
Tutorial and Survey Paper:
Gate-Level Test Generation for Sequential
Circuits

KWANG-TING CHENG
University of California, Santa Barbara

This paper discusses the gate-level automatic test pattern generation (ATPG) methods and
techniques for sequential circuits. The basic concepts, examples, advantages, and limitations
of representative methods are reviewed in detail. The relationship between gate-level sequen-
tial circuit ATPG and the partial scan design is also discussed.

Categories and Subject Descriptors: B.7.3 [Integrated Circuits]: Reliability and Testing—
test generation

General Terms: Algorithms, Reliability, Verification

Additional Key Words and Phrases: Automatic test generation, IC testing, sequential circuit
test generation

1. INTRODUCTION

The first automatic test pattern generation (ATPG) algorithm for sequen-
tial circuits was reported by Seshu and Freeman [1962]. Since then,
tremendous progress in the development of algorithms and tools has been
made. One of the earliest commercial tools, LASAR [Thomas 1971], was
reported in the early seventies, and currently there are more than a dozen
sequential circuit test generators commercially available. Due to the high
complexity of the sequential circuit test generation problem, it remains a
challenging task for these tools to automatically generate high quality tests
for large, highly sequential circuits that do not incorporate any design for
testability (DfT) scheme. However, these test generators combined with
low-overhead DfT techniques such as partial scan have shown a certain
success in testing large designs. For designs that are sensitive to area
and/or performance overhead, the solution of using sequential circuit ATPG

Author’s address: Department of Electrical and Computer Engineering, University of Califor-
nia, Santa Barbara, CA 93106. ^timcheng@ece.ucsb.edu&
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1084-4309/96/1000–0405 $03.50

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996, Pages 405–442.

and partial scan offers an attractive alternative to the popular full-scan
solution, which is based on combinational circuit ATPG.
It requires a sequence of vectors to detect a single stuck-at fault in a

sequential circuit. Also, due to the presence of the memory elements, the
controllability and observability of the internal signals in a sequential
circuit are, in general, much worse than those in a combinational circuit.
These factors cause the complexity of sequential circuit test generation to
be much higher than that for combinational circuits. The test generators
for sequential circuits search for a sequence of vectors to detect a particular
fault through the space of all possible vectors. Various search strategies
and heuristics have been devised to find a shorter sequence and/or to find a
faster sequence. However, according to reported results, no single strategy/
heuristic outperforms others for all applications/circuits. This observation
implies that a test generator should include a comprehensive set of test
generation procedures. In this paper, we will discuss the basics and give a
survey of methods and techniques for sequential circuit test generation for
single stuck-at faults. We focus on the methods that are based on gate-level
circuit models. Examples will be given to illustrate the basics of represen-
tative methods. We assume that readers are familiar with the basics of
combinational circuit test generation, which are not reviewed in this paper.
More general tutorials/surveys on test generation (including techniques for
combinational circuits and for other fault models) can be found in Agrawal
and Seth [1988] and Abraham and Agrawal [1986].
Figure 1 shows the taxonomy for sequential test generation approaches.

Few approaches can directly deal with the timing issues present in highly
asynchronous circuits. Most sequential circuit test generation approaches

Fig. 1. Sequential test generation: Taxonomy.

406 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

neglect circuit delays during test generation. Such approaches primarily
target synchronous or almost synchronous (i.e., with some asynchronous
reset/clear and/or few asynchronous loops) sequential circuits and cannot
properly handle highly asynchronous circuits whose functions are strongly
related to the circuit delays and are sensitive to races and hazards. One
engineering solution to using such approaches for asynchronous circuits is
to divide the test generation process into two phases. A potential test is
first generated by ignoring the circuit delays. The potential test is then
simulated using proper delay models in the second phase to check its
validity. If the potential test is invalid due to races, hazards, or oscillations,
test generation is called again for a new potential test. The approaches for
(almost) synchronous circuits can be classified according to the level of
abstraction at which the circuit is described. One class of approaches uses
the state transition graph for test generation [Hennie 1964; Hsieh 1971;
Cheng and Jou 1992; Pomeranz and Reddy 1991]. This class is suitable for
pure controllers for which the state transition graphs are either readily
available or easily extractable from a lower-level description. For data-
dominated circuits, if both register transfer level (RTL) and gate-level
descriptions are provided, several approaches can effectively use the RTL
description for state justification and fault propagation [Hill and Huey
1977; Breuer and Friedman 1980; Ghosh 1991]. Most of the commercial test
generators are based on the gate-level description. They either employ the
iterative array model [Kubo 1968; Putzolu and Roth 1971] and use topolog-
ical analysis algorithms [Martlett 1978; Cheng 1989; Niermann and Patel
1991; Kelsey et al. 1993], or are enhanced from a fault simulator [Snethen
1977; Cheng 1989; Saab et al. 1992; Rudnick et al. 1994; Prinetto et al.
1994] or use the mixed/hybrid methods that combine the topological-
analysis-based methods and the simulation-based methods [Saab et al.
1994; Rudnick and Patel 1995; Hsiao et al. 1996]. Most gate-level ap-
proaches assume an unknown initial state in the flip-flops, although some
approaches assume a known initial state to avoid initialization of the
memory elements [Ma et al. 1988; Ghosh et al. 1991; Cho et al. 1993]. The
highlighted models and approaches in Figure 1 are those commonly
adopted in most of today’s vendor tools.
The paper is organized as follows. In Section 2, we describe the basic

principles of the iterative array model and an in-depth survey of the
topological-analysis-based algorithms. We then discuss the simulation-
based methods and the hybrid methods in Section 3. A special class of
approaches that assumes a known initial state in the flip-flops is discussed
in Section 4. In Section 5, the relationship of sequential circuit test
generation and partial scan is discussed. A brief introduction to the
approaches based on circuit models at higher levels of abstraction is given
in Section 6. We conclude by introducing the concept of functional learning
and pointing out the potential of using it to improve the performance and
robustness of sequential circuit ATPG.

Gate-Level Test Generation • 407

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

2. TOPOLOGICAL-ANALYSIS-BASED APPROACHES

The iterative array model. Many sequential circuit test generators have
been devised on the basis of fundamental combinational algorithms. As
shown in Figure 2, a combinational model for a sequential circuit is
constructed by regenerating the feedback signals from previous-time copies
of the circuit. A rectangle in Figure 2, called time-frame, represents a copy
of the combinational portion of the circuit. The inputs of a time-frame
include the primary inputs (Ii , i 5 1, . . . , n), and the outputs of the
flip-flops, called the present state lines (PSi , i 5 1, . . . , m). The outputs of
a time-frame include the primary outputs (Oi , i 5 1, . . . , k), and the data
inputs of the flip-flops, called the next state lines (NSi , i 5 1, . . . , m). The
clock signal is not included in the primary input list in this model. A clock
pulse needs to be applied between two time-frames to update the values at
the present state lines of one time-frame from the next state lines of its
previous time-frame. This combinational model is used to approximate the
timing behavior of the circuit. Topological analysis algorithms that activate
faults and sensitize paths through these multiple copies of the combina-
tional circuit are then used to generate tests. Note that a single stuck-at
fault in a sequential circuit will correspond to a multiple stuck-at fault in
the iterative array model where each time-frame contains a stuck-at fault
at the fault site.

