represent the true formula. Nodes are connected with edges
that have a negation attribute. Every edge in a RBC correspond
to some formula through the obvious semantics of operators
and negation markers—the top edge of the RBC in Figure 2
represents (a V —b) A (b < ¢).

b

A simple DAGed circuit.

a C

Fig. 2.

RBCs are constructed in such a way that they fulfill the
following obligations:

1) All common subformulas are shared. This is achieved
by hashing during construction.
Operator nodes do not have identical children.
Operator nodes do not have constant children.
< nodes do not have negated children.
The left child is smaller than the right child of an
operator node according to some total order < on nodes.

2)
3)
4)
5)

The algorithms for constructing a new RBC from two
operand RBCS, MKRBC, do all these minimizations in con-
stant time (assuming constant time hashing), so construction
is very fast. Although these transformations do not seem that
strong, large savings can be achieved compared to an unop-
timized netlist representation. For example, in the presence
of environmental constraints, constant propagation alone may
remove large parts of a circuit.
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B. Boolean Expression Diagrams (BEDS)

BEDS are datastructures similar to RBCS, but with some
variations and strengthenings. First of all, an operator node
in a BED is either a standard operator node or an BDD
ITE-node (see [1]), and any two-input boolean operator is a
legal BED operator. Second, there are no variable vertices;
variable vertices are implemented by ITE nodes with constant
children. Third, there are no negation markers, as negation is
a (redundant) two-operator function.

BEDs use reduction rules corresponding to rule 1-3 for
RBCs, but in addition the following optimizations are per-
formed:

o There are no negation operators below a non-negation,
non-ITE operator. This is possible to achieve since every
binary operator is allowed in a BED.

When an operator node with two children operator nodes
is to be created, this two-level window is rewritten to
a canonical two-level window with as few nodes as
possible. This rule, which we will refer to as the fwo-
level minimization rule, will play an important part in
the remainder of this paper.

The presence of ITE nodes in BEDS allows a BED to be
incrementally translated to a BDD: It is not hard to define
a transformation that bubbles up a ITE vertex to the top
of a BED. This transformation can be performed for all
occurrences of ITE nodes in one variable, and by doing this
for all variables in order, we will be left with a BDD. In this
paper, we will not make use of this incremental translation
facility and we will hence not concern ourselves with ITE
nodes further.

As in the case of RBCS, the BED reductions are applied
transparently whenever a new BED is created from two
operands. The two-level minimization rule is implemented
by tabulating all boolean functions of three nodes or less,
and choosing a minimal number node implementation for
each such function. Once a new node is going to be created
from two operands, the top two levels of the new function
is inspected, and the tabulated implementation is used as a
template to generate the resulting node.

As an example of an application of two-level minimization,
consider the situation in Figure 3, where we are going to
construct the BED MKBED(AND,nq,n2) where ny is a
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BED containing a top disjunction operator, and ny is a BED
with a top conjunction operator. Table lookup on the top
two-levels shows that this window can be reimplemented as
MKBED(AND, b, ¢), which is evaluated and returned to the
user.

Note that in contrast to the case of RBCS, the creation of
a BED node may take more than constant time: The previous
example shows that a single call to MKBED may spark one or
more additional recursive calls to MKBED. Each one of these
calls may in turn trigger a number of new calls, and so on.!

C. And-Inverter graphs

And-Inverter graphs can conceptually be seen as a graph
structure that is similar to RBCS in that it contains operator
nodes, variable nodes and a mechanism for representing termi-
nals. Moreover, just like RBCS, And-Inverter graphs represent
negations with markers on edges. A crucial difference, how-
ever, is that And-Inverter graphs only allow the AND operator.
Compared to BEDS, And-Inverter graphs have no ITE nodes.
In terms of reductions, And-Inverter graphs combines rules
1-3 from Section II-A with the two-level minimization rule
from Section II-B. Since two-level minimization is done
before every node creation, a single operator creation is not
guaranteed to run in constant time for the same reason as in
the case of BEDS.