Extended D Algorithm

The earliest algorithms extended the D-algorithm [Roth 1966] for the
iterative array model [Kubo 1968; Putzolu and Roth 1971]. It starts with
one copy of the combinational logic and sets it to time-frame 0. The

Fig. 2. The iterative-array model of a sequential circuit.

408 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

D-algorithm is used for time-frame 0 to generate a combinational test.
When the fault effect is propagated to the next state lines, a new copy of
the combinational logic is created as the next time-frame and the fault
propagation continues. When there are values required at the present state
lines, a new copy of the combinational logic is created as the previous
time-frame. The state justification is then performed backwards in the
previous time-frame. The process continues until there is no value require-
ment at the present state lines and a fault effect appears at a primary
output.

Example 1. Consider the synchronous sequential circuit in Figure 3. A
copy of the combinational portion of the circuit, called time-frame 0, is
shown in Figure 4. After the D-algorithm is applied for this time-frame, a
fault effect D# (i.e., 0/1—the value of the fault-free circuit is 0 and that of the
faulty circuit is 1) appears at the next state line Y2 and a value 0 is
required at the present state line y2. A new copy of the combination logic,
called time-frame 1, is attached to the right of time-frame 0 (fig. 5) for
further fault propagation. The fault effect can then be successfully propa-
gated to the primary output OUT in time-frame 1. The value assigned at y2
in time-frame 0 needs justification. Another copy of the combinational logic,
called time-frame 21, is attached to the left of time-frame 0 (fig. 6) and the
value at y2 of time-frame 0 can be successfully justified by assigning a 0 at
the primary input in time-frame 21. Therefore, the test sequence is
successfully generated. Regardless of the initial states of the sequential
circuit, sequence {IN 5 0, clock, IN 5 1, clock, IN 5 1} can always produce
a fault effect at the primary output OUT for the target fault.

Fig. 3. An example.

Gate-Level Test Generation • 409

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

The Nine-Valued Logic

Muth [1976] pointed out that the five-valued logic used in the D-algorithm
is not appropriate for sequential circuits. A nine-valued logic is suggested
to take into account the possible repeated effects of the fault in the iterative
array model. Each of the nine values is defined by an ordered pair of binary
values—the first value of the pair represents the binary value of the
fault-free circuit and the second value represents the binary value of the
faulty circuit. The binary value of a circuit could be 1, 0, or X (don’t care)
and therefore there are nine distinct ordered pairs (0/0, 0/1, 0/X, 1/0, 1/1,
1/X, X/0, X/1, and X/X).

Example 2. Consider the circuit in Figure 7. The signal values assigned
using the extended D-algorithm are shown in Figure 8. The process starts
with time-frame 1 and requires a 0 at PS y. Further justification in
time-frame 0 eventually leads to a conflict at primary input a on which a 0
is required while the signal is stuck-at-1. It thus mistakenly concludes that

Fig. 4. Step 1.

Fig. 5. Step 2.

410 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

there is no 2-vector test sequence for the target fault. Figure 9 shows the
values assigned in the test generation process using the nine-valued logic.
To propagate the fault effect from primary input a to the output of gate g1
in time-frame 1, the only requirement is that the other input of g1 have a 0
for the fault-free circuit (there is no value requirement at this signal for the
faulty circuit). Therefore, under the nine-valued model, the required value
is 0/X. Eventually, this leads to a value requirement 0/X at present state
line y. Due to this relaxed requirement, no conflict occurs at a in time-
frame 0 and a 2-vector test {ab 5 00, 01} for the target fault is successfully
found. (Note that a clock pulse needs to be applied between these two
vectors. In the rest of the paper, the clock will not be explicitly shown in
any test sequence and it is assumed that a clock pulse will be inserted
between any two vectors.) The reason why the five-valued model fails to
find the test is because it over-specifies the value requirements at some
internal nodes. For this example, the required value at present state line y

Fig. 7. An example for 9-valued test generation.

Fig. 6. Step 3.

Gate-Level Test Generation • 411

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

in time-frame 1 is over-specified under the five-valued model, that is, a 0 at
y for the faulty circuit is unnecessary. It happens in this example that the
over-specified requirement cannot be justified without a requirement at y
in time-frame 0. On the other hand, the nine-valued model precisely
represents the requirement that can be successfully justified at time-frame
0 without further requirement at y.

Reverse Time Processing

The extended D-algorithm and the nine-valued algorithm use mixed for-
ward and reverse time processing techniques during test generation. The
requirements created during the forward process (fault propagation) have
to be justified by the backward process later. The mixed time processing
techniques have some disadvantages: (1) The test generator may need to
maintain a large number of time-frames during test generation because all
time-frames are partially processed and (2) the implementation is some-

Fig. 8. Test generation using 5-valued logic.

Fig. 9. Test generation using 9-valued logic.

412 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

what complicated. The Reverse Time Processing (RTP) technique used in
the Extended Backtrace Algorithm (EBT) [Martlett 1978] overcomes the
problems caused by the mixed time processing technique. RTP works
backwards in time from the last time-frame to the first time-frame. For a
given fault, it pre-selects a path from the fault site to a primary output.
This path may involve several time-frames. The selected path is then
sensitized backwards starting from the primary output. If the path is
successfully sensitized, backward justification is continued for the required
value at the fault site. If the sensitization process fails, another path is
selected. The advantages of RTP include: (1) At any time during the test
generation process, only two time-frames need to be maintaine: the current
time-frame and the previous time-frame. For such a uni-directional algo-
rithm, the backward justification process is done in a breadth-first manner.
The value requirements in time-frame n are completely justified before
starting the justification of the requirements in the previous time-frame
n 2 1. Therefore, the justified values at internal nodes of time-frame n can
be discarded when the justification of time-frame n 2 1 starts. As a result,
the memory usage is low and the implementation is easier. Note that the
decision points and their corresponding circuit status still need to be
stacked for the purpose of backtracking. (2) It is easier to identify repeti-
tion of state requirements. A state requirement is defined as the state
specified at the present state lines of a time-frame during the backward
justification process. If a state requirement has been visited earlier during
the current backward justification process, the test generator has found a
loop in the state transition diagram. We call such a situation state repeti-
tion. The backward justification process should not continue to circle that
loop and backtracking should take place immediately. In reverse time
processing, justification in time-frame n is completed before the beginning
of justification in time-frame n 2 1. Therefore, simply by recording the
state requirement after the completion of backward justification of each
time-frame and comparing each newly visited state requirement with the
list of previously visited state requirements, state repetition can be easily
identified and, thus, the search can be conducted more effectively. Simi-
larly, the test generator can maintain a list of illegal states, the states that
have been previously determined as unjustifiable. Each newly visited state
requirement should also be compared against this list to determine
whether the state requirement is an identified illegal state to save repeti-
tive and unnecessary searches.
There are two major problems with the EBT algorithm: (1) Only a

single-path is selected for sensitization. Faults that require multiple-path
sensitization for detection may not be covered. (2) The number of possible
paths from the fault site to the primary outputs is very large; trying path
by path is not practical.