III. COMPARING REPRESENTATIONS

In order to find an optimal representation for boolean func-
tions and networks we want to meet two important criteria:
On one hand, we want the representation to be as compact
as possible so that it is free from redundancies. On the other,
we want the construction of the representation of a boolean
network to be fast so that our model construction does not
slow down the overall algorithms.

The three representations that we presented in Section II,
RBCs, BEDs, and And-Inverter graphs, all seem like good
candidates and they have a lot in common. However, there are
some crucial differences between them.

For one, And-Inverter graphs only allow one operator,
whereas RBCS use three and BEDS allows the use of every
two-input logic operator. In the presence of negation markers
on edges, the use of more binary operators than the set (A,
V, or <) used in RBCS does not improve the strength of a
representation as every binary operator has a one node RBC
representation (with possible negation markers on edges).
However, [2] states that the restriction to one operator in
And-Inverter graphs is motivated by the assumption that the
use of a single type of operator node will allow more things
to get hashed to each other. Clearly, there is a penalty for
doing this—for example, binary XOR operators now take
three nodes to represent whereas it would be represented as a
single RBC and BED node. Will the these factors offset each
other?

In the original BED paper [10], two-level rewriting is not part of node
creation, but it is done in all known BED implementations



Circuit RBC And op. only | And op. only And op. only RBC RBC RBC
2-level rewr. | 2-level red. only | 2-level red. only | DAG-aware rewr. | DAG-aware rewr.*
1 2724 +99 -46 -324 -892 -848 910
2 2882 +40 +249 +24 -200 -30 -198
3 7678 +448 +1168 +448 0 -315 -580
4 7705 +433 +1277 +415 -28 -309 -616
5 8961 +163 +557 +14 -184 -699 -1471
6 77181 +81 +46761 +554 -507 -908 -3664
7 100709 +2872 +8656 +1779 -1156 -1890 -11401
TABLE I

CIRCUIT SIZES IN NODES FOR DIFFERENT BUILD STRATEGIES

Secondly, And-Inverter graphs and BEDS use two-level
minimization to compress the representation while it is be-
ing built. Intuitively this seems like a really good idea,
and [10], [2] maintain that this is a key reason for efficiency
of And-Inverter graphs and BEDS.

The baseline for our investigations will be RBCS as (1)
this is the simplest representation of the three alternatives as
it does not use two-level tabulation, (2) unlike BEDS and
And-Inverter graphs (for which the worst-case complexity
of network construction is unknown) we know that we are
guaranteed to be able to compute the RBC representation of a
network in linear time, (3) it is the data structure that already
is used to represent formulas in the NUSMV 2 and FIXIT
model checkers.

In order to find a maximal strength representation, we
will now investigate what impact a restriction in the number
of operators will have, and what impact the use of two-
level minimization will have. We hope the answers to these
questions will lead us to some way to incorporate the best
features of And-Inverter graphs and BEDS into the RBC
data structure in such a way that we arrive at an optimum
representation.

Our experimental setup is as follows. We have implemented
RBCSs as described in [11], and made some extensions to the
datastructure so that we can set a flag that will restrict the
set of generated nodes to contain AND operators only instead
of the full RBC set. We have also constructed a two-level
minimizer that can handle windows with arbitrary operators.
We will study the result of applying this package to the
construction of the representation of seven industrial designs
ranging in size from a hundred registers to four thousand
registers. Before these designs reach the formal modeling, they
have been synthesized from Verilog, and gone through many
optimization steps including restructuring of sequential logic
by retiming and identification of equivalent registers.

We present our results in Table I. The entries in each
columns shows the number of nodes generated by different
strategies. We do not present the runtime, as the time for
constructing the representation for all these problems and all
strategies is less than a second.

The baseline for the experiments is RBCS in column 2—the
size of the RBC representations of the logic range between
a few thousand nodes and a hundred thousand nodes. The
other columns show the difference in size relative to the RBC

representation (a negative number means fewer nodes was
used, and a positive number means that the representation
increased in size compared to the RBC representation). Note
that during RBC construction all constants are removed and
all isomorphic networks are shared, so all subsequent savings
are relative to a representation where all simple redundancies
already have been removed.