The BACK Algorithm

The BACK algorithm [Cheng 1988] is an improvement of the EBT algo-
rithm. It also employs the RTP technique. Instead of pre-selecting a path,

Gate-Level Test Generation • 413

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

the BACK algorithm pre-selects a primary output. It assigns a D or D# to
the selected primary output and justifies the value backwards. A testability
measure (called drivability) is used to guide the backward D-justification
from the selected primary output to the fault site. Drivability is a measure
associated with a signal that estimates the effort of propagating a D or D#
from the fault site to the signal. The drivability measurement is derived
based on the SCOAP [Goldstein 1979] controllability measurement of both
fault-free and faulty circuits. For a given fault, the drivability measure of
each signal is computed before test generation starts. In the next two
paragraphs, the definition and the calculation procedure of drivability
measures will be summarized.

Drivability. To describe the details of drivability calculation, a fault
injection technique [Niermann et al. 1992] used in the BACK algorithm
needs to be explained first. Traditionally, fault injection is accomplished by
associating a bit flag with each signal indicating whether the signal is a
stuck-at faulty signal. This method requires that the flag be examined for
every signal justification and signal implication, even though only one
signal (the target fault) is faulty in an ATPG run. Instead of using such a
software method for fault injection, an extra 2-input gate is inserted into
the circuit for injecting a fault. To inject a stuck-at-0 fault at signal s, an
extra 2-input AND gate is inserted as shown in Figure 10. One of the
inputs of the added gate is an extra primary input whose value is hard-
wired to 1/0 to reflect the correct functions of the fault-free and faulty
circuits. Similarly, to inject a stuck-at-1 fault, an extra OR gate is inserted
and the value of the extra primary input is hardwired to 0/1. The advan-
tages of this fault-injection technique are that all gates can be treated
equally and it eliminates the need for flag checking.
The controllabilities of the fault-free and faulty circuits are different and

are computed separately. For the fault-free circuit, the SCOAP 1-controlla-
bility CCg

1 (s) and 0-controllability CCg
0 (s) of each signal s can be computed

in the preprocessing stage using the procedure described in Goldstein
[1979]. For the faulty circuit of a target fault, the signal controllabilities

Fig. 10. Fault injection using an extra gate. (a) Before fault injection; (b) after fault injection.

414 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

CCf
1 (s) and CCf

0 (s) for every signal s are computed after the fault is
injected. If an AND gate is injected, the extra primary input is hardwired
to 1/0, and therefore CCg

1 (extra PI) is 0, CCg
0 (extra PI) is infinity, CCf

1(s)
(extra PI) is infinity, and CCf

0(s) (extra PI) is 0. The controllabilities of the
signals in the fanout cone of the faulty signal can then be updated based
upon the signal controllabilities of the fault-free circuits and the assigned
controllabilities at the extra primary input. Once the fault-free and faulty
controllabilities of all signals are available, drivabilities can be calculated.
Each signal is associated with two drivability measures, D drive and
D# drive, indicating the relative effort of propagating a D and a D# from the
fault site to the signal. For a signal s not reachable from the fault site, both
D drive(s) and D# drive(s) are infinity. For the extra primary input intro-
duced for fault injection, if the hardwired value is 1/0 (0/1), the D drive
(D# drive) is set to 0 and the D# (D# drive) is set to infinity. The drivabilities
of signals at the fanout of the added gate can then be calculated. For
example, consider a 3-input AND gate G with inputs A, B, and C. To
produce a D at G requires that one of the inputs has a D and the other two
inputs have value 1 in the fault-free circuit and D drive(G) can be defined
as the minimum among {D drive(A) 1 CCg

1 (B) 1 CCg
1 (C)}, {D drive(B) 1

CCg
1 (A) 1 CCg

1 (C)}, and {D drive(C) 1 CCg
1 (A) 1 CCg

1 (B)}. Similarly, to
propagate a D# from an input of an AND gate to its output, the other inputs
must have value 1 in the faulty circuit (In this case, the on-input has a
controlling value 0 for the fault-free circuit and thus there is no value
requirement at other inputs for the fault-free circuit). Therefore,
D# drive(G) is defined as the minimum among {D# drive(A) 1 CCf

1 (B) 1

Fig. 11. The BACK algorithm.

Gate-Level Test Generation • 415

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

CCf
1 (C)}, {D# drive(B) 1 CCf

1 (A) 1 CCf
1 (C)}, and {D# drive (C) 1 CCf

1 (A)
1 CCf

1 (B)}.
To justify a D (D#) at the output of a gate during backward justification,

the test generator selects the input of the smallest D drive (D# drive) as the
D-input. In this drivability guidance, sensitization paths will be created
implicitly and efficiently. The BACK algorithm is summarized in Figure 11.
Some further speedup techniques can be found in several other recent
developments [Niermann and Patel 1991; Schulz and Auth 1989; Kelsey et
al. 1993; Lee and Reddy 1991; Glaeser and Vierhaus 1995].

HITEC. HITEC [Niermann and Patel 1991] employs several new tech-
niques to improve the performance of test generation. Even though it uses
both forward and reverse time processing, it clearly divides the test
generation process into two phases. The first is the forward time processing
phase in which the fault is activated and propagated to a primary output.
The second phase is the justification of the initial state determined in the
first phase using the reverse time processing. Due to the use of the forward
time processing for fault propagation, several efficient techniques, such as
the use of dominators, unique sensitization, and mandatory assignments
[Fujiwara and Shimono 1983; Kirkland and Mercer 1987; Schulz et al.
1988; Schulz and Auth 1988] used in combinational ATPG can be extended
and applied in phase 1. In the reverse time processing algorithms, such
techniques are of no use. Also, no drivability is needed for the fault
propagation phase, which further saves some computing time.

FASTEST. FATEST [Kelsey et al. 1993] uses only forward time process-
ing and uses PODEM [Goel 1981] as the underlying test generation
algorithm. For a given fault, FATEST first attempts to estimate the total
number of time-frames required for detecting the fault and also estimate at
which time-frame the fault is activated. The estimation is based on
SCOAP-like [Goldstein 1979] controllability and observability measures.
An iterative array model with the estimated number of time-frames is then
constructed. The present state lines of the very first time-frame have an
unknown value and cannot be assigned to either binary value. A PODEM-
like algorithm [Goel 1981] is employed where the initial objective is to
activate the target fault at the estimated time-frame. After an initial
objective has been determined, it backtraces starting from the line of the
initial objective until it reaches an unassigned primary input or a present
state line in the first time-frame. For the latter case, backtracking is
performed immediately. This process is very similar to the PODEM algo-
rithm except that the process now works as a circuit model with multiple
time-frames. If the algorithm fails to find a test within the number of
time-frames currently in the iterative array, the number of time-frames is
increased and test generation is attempted again based on the new itera-
tive array.
Compared with the reverse time processing algorithms, the main advan-

tage of the forward time processing algorithm is that it will not waste time
justifying unreachable states and usually generates a shorter justification

416 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

sequence for bringing the circuit to a hard-to-reach state. For circuits with
a large number of unreachable states or hard-to-reach states, the reverse
time processing algorithms may spend much time in proving the unreach-
able states are unreachable or generating an unduly long sequence to bring
the circuit to a hard-to-reach state. However, the forward time processing
algorithm requires a good estimate of the total number of time-frames and
the time-frame for activating each target fault. If the estimation is not
accurate, the test generator may waste much effort in the smaller-than-
necessary iterative array model.