A. Restricting the number of operators without two-level min-
imization

In our first experiment, we modify the number of operators
that are allowed in the RBCS so that we only allow AND
nodes. As can be seen in column 3 in Table I, this means that
we incur a penalty ranging from about a hundred nodes up
to three thousand nodes for the largest example. The reason
for this is that some gates now in the worst case has to
be represented using more than one node. That this would
generate a size increase is not necessarily obvious, as this
worst case might now happen very often due to sharing, and
simplification. Moreover, if the thesis put forward in [2] holds,
then the use of just one operator will allow more things to be
shared, and this may offset the three node gates. However, for
our examples the sharing gain is not enough to offset the cost
of representing some binary gates with many operators even
in the case of large networks.

B. Two-level minimization

The decision to use just one operator node in the represen-
tation may well incur less blowup if stronger minimization is
used. To check whether this thesis holds for our test cases, we
next measure the size of the representations when we just use
AND operators but do two-level minimization during node
creation (see column 4 in Table I).

This generates some interesting results. With the exception
of the smallest circuit, the use of two-level minimization in
the presence of just one operator make the results degrade
severely even compared to the negative results generated by
just allowing one operator. In the case of circuit 6, the two-
level minimized circuit increases in size with almost 75% (a
50 000 operator node increase for a 80 000 node circuit).

The very strong negative results generated when turning on
two-level rewriting seems extremely counter-intuitive as at a
first glance the use of stronger minimization rules should make
the representation smaller, rather than larger.

45



*

b d 4 bc d
b d 4 b d

Fig. 4. A pair of two-level rewrite rules.
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The heart of the problem is the following. Since all rewriting
rules are applied as a node is constructed, there is no allowance
for the effect of node sharing (nor can it be, as at creation
time, the final number of references to a particular node is
unknown). A rewrite that does not consider sharing can thus
be globally destructive, even though it seems like a locally
good thing to do. To see this, assume that we are using the
two-level rewrite rules in Figure 4. The first rule rewrites the
four input AND network so that the input networks occur in
order. The second rule is an identity transformation.

As both the rules do not add new network nodes, it might
seem like their use never should hurt. However, to see that this
is not true in the presence of sharing, consider the rewriting
of the simple circuit in Figure 5. When the left hand side
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Fig. 5. An example circuit for non-optimal two-level rewriting.
logic function is built, the two-level rewriting now restructures
the function so that the inputs are reordered according to the
upper rule in Figure 4. However, in the case of the right hand
function, the representation gets implemented as an isomorphic
network to the original implementation. As a consequence, we
end up with the representation in Figure 6, where 50% more
nodes are needed compared to the representation size if we
had not used two-level rewriting. As demonstrated in Table I,
this kind of blowup is not only a theoretical possibility.

One response to the representation blowup in the example
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Fig. 6. A suboptimal rewrite result.

in Figure 5 is that this situation would not have occurred if
only the rules would have ordered the inputs in a consistent
way. However, there will always be situations where any given
set of two-level rewrite rules will generate an increase in
representation size, if sharing is not taken into account.

Another view would be that the problem is that we are per-
muting networks without necessarily removing nodes. How-
ever, rewriting that locally seems to save nodes still has the
possibility to generate suboptimal results when sharing is
being considered; the restriction to just perform a rewrite when
a window gets reimplemented with fewer nodes for A ND-only
RBCs is almost always worse than the use of plain RBCs,
and still sometimes worse than avoiding a two-level analysis
for AND-only RBCS (see column 5 in Table I).

As a final experiment, we investigate the result of building
full RBCs while doing two-level reductions only (see column
6 in Table I). With this build strategy, we have the first
consistent improvement over plain RBCS with node savings
with up to two thousand operators over the baseline. This is not
bad considering that the runtime penalty for applying the two-
level minimization is negligible. For our purposes, it hence
seems clear that the combination of a richer set of operator
nodes with reductions-only two-level rewriting works the best.

The reason that two-level minimization does fairly well in
the context of full RBCS but can be harmful in the context of
AND operators only is likely to be the following: A two-level
window for a full RBC representation contains more logic
to restructure than a two-level window when the only nodes
are AND nodes. The potential savings from the rewritings
are therefore more powerful, and this ends up offsetting costs
incurred by destroyed sharing.