2.1 Some Practical Issues

Test generation for multiple-clock and/or multiple-phase designs. The
examples shown above are all single-clock and single-phase designs. The
clock signal is not part of the primary input signals of the array model and
a clock pulse needs to be applied between any two time-frames. To handle
multiple-clock and/or multiple-phase designs, one simple solution is to
treat the clock signals as part of the primary input signals and let the
ATPG algorithm automatically figure out the required values at the clock
signals. This solution requires converting an edge-triggered flip-flop into a
model that consists of three delay elements [Cheng 1989]. For example, the
3-delay-element model for a positive-edge-triggered D flip-flop is shown in
Figure 12. The three delay elements (shown in shaded boxes) store the
previous value at the data input signal D, the previous value at the clock
input signal C, and the previous state of the flip-flop Q, named a PD, PC,
and PQ, respectively. It can be verified that this model correctly represents
the behavior of a flip-flop. For example, if a sequence of (01) is applied at C,
that is, C 5 1 and PC 5 0, then Q will be equal to PD. For a negative-edge-
triggered D flip-flop, the model is almost the same except that an inverter
is added before input signal C. After all flip-flops in the given circuit are
replaced by their corresponding 3-delay-element models, the expanded
circuit model consists of only delay elements. The iterative array model can
then be used for the expanded model. The sequence generated already

Fig. 12. The model of a positive-edge-triggered flip-flop.

Gate-Level Test Generation • 417

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

specifies the required values at the clock signals and no additional clock
sequence needs to be added between time-frames.

Example 3. Let’s consider a simple circuit that consists of only one
positive-edge-triggered D flip-flop and use the 3-delay-element model to
find a test for the output Q stuck-at-0 fault. The circuit has two inputs D
and C, connected to the data input and the clock input of the flip-flop, and
one output Q. There are three possible cubes to set Q to 1 for activating the
fault: {C 5 0, PQ 5 1}, {C 5 1, PC 5 0, PD 5 1}, and {PC 5 1, PQ 5 1}. The
first and the third cubes require PQ 5 1 and in turn require Q 5 1 again in
the previous time-frame. This is a state repetition and therefore these two
cubes need not be further explored. The state requirement of the second
cube, PC 5 0 and PD 5 1, can be easily justified in the previous time-frame
by setting C to 0 and D to 1. Therefore, we can conclude that the test is
vector (CD 5 01) followed by vector (CD 5 1X), which is indeed the correct
test.

Test generation for circuits with combinational loops. For circuits with
some combinational feedback loops (i.e., loops that do not contain any
flip-flops), the iterative array model can still be applied. This extension has
been discussed in Chappell [1974] and Breuer [1974]. A set of feedback
connections whose removal will eliminate all combinational feedback loops
is first identified. At each of these combinational feedback lines, a pseudo
delay element is inserted to create a new circuit model for test generation.
The iterative array model is then constructed for the modified circuit which
consists of two types of delay elements: regular delay elements (that are
either D flip-flops in a single-clock/single-phase design or the ones in the
3-delay-element model discussed in the last paragraph) and the pseudo
delay elements. In the iterative array model, the inputs to a time-frame
include the primary inputs, the present state lines, and the outputs of the
pseudo delay elements (called pseudo present state lines PPS). Similarly,
the outputs of a time-frame consist of the primary outputs, the next state
lines, and the inputs of the pseudo delay elements (called pseudo next state
lines PNS). During test generation, additional constraints are imposed. For
the time-frames in which at least one PPS/PNS line pair (associated with a
pseudo delay element) does not have consistent binary values, each PS/NS
line pair (associated with a delay element) is forced to have the same
binary value and the primary inputs are not allowed to change values. If a
PPS/PNS line pair does not have consistent binary values, the actual value
at the corresponding combinational feedback line has not stabilized yet, so
the clock should not be applied and the primary input vector should not
change. By imposing such constraints, the iterative array will contain some
fine-grained time-frames for consistent justification for the combinational
feedback lines and some coarse-grained time-frames for value justification
and fault propagation across the flip-flops.

Efficient identification of undetectable faults. Sequential ATPG is a
complex search process. In principle, test generators are tuned to perform a

418 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

depth-first search such that a test sequence can be found as short and early
as possible. A test generator will report a fault as undetectable after
implicitly exhausting the search space. Because the search strategy is
optimized for finding a test (instead of determining whether a fault is
detectable or not), the undetectable faults are hard to identify and the test
generators usually spend a significant fraction of total computation time on
these undetectable faults. To limit the computational resource allocated to
each fault, a test generator usually sets a limit on the time budget and a
limit on the maximum number of time-frames for each target fault. For
undetectable faults in larger circuits, the CPU time limit is usually reached
before the search space is exhausted and they are usually classified as
aborted faults instead of undetectable faults. Therefore, it may be worth-
while to add a preprocessing phase before ATPG which is dedicated to
identifying undetectable faults and employs a different search strategy.
Several approaches suggest ways to identify a subset of undetectable

faults based on efficient procedures [Cheng 1993; Agrawal and Chakradhar
1995; Pomeranz and Reddy 1994; Iyer and Abramovici 1994]. For example,
a fault which is undetectable under the assumption that all state lines are
fully controllable and observable (i.e., combinationally undetectable) is also
a sequentially undetectable fault. Such an undetectable fault can be much
more efficiently identified by a combinational circuit test generator. Note
that such a fault may not be identified as an undetectable fault by a
sequential circuit test generator if just one time-frame is allowed. For
example, if the BACK algorithm is used for a combinationally undetectable
fault and a fault effect (D or D#) is assigned to a primary output, it is still
possible that the fault effect may be back propagated to a present state line
of this time-frame and the fault cannot be identified as undetectable using
just one-time-frame sequential ATPG. A procedure for identifying a special
class of undetectable faults, called feedback-free sequentially undetectable
faults, is suggested in Cheng 1993. The procedure first converts a sequen-
tial circuit into a feedback-free model by assuming a set of feedback lines as
fully controllable and observable. A fault which is undetectable under this
model will also be sequentially undetectable. The method proposed in
Agrawal and Chakradhar [1995] uses a combinational circuit test generator
to target faults in the iterative array model with a pre-specified, small
number of time-frames. It assumes that the next-state lines of the last (i.e.,
rightmost) time-frames are fully observable and the present state lines of
the first (i.e., leftmost) time-frames are fully controllable. Two different
procedures are suggested to identify a subset of sequentially undetectable
faults: one assumes that only the last time-frame of the array model has
the target fault and the other time-frames are all fault-free; the other
assumes that every time-frame in the array model has the target fault. In
other words, the first procedure targets a single-stuck-at fault in the array
model and the second procedure targets a multiple-stuck-at fault. It has
been shown [Agrawal and Chakradhar 1995; Pomeranz and Reddy 1994]
that a combinationally undetectable fault in the iterative array model
identified by either one of the two procedures corresponds to a sequentially

Gate-Level Test Generation • 419

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

undetectable fault in the original circuit. Therefore, such techniques will
allow identification of a subset of sequentially undetectable faults using
more efficient combinational techniques. In Pomeranz and Reddy [1994], a
more detailed characterization of these undetectable faults in terms of their
classification with respect to redundancy is given. The relationship be-
tween undetectability and redundancy will be discussed in more details in
Section 2.2. In Iyer and Abramovici [1994], an efficient algorithm based
purely on implication is proposed. The algorithm relies on identifying
illegal value combinations (also called conflicts) on a subset of signals in
the circuit. Faults for which these illegal value combinations are necessary
for detection are then found as sequentially undetectable.