IV. SHARING-AWARE REWRITING

In the previous section we have seen that we can gain
thousands of nodes in representation size by combining RBCS
with eager two-level rewriting. However, when we studied
the impact of two-level based rewriting on RBCS that only
contained AND operators, it was clear that two-level mini-
mization actually may destroy a lot of the sharing that already



is present in the graph and that positive results in terms of
net operator gain comes at the expense of a potential for
destructive rewrites. The following question therefore presents
itself: How good would our results be for full RBCs if we
could avoid performing the bad rewrites?

Moreover, destructive rewrites aside, network redundancy
removal by combining RBC construction with standard two-
level minimization has additional undesirable properties: For
one, even if the rewriter could accurately analyze the impact
of restructurings, restricting the choice to a single possible
rewrite is likely to be suboptimal. No one reimplementation
will always be the one that leads to the largest overall savings.
Secondly, since only one possible reimplementation is possible
for a particular two-level window and the restructuring is
applied recursively, the standard minimization approach is
non-iterable in the sense that once the full representation for
a network has been built, a new rebuild will not result in
additional savings.

If we were to construct an improved two-level minimizer,
the following properties of the new algorithm would hence be
desirable:

1) Sharing-awareness. The minimizer should take the
impact of sharing into consideration when deciding
whether to apply a rewrite or not.

2) Versatility. The minimizer should not be restrict itself
to evaluating the consequences of a single possible
reimplementation.

3) Iterability.

A. An improved minimization algorithm

Let us now focus on how to construct a minimizer that
fulfills properties 1-3. In order to be sharing aware, we
need to do delay our two-level rewriting until after we have
constructed the representation for the whole network. In a first
pass, our compactor will thus construct normal RBCS. Once
that is done, we pass the two-level minimizer a list of the roots
of the DAG that we want to compress.

Given the roots of the DAG, we can compute the network
reference count for every node: If a node is pointed to by N
nodes accessible from the roots of the formula DAG, then it
is assigned a reference count of INV. Nodes that are not present
in the representation of the DAG have a reference count of
Zero.

We will make use of a hash function TWOLEVELHASH that
maps an RBC window containing at most three operator nodes
to a 16-bit number. Our rewrite candidates for a two-level
window is stored in a precomputed table of size 2! = 65536
that is indexed by hash values. Every table entry contains a
linked list of minimum-node reimplementations of the hashed
two-level window (this means that if a given window can
be implemented with two operator nodes, no three operator
implementations are in the linked list). We will also use a
rewriting function REWRITE that, given a node whose two-
level window is to be transformed and a new two level
implementation, returns the result of rearranging the window.
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For details of the construction of these supporting functions,
see Section I'V-B.

Algorithm 1 Compress the network rooted at node

TWOLEVELCOMPRESS(node) :=
if node has been processed, and result was res then
return res
else if node is a constant or a variable then
res < node
else
res; < TWOLEVELCOMPRESS(LEFTCHILD(node))
res; «— TWOLEVELCOMPRESS(RIGHTCHILD(node))
currNode «— MKRBC(GETOP(node), res;, res;)
currNode «— SETSIGN(currNode, GETSIGN(node))
hash — TWOLEVELHASH(currNode)
bestScore — 0
for all reImpl € reimplTable[hash] do
score «— SCORE(relmpl, currNode, refcountTable)
bestReImpl «— NULL
if score < bestScore then
bestScore «— score
bestReImpl «— relmpl
end if
end for
if bestReImpl then
res = REWRITE(currNode, bestReImpl, refcountTable)
end if
end if
mark node as processed with result res
return res

Given the list of roots of the network, we apply the
minimization algorithm presented as Algorithm 1 to each list
entry. The algorithm traverses the nodes in the DAGed network
in depth-first post-order (children of a node are processed
before a node). For each node, every reimplementation of a
given two-level window rooted at this node is scored using
a function SCORE as follows. First the node decrease score
is calculated by counting how many nodes in the current
two-level window have a reference count of one. Then the
node increase score is calculated by figuring out how many
nodes that would result from the reimplementation currently
either (1) are present in the current two-level implementation
and have a reference count of one, or (2) are not in the
current two-level implementation and have a reference count
of zero. The total score for a reimplementation is the difference
between the node increase score and the node decrease score.
A positive (negative) score hence indicates how many new
nodes would be created (destroyed) by the reimplementation.
If there exists a reimplementation that does not increase the
size of the network, then the window is rewritten and the
affected reference counts are adjusted using the REWRITE
function.