Test efficiency. The fault coverage figures achieved by the test sequence
produced by a test generator may not be a fair indicator of the test
generator’s performance. Determining the set of undetectable faults is also
an objective of test generation. Therefore, the test efficiency, defined as the
ratio of the number of detected faults plus the number of identified
undetectable faults to the total number of faults, is usually used to
evaluate the efficiency of a test generator.

Robust Tests for Asynchronous Preset/Clear Lines and for Busses

Special attention needs to be paid for asynchronous preset/clear lines. No
hazards or glitches are allowed at these signals; otherwise the test may be
invalidated. This problem has been discussed in detail in Breuer and
Harrison [1974].

Example 4. Consider the example shown in Figure 13. The test may
create hazards at the output of gate a and thus may accidentally preset the
flip-flop. Stable, inactive signal values, such as the one at output of gate b,
must be maintained at asynchronous clear and preset lines. q
A circuit may have busses that do not use fully decoded enables. Even if

the designer is confident that during system operation, no vector creates a

Fig. 13. Nonrobust test at asynchronous preset/clear lines.

420 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

state that could cause bus contention or bus floating, it cannot be guaran-
teed that the sequences generated by an ATPG tool would not cause bus
problems. The ATPG tools need to make sure that the sequence generated
will not cause bus contention or leave the bus floating, even for those
busses not in the fanin or fanout cones of the target fault. This constraint
can be implemented by adding some fictitious logic to the fanin of the bus
enables and data signals to make sure that one or more bus enables are
active. If more than one enables are active, the fictitious logic will force the
corresponding bus data to be consistent.

Complexity of Sequential ATPG

For the topological analysis based approaches, the complexity can be
roughly measured by the average number of vectors (therefore, time-
frames) required for detecting a fault in the given network. In general, the
average number of vectors for detecting a fault is highly related to the
structure of the sequential circuit and attributes, such as sequential depth
(the maximum number of flip-flops encountered in any path from a primary
input to a primary output), number of sequential cycles (a sequential cycle
exists if a flip-flop’s data input is in the fanout cone of the flip-flop’s
output), and the maximum length of any sequential cycles (the length of a
cycle is defined as the number of flip-flops in the feedback loop). The
presence of sequential cycles increases the temporal correlations of values
on specific nodes and costs more time-frames to justify specific values at
internal nodes. It has been shown [Miczo 1986; Cheng and Agrawal 1989;
Gupta and Breuer 1990] that the computational complexity of test genera-
tion for a cycle-free sequential circuit is not too much higher than that for a
combinational circuit. For a cycle-free circuit with a sequential depth D,
any detectable single-stuck-at fault can be detected by a sequence of length
D 1 1. Therefore, for such circuits, there is a small upper-bound on the
number of time-frames for each test generation attempt and a high fault
coverage can usually be achieved. Empirical studies have also shown that
the average number of time-frames is somewhat linearly proportional to
the sequential depth of a circuit and is exponential in terms of the
maximum cycle length [Miczo 1986; Cheng and Agrawal 1989].
ATPG may waste a substantial amount of runtime in fruitless justifica-

tion of invalid states (defined as the states that cannot be reached from the
reset state). The computational complexity caused by such fruitless efforts
is not reflected in the above mentioned circuit attributes such as sequential
depth and sequential cycles. Recently, it has been pointed out [Marchok et
al. 1995] that density of encoding, defined as the ratio of the number of
valid states to the total number of states, is a key indicator of topological-
analysis-based sequential ATPG. The lower the ratio, the more the invalid
state, and the higher the probability of a sequential ATPG wasting time in
justifying them during test generation. It has been shown [Marchok et al.
1995] that ATPG spent significantly longer CPU time and achieved a lower
fault coverage for a retimed version of a sequential circuit that has a much
lower density of encoding than the original circuit.

Gate-Level Test Generation • 421

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

2.2 Undetectability and Redundancy

For combinational circuits or full-scan sequential circuits, a fault is called
undetectable if no input sequence can produce a fault effect (D or D#) at any
primary output, and a fault is called redundant if the presence of the fault
does not change the input/output behavior of the circuit. The detectability
is associated with a test generation procedure while redundancy is associ-
ated with functional specification of a design. A fault is combinationally
redundant if it is reported as undetectable by a complete combinational test
generator. The definitions of detectability and redundancy for (non-scan)
sequential circuits are much more complicated [Abramovici et al. 1990;
Cheng 1993; Pomeranz and Reddy 1993], and these two properties (redun-
dancy and undetectability of stuck-at faults) are no longer equivalent
[Abramovici et al. 1990; Cheng 1993; Pomeranz and Reddy 1993]. It is
pointed out in Pomeranz and Reddy [1993] that undetectability can be
precisely defined only if a test strategy is specified, and redundancy cannot
be defined unless the operational mode of the circuit is known. Formal and
precise definitions of undetectability with respect to four different test
strategies, namely full-scan, reset, multiple observation time, and single
observation time, are given, and redundancies with respect to three differ-
ent circuit operational modes, namely reset, synchronization, and non-
synchronization are also defined in Pomeranz and Reddy [1993]. A fault is
called undetectable under full-scan if it is combinationally undetectable
[DeVadas 1990]. In the case where hardware reset is available, a fault is
said to be undetectable under the reset strategy if no input sequence exists
such that the output response of the fault-free circuit is different from the
response of the faulty circuit, both starting from their reset states. In the
case where hardware reset is not available, there are two different test
strategies: the multiple observation time (MOT) strategy and the single
observation time (SOT) strategy. Under the SOT strategy, a sequence
detects a fault only if a fault effect appears at the same primary output Oi
and at the same vector Vj for all power-up initial state-pairs of the
fault-free and faulty circuits (Oi could be any primary output and Vj could
be any vector in the sequence). Most gate-level test generators and all
ATPG algorithms mentioned in Section 2 assume the SOT test strategy.
Under the MOT strategy, a fault can be detected by multiple input
sequences—each input sequence produces a fault effect at some primary
output for a subset of power-up initial state-pairs and the union of the
subsets covers all possible power-up initial state-pairs (for a n-flip-flop
circuit, there are 22n power-up initial state-pairs). Under the MOT strat-
egy, it is also possible to detect a fault using a single test sequence for which
fault effects appear at different primary outputs and/or different vectors for
different power-up initial state-pairs.

Example 5. Figure 14 shows an undetectable fault under the SOT test
strategy [Cheng 1993]. Line C stuck-at-0 fault prevents the flip-flop from
initialization. Since no input sequence can set the flip-flop to a known
binary value in the faulty machine, no input sequence can produce a D (1/0)

422 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

or D# (0/1) at the primary output. Note that this fault is definitely not
redundant—fixing line C to constant 0 completely changes the functional
behavior of the circuit. The fault can actually be thoroughly tested by test
sequence AC 5 (11, 01). If the initial state of the flip-flop is X/0 (i.e., the
initial state of the fault-free circuit is unknown and that of the faulty
circuit is 0), the output response of the first vector will be 1/0 and the fault
is detected. If the initial state is X/1, the output response will be 1/1 for the
first vector and 0/1 for the second vector and the fault is also detected.
Since the union of X/0 and X/1 covers all possible combinations of initial
fault-free and faulty state-pairs, this sequence detects the fault under the
MOT test strategy. Note that it cannot be determined a priori which vector
will produce a fault effect at PO for this fault and, therefore, the outputs
must be observed for both vectors. We can then conclude that this fault is
undetectable under the SOT strategy and detectable under the MOT
strategy.
An algorithm for generating tests under the MOT strategy has been

proposed in Pomeranz and Reddy [1992]. The advantages of the MOT test
strategy include the following: (1) There are faults that are undetectable
under the SOT strategy but detectable under the MOT strategy. Therefore,
there will be more detectable faults if MOT is used. (2) Even if a fault is
detectable under the SOT strategy, it may still be advantageous to use the
MOT strategy because the MOT test is, in general, shorter than the SOT
test. Under the SOT strategy, the test sequence is preceded by an initial-
ization sequence that brings both fault-free and faulty circuits to a known
state. Such a sequence could be long. Full initialization may not be
necessary for the MOT strategy. However, under the MOT strategy, the
test generation process is more complex and the tester needs to store not
just one but several fault-free responses of the test vectors and compare the
response of each device under test against them. Existing testers do not
provide this feature yet.
In Pomeranz and Reddy [1993], sequential redundancy is defined with

respect to three possible modes of operation: (1) reset mode, in which the
circuit is reset to a specific initial state at the beginning of operation, (2)

Fig. 14. A fault that is SOT undetectable but MOT detectable.

Gate-Level Test Generation • 423

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

synchronization mode, in which the operation starts with a specific initial-
ization sequence, and (3) no-synchronization mode, in which the operation
starts from the state in which the circuit happens to be. A fault is
redundant under a given mode of operation if, for all possible input
sequences applicable under the given mode of operation, the fault does not
change the expected output responses. For circuits with a hardware reset, a
fault is undetectable under the reset test strategy if and only if the fault is
redundant under the reset mode of operation. The notion of partial tests
introduced in Pomeranz and Reddy [1993] is useful in understanding the
relationship between undetectability and redundancy under the synchroni-
zation and the no-synchronization modes of operation. A partial test is an
input sequence such that for at least one initial state of the faulty circuit,
the output response of the faulty circuit is different from the response of
the fault-free circuit [Pomeranz and Reddy 1993]. A fault is called partially
detectable if at least one partial test exists. It is shown [Cheng 1993;
Pomeranz and Reddy 1993] that a fault is redundant if and only if it is not
partially detectable. A modification to the sequential circuit test generation
algorithm for identifying partially detectable faults can be found in Cheng
1993.

Example 6. Consider the two-level circuit shown in Figure 15(a). The
target fault is the output stuck-at-0 fault of the AND gate (xy# 1y# 2). Figure
15(b) and Figure 15(c) show the state graphs of the fault-free and faulty
circuits. Sequence {x 5 011} will initialize the fault-free circuit to state y1y2
5 11 but the faulty circuit cannot be initialized because state y1y2 5 00 is
a sink state. The fault-free response at output Z for input sequence {x 5
0110} is {Z 5 XXX1}. If the faulty circuit initial state is y1y2 5 00, the
faulty response at Z for the same input sequence will be {Z 5 0000} and the
target fault can be detected by the sequence. However, if the faulty circuit
initial state is y1y2 5 01, 10, or 11, the faulty response at Z will be {Z 5
XXX1} and the fault will not be detected. In summary, the fault is
detectable if the power-up initial state of the faulty circuit is 00. Otherwise,
it is not detectable. Therefore, the fault is partially detectable. q

Fig. 15. An example of a partially detectable fault. (a) Boolean functions and the stuck-at-
fault; (b) the fault-free state graph; (c) the faulty state graph.

424 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

2.3 Deficiencies

Theoretical limitation. Consider a 20-bit counter. It takes a sequence of
219 vectors to detect the stuck-at-0 fault at the most significant bit.
Therefore, this many time-frames would be required in the test generation
process. Such a small but highly sequential circuit could hardly be handled
by any gate-level ATPG tool. Sequential ATPG is by no means a complete
solution for highly sequential circuits. However, sequential ATPG com-
bined with design-for-testability techniques such as partial scan offers a
complete solution. The relationship between sequential ATPG and partial
scan will be discussed in Section 5.

Timing. Timing is not properly considered by approaches based on the
iterative array model for circuits with combinational loops and for multiple-
phase or multiple-clock designs, as discussed earlier. Even though we can
construct an iterative array model for an asynchronous circuit and apply
the path sensitization technique on the model to generate tests, the tests
generated in such a manner may cause races and hazards.

Example 7. [Cheng and Agrawal 1989]. Figure 16 shows a cross-coupled
NAND latch. The iterative array model of this latch constructed by cutting
the feedback path is shown in Figure 17. The test shown in Figure 17 is
vector (AB 5 11) preceded by vector (AB 5 X0) where X denotes the don’t
care state. The value assigned to the unspecified signal may cause a
problem. If we set X to 1, we get the desired test. But if X is set to 0, the
test will cause a race in the fault-free circuit. Thus, tests generated by such
procedures require special processing to avoid timing problems. The sim-
plest way is to use a fault simulator that takes timing into account to verify
the generated tests. q

Over-specification. Some array-model-based test generators may err in
identifying undetectable faults [Cheng and Ma 1993]. In other words, these
test generators may not find the test sequence for a detectable fault under
a given test strategy, even allowed infinite run time, and furthermore may

Fig. 16. A NAND latch.

Gate-Level Test Generation • 425

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

mistakenly claim it as undetectable. The main problem of these test
generators is that the underlying combinational test generation algorithm,
for example, PODEM [Goel 1981], may over-specify the requirements at the
present state lines.

Example 8. Consider the circuit given in Figure 18 that has three
flip-flops, one input (I), and one output (O). The next state lines are A, B
and C and the corresponding present state lines are a, b, and c. We assume
the single observation time test strategy. Note that flip-flop A is not
initializable. Let us try to generate a test for the stuck-at-0 fault at output
O. PODEM is used within each time-frame as the underlying combinational
test generation algorithm. Let’s consider only the last (i.e., the rightmost)

Fig. 18. An example illustrating the over-specification problem.

Fig. 17. Time-frame expansion for an asynchronous circuit.