Our overall compaction algorithm runs in optimal time:

Theorem 1: Assuming constant time hashing, the complex-
ity of one compression traversal over the whole network runs



in time O(N) for a network with N nodes.

Proof: To see this, consider that (1) reference counting is
linear in the size of the network, (2) TWOLEVELCOMPRESS
is called precisely once per node in the original network due
to the function memoization, and (3) the number of possible
reimplementations for a node is a bounded by a small fixed
constant. |

By construction, Algorithm 1 clearly has the desirable
properties 1 and 2. However, is it iterable? Interestingly it
is: Consider the fact that when we do a pass over the roots
of the network we always rewrite if we do not gain in node
count from the permutation. As a result, after one iteration of
restructuring, it is very possible that we end up with a network
that we can restructure again.

B. Implementation details

The tabulation of the rewrite rules could be done by
generating code that perform the reimplementation of the
two-level window in the same way as done in the described
implementation of And-Inverter graphs in [2] and BEDS
in [10]. However, this would be cumbersome as we need to
return a list of alternatives rather than perform a set pattern
of rewrites in each situation. We have therefore chosen the
alternative route of representing a reimplementation of a two-
level window as an RBC over at most four variables v; . .. vy,
and precomputing the table of rewrite list templates whenever
the RBC package is initialized. This is simple to implement
cleanly and ends up requiring negligible start-up time.

The hash function that maps the two-level window under
a node to a variable slot number, TWOLEVELHASH, is
implemented as follows: Assume that the variables v ... vy
are ordered v; < vy < w3 < wvy. If the two level window
has n nodes in the support, assign variables v; ... v, to the
input nodes in such a way that the variable ordering respects
the node ordering. The hash value for this two-level window is
now the integer corresponding to the truth table row formed by
evaluating this function for the 16 combinations of values for
v1 ...v4. Unlike the hash function for And-Inverter graphs [2]
which relies on setting bits according to a number of properties
of the window, this function has the benefit of being easy to
implement and prove collision-free.

Given a reimplementation RBC template and a top node to
process, the function REWRITE first identifies the correspon-
dence between the nodes feeding the inputs of the current
window and the template variables by studying the node
ordering. Given the resulting node—variable correspondence,
the window is next reimplemented by creating the appropriate
RBC nodes, after which the network reference counts for the
involved nodes are updated.

C. Experimental results

In column 7 of Table I we show the results of applying
a single pass of our minimizer to the RBC representation of
the circuit networks. As can be seen, this approach represents
an improvement over all the other approaches for five out of
the seven test cases with between 1.5z and 10x larger savings
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in nodes compared to the best alternative. However, the real
difference compared to the other approaches becomes apparent
when we iterate the minimization at most five times or until
no big change occurs in size (see column 8 in Table I). When
this is done, we win uniformly and increase the savings with
a factor around 2z to 5z on all examples except the smallest.

The runtime for doing the repeated minimization is still
negligible for all examples including the ones with on the
order of a hundred thousand nodes. This is not a coincidence:

Theorem 2: The worst case time complexity for creating
and minimizing a network using RBCS and our compression
strategy is linear in the size of the network.

Proof: To see this consider that (1) the complexity for
constructing the RBC representation of the original network
is linear in the size of the network, (2) each minimization
pass is linear in the size of the original RBC as shown by
Theorem 1, (3) we do at most a constant number of passes
over the network, and (4) the network never increases in size
over the original RBC size during the minimization iterations.

|

Note that Theorem 2 shows that our approach to efficient

representation construction and compaction is asymptotically

at least as fast as the construction of And-Inverter graphs or

BEDS since the worst case time complexity for constructing

these representations for a network is at least linear and
possibly worse (see Sections II-A and II-B).