426 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

time-frame. Assuming that the order of assigning values at the present
state lines at this time-frame during the search is c followed by a, followed
by b, the complete set of combinational tests for this time-frame found by
PODEM is shown in Table 1. Because flip-flop A is not initializable, none of
these three required states (abc 5 0X0, 110, 111) specified in the combina-
tional tests can be justified. The test generator would conclude that the
fault is undetectable under the SOT strategy. However, vector T4: (Iabc 5
XX10) that is jointly covered by tests T1 and T2 is also a combinational test
but it is not generated by PODEM. The required state of T4 (abc 5 X10) has
an X value at the present state line a and can be justified by a single vector
I 5 0. Thus the stuck-at-0 fault at output O can be detected by the 2-vector
test sequence (I 5 0, I 5 X). q
The main problem here is that not all minimally-specified combinational

tests are generated. It may be intuitive to resolve the problem by expand-
ing the combinational tests to convert the over-specified present state lines
into X’s. This simple solution is to choose a present state line i whose value
is specified (i.e., set to 0 or 1) and change it to a don’t-care value X. If the
new vector is still a combinational test (verified by simulation), a less
specified test is found. This process continues until all present state lines
are processed once. This simple heuristic may help but still does not
guarantee finding all minimally specified tests. A necessary condition that
the underlying combinational test generation algorithm must satisfy to be
able to generate all minimally specified tests and, thus, ensure a correct
sequential test generator (in terms of identifying undetectable faults) is
given in Cheng and Ma [1993]. The D-algorithm [Roth 1966] satisfies the
necessary condition while some of the well-known combinational algo-
rithms such as PODEM violate this condition. Modifications of these
algorithms to meet this condition were also suggested in Cheng and Ma
[1993].

3. SIMULATION-BASED APPROACHES

Another class of gate-level approaches, called simulation-based approaches
[Seshu and Freeman 1962; Cheng and Agrawal 1989; Saab et al. 1992;
Rudnick and Patel 1994; Prinetto et al. 1994; Nitta et al. 1985; Rudnick et
al. 1994; Srinivas and Patnaik 1993; Pomeranz and Reddy 1995; Corno et
al. 1996], is enhanced from a logic simulator or a fault simulator. These
approaches are combinations of simulation, and cost function guidance. The
basic concept of these approaches is as follows: Suppose we wish to

Table I. Combinational Tests of the Last Time-Frame Found by PODEM

I a b c

T1 X 0 X 0
T2 X 1 1 0
T3 X 1 1 1

Gate-Level Test Generation • 427

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

generate a test for a given fault or set of faults. Based upon the previous
tests, a new trial vector or a trial sequence is generated. Logic simulation
or fault simulation is then performed for this trial vector/sequence. From
the simulation result, a cost function that, in some way, determines how far
the state of the circuit is from the required state for the detection of the
fault(s), is computed. If the cost is reduced, the new trial vector/sequence
will be included in the final test sequence; otherwise it will be discarded. A
new trial vector is then generated and the process repeats until the fault is
detected or the number of trial vectors reaches a pre-specified limit. The
differences between different methods in this class of approaches are in (1)
the ways to generate new trial vectors and (2) the cost functions for guiding
the search. Most simulation-based methods consist of multiple phases, and
different phases use different cost functions to achieve different objectives.
The first simulation-based method was proposed by Seshu and Freeman

in 1962. A fault simulator is used to evaluate trial vectors, which are
defined as those vectors that differ from the present vector in exactly one
bit position. The trial vector that detects most faults will be accepted as the
next test vector. Other trial vectors that detect any fault are saved in a
stack to be used as bases for generating new trial vectors. If no trial vector
detects any fault, then the algorithm selects one vector from the stack and
uses it as the present vector. A set of trial vectors is then generated and the
process continues until the stack is empty. A few heuristics have further
been proposed in Seshu [1965]. For example, when the stack is empty and
none of the trial vectors is acceptable, instead of terminating the process, a
new vector is randomly generated and trial vectors are generated from the
random vector.
Breuer proposed another simulation-based method in 1971. The trial

vectors are simply random vectors. At each iteration, a fixed number of
random vectors are generated and they are evaluated by a fault simulator.
The best vector among the trial vectors is then selected as the next test
vector. The cost function for evaluating each trial vector (V) is in the
following form: C(V) 5 aC1 1 b(C2 2 C3) where C1 is the number of new
faults detected by V, C2 is the number of faults whose fault effects were not
present in any flip-flop before the application of V but are present in some
flip-flop after the application of V, C3 is the number of faults whose fault
effects were present in some flip-flop before the application of V but are not
present in any flip-flop after the application of V, and a and b are just
weighting constants.
SOFTG (Simulator-Oriented Fault Test Generator) [Snethen 1977] is a

test generator that can be classified as simulation-based while it also uses
the backtrace procedure of PODEM in finding the test. To ensure hazard-
free tests, SOFTG generates a test sequence in which each vector differs
from its previous vector in one bit and uses a simulator for all forward
signal propagation. The backtrace procedure is used to find the best input
bit to be flipped. The close interaction with the simulator allows SOFTG to
effectively model the timing behavior of a sequential circuit such that the
tests will not cause races or hazards in the fault-free circuit.

428 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

CONTEST [Cheng and Agrawal 1989] is a test generator enhanced from
a concurrent fault simulator. CONTEST generates a new trial vector by
changing a single bit in the last accepted vector. The test generation
process is subdivided into three phases with a different cost function for
each phase: (1) Initialization phase—to bring flip-flops in the circuit into
known states irrespective of the starting state. The cost function of this
phase is simply the number of uninitialized flip-flops. Initially, the cost
may be equal to the number of flip-flops in the circuit. The goal is to reduce
this cost to 0. (2) Concurrent fault detection phase—the objective is to
generate tests effectively by targeting all undetected faults concurrently.
The cost function of a fault is defined as the minimum distance of any fault
effects created by this fault to any primary output. The distance is simply
the number of logic gates on the path. The smaller the cost, the closer the
fault is to being detected. When a fault is detected, its cost will be zero. If a
fault is not activated, the cost is defined as infinity. In general, there are
many undetected faults in phase 2. The costs of all undetected faults for the
current vector and for the candidate trial vector needs to be computed. To
determine whether to accept the candidate vector or reject it, two lists of
cost functions instead of two numbers are compared. That is, the search for
tests is guided by a group of faults instead of a single target fault. Based on
this principle, a simple cost function for a trial vector can be defined as the
sum of, say, 10% of the lowest cost undetected faults. The concurrent phase
stops when no single bit changes in the current vector produce cost
reduction. This will normally happen when a small number of faults is left
in the target set. (3) Single fault detection phase—test vectors are gener-
ated for a single target fault. The cost function is based on a SCOAP-like
testability measure [Goldstein 1979]. For a target fault, dynamic testability
measures that estimate the minimum number of primary inputs of the
current vector that must be changed and the minimum number of addi-
tional vectors that must be applied for detecting the fault are used to
measure the cost of a trial vector and to guide vector generation. Similar to
phase 2, a new trial vector is generated based on a single bit change of the
current vector.