V. RELATED WORK

The first of the three representations that we have discussed
to appear in the literature was the BED datastructure [10].
Interestingly, the original aim of BEDS was not primarily to
serve as a circuit representation, but as a way to generalize
BDDs by allowing them to contain explicit operator nodes and
support the incremental conversion of such a representation
into canonical form. This side of BEDS have not been relevant
to our presentation. BEDS have been used to do equivalence
checking [12], SAT-based model checking [13], and fault tree
analysis [14].

RBCs was developed independently from BEDS as a
general representation for formulas and circuit networks in
the SAT-based model checking framework FIXIT [11]. One
way to look at RBCS is as a weaker variant of the BED
datastructure that have done away with peculiarities necessary
to allow incremental BDD construction. RBCS are used as
a formula representation in the open source model checker
NUSMYV 2 [15], and has been used to implement a variety of
analyses such as SAT-based approximate model checking [16]
and Symbolic Trajectory Evaluation [17].

And-Inverter graphs was developed as a representation
for circuits by Kuehlmann and coworkers [18], [2] and has
been used as a key component in several approaches to
combinational and sequential circuit verification. Noteworthy
examples is the retimer of Baumgartner et.al. which interleaves
logic restructuring with retiming [5], Ganai and coworkers’s
structural SAT solver [19], and Kuehlmann and coworkers’s
framework for boolean reasoning [20]. One reason for why
the two-level blowup we are seeing may not have been



as much of an issue in these frameworks compared to the
results that we have shown may be that And-Inverter graphs
primarily seem to have been applied to equivalence checking
problems and the processing of high-performance netlists. In
both of these applications, the logic is likely to contain many
redundancies—in [2] the designs that are considered contain
30-50% redundant gates. The gains are therefore likely to
offset any two-level losses.

In this paper, we have been interested in compacting a
boolean network for verification purposes. This is clearly a
similar problem to the problem of optimizing a netlist during
synthesis. There exists a rich literature on how this can be
done, see for example [21], [22]. Our compression algorithm,
and to a lesser degree standard two-level minimization, can
be seen as a particular way to do rule-based optimization,
where we have enumerated all rules applicable to a two-level
window. An important difference between our approach and
the standard rule-based optimization is that we have geared
our rewriting in such a way that we are sure that we will be
using negligible runtime.

The powerful logic optimization techniques that have been
developed in the synthesis community are put to use in a
verification context in [6], where the effect of optimizing a
netlist before the invocation of a SAT solver is studied. The
results demonstrate that this can lead to order of magnitude
speedups, even when relatively few nodes are simplified away.
The logic optimizer used in this case is the synthesis system
SIS [23]. A significant difference to the work presented here is
that the reduction algorithms that are used are of much higher
complexity than the combination of our minimizer with RBCS,
so they are only applicable to doing compaction of relatively
small circuits—in the paper 20-bit integer factorization prob-
lems are considered.

VI. CONCLUSIONS

In this paper, we have experimentally evaluated the impact
of varying the number of operators and the use of two-
level minimization in a representation for boolean formulas
and circuits. The studied problem is very important, and
is becoming more so every day as more and more formal
verification methods rely on algorithms that are sensitive to
redundancies in the circuit.

Our results have shown that the thesis that the use of a single
operator in the representation will allow greater sharing does
not seem to hold in the realm of representing industrial circuits
where all obvious combinational and sequential redundancies
already have been removed. Moreover, we have shown that
while two-level rewriting is a powerful concept, it may cause
circuit blowup when sharing that already is present in the
circuit gets destroyed. Finally, we have presented a simple
minimization algorithm that can remove tens of thousands of
nodes even after all standard simplifications such as constant
propagation, operand reordering and sharing of isomorphic
parts of the DAG have been done. This conceptually simple
algorithm, paired with the uncomplicated RBC representation,
outperforms all of the alternatives that we have evaluated, in
some cases saving an order of magnitude more nodes com-
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pared to the best competitor. Moreover, the algorithm is not
only easier to implement than standard two-level minimization,
it is also guaranteed to run in provable O(N) time.
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