3.1 Generating Trial Vectors by Genetic Algorithm

CRIS [Saab et al. 1992], another simulation-based test generator, uses two
cost functions that are based on (1) the distance of the fault effects to the
primary outputs and (2) the distribution of the switching activity of the
previously generated tests. The first cost function is similar to the one used
in phase 2 of CONTEST. The second cost function is used to select vectors
that would create more switching activity for the portion of the circuit that
has a low level of switching activity for the previously generated tests.
Increasing the switching activity in an inactive subcircuit would increase
the probability of detecting faults in that subcircuit. CRIS uses the genetic
algorithms [Goldberg 1989] to generate new trial vectors. The new trial
vectors are generated by some basic evolutionary operators of genetic

Gate-Level Test Generation • 429

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

algorithms such as reproduction (copying potentially useful candidate
vectors and sequences), mutation (flipping bits in a vector), splicing of
vectors (producing a new vector using substrings from two other vectors), or
sequences (producing a new sequence from subsequences of existing se-
quences). The information collected during simulation (such as activity of
internal nodes and nodes where the fault effects were blocked) is used to
identify bits for mutation or the vectors and sequences for splicing. GATTO
[Prinetto et al. 1994] is another simulation-based method using genetic
algorithms. Similar to CRIS, the cost function of GATTO is to maximize the
circuit activity.
GATEST [Rudnick et al. 1994] uses genetic algorithms to generate new

trial vectors as well as new trial sequences. The cost function (called fitness
function in genetic algorithms) of each trial vector or sequence is evaluated
by a fault simulator. The main objective of the fitness function is to
maximize the number of faults detected and the number of fault effects
propagated to flip-flops. GATEST consists of four phases: (1) Phase 1 (the
initialization phase)—The fitness function consists of two terms. The first
is the count of initialized flip-flops, which is the same as the phase 1 cost
function used by CONTEST. The second term is the fraction of flip-flops
changing values after the application of the vector under evaluation. The
second term is used to differentiate vectors that cause the same number of
flip-flops to be initialized. The vector that causes more state variables to
change values is preferred. When all flip-flops are initialized, the program
enters phase 2. (2) Phase 2—The fitness function is the sum of two terms:
(i) the number of faults it detects and (ii) the number of faults whose fault
effects propagated to flip-flops are divided by the product of the total
number of faults and the total number of flip-flops. Again, the second term
is a fraction and is used to differentiate vectors that detect the same
number of faults. Once a test vector is generated that detects no additional
faults, the program enters the next phase. (3) Phase 3—The fitness
function consists of three terms and the first two terms are identical to
those of phase 2. The third term is the total number of good and faulty
circuit events divided by the product of the total number of nodes and the
total number of faults. This cost function is used to select the vectors that
create high good and faulty circuit activity levels. In phase 3, the vectors
normally do not detect any fault (i.e., the first term is zero) and the
objective is to change the circuit to a new state such that additional faults
can be detected. When a fault is detected in phase 3, the program goes back
to phase 2 and the process repeats. If the number of vectors generated in
phase 3 exceeds a limit, the program enters the final phase. (4) Phase
4—The fitness function is evaluated for trial sequences instead of individ-
ual trial vectors. The fitness function of a trial sequence is very similar to
that of phase 2 for a trial vector, except that the second term is further
divided by the trial sequence length.
It has been pointed out in Rudnick et al. [1994] that several genetic

algorithm parameters are important in achieving good results. The GA
parameters include the population size (i.e., the number of vectors used to

430 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

generate new trial vectors), the number of generations for evolving the
vectors, and the crossover and mutation probabilities in evolving the
vectors.
The simulation-based approaches have several advantages: (1) Logic

simulation and fault simulation deal with circuit delays in a very natural
way, and therefore even highly asynchronous sequential circuits can be
handled. It can be assured that the sequence generated by such approaches
will not cause hazards/races in the asynchronous circuits. (2) Because a
fault simulator can accept a transistor-level netlist, it can handle transis-
tor-level fault models. (3) Fault simulators, in general, require less CPU
run time than array-model-based approaches.
The major disadvantages of the simulation-based approaches are: (1)

Unlike the array-model-based approaches, these methods cannot identify
undetectable faults. (2) They may also fail to generate tests for certain
hard-to-activate faults. The guidance provided by the cost functions of these
faults is usually very weak. (3) The test sequence generated tends to be
longer than that generated by the array-model-based approach.

3.2 Hybrid Approaches

A number of hybrid methods have recently been proposed that combine the
simulation-based technique with topological-analysis-based techniques
[Saab et al. 1994; Rudnick and Patel 1995; Hsiao et al. 1996]. CRIS-hybrid
[Saab et al. 1994] combines CRIS [Rudnick et al. 1994] with a iterative-
array-model-based ATPG in a loose way. When CRIS generates a fixed
number of test vectors without improving the fault coverage, array-model-
based test generation is applied to get a set of vectors to be added to both
the final test sequence and also to the current population to be used for
trial vector generation for further call to CRIS. The array-model-based test
generation is also used to identify untestable faults. The results show that
this hybrid method results in test sequences of a better quality in terms of
both test length and fault coverage as compared to CRIS. GA-HITEC
[Rudnick and Patel 1995], another hybrid test generator, uses topological
algorithms for fault excitation and fault propagation and uses genetic
algorithms for state justification. If the genetic approach is not successful,
topological-analysis-based procedures are further used for state justifica-
tion. Further improvement to GA-HITEC, to closely integrated HITEC with
a GA-based test generator, is given in Hsiao et al. [1996].

4. APPROACHES ASSUMING A KNOWN RESET STATE

To avoid the generation of an initialization sequence, a class of approaches
assumes a known initial state. This assumption is valid for controllers that
usually have a hardware reset (i.e., there is an external reset signal and
the memory elements are implemented by resettable flip-flops). Approaches
like STALLION [Ma et al. 1988], STEED [Ghosh et al. 1991], and VERITAS
[Cho et al. 1993] belong to this category.

Gate-Level Test Generation • 431

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

STALLION [Ma et al. 1988] first extracts the state transition graph
(STG) for the fault-free circuit. For a given fault, it finds an activation state
S and a fault propagation sequence T that will propagate the fault effect to
a primary output. This process is based on PODEM and the iterative array
model. There is no backward state justification in this step. Using the state
transition graph, it then finds a state transfer sequence T0 from the initial
state S0 to the activation state S. Because the derivation of the state
transfer sequence is based on the state graph of the fault-free circuit, the
sequence may be corrupted by the fault and, thus, may not bring the faulty
circuit into the required state S. Therefore, fault simulation for the
concatenated sequence T0 2 T is required. If the concatenated sequence is
not a valid test, an alternative transfer sequence or propagation sequence
will be generated. STALLION performs well for controllers for which the
state transition graph can be extracted easily. However, the extraction of
STG is not feasible for large circuits. To overcome this deficiency, STAL-
LION constructs a partial STG only. If the required transfer sequence
cannot be derived from the partial STG, the partial STG is then dynami-
cally augmented.
STEED [Ghosh et al. 1991] is an improvement of STALLION. Instead of

extracting the complete or partial state transition graph, it generates
ON-set and OFF-set for each primary output and each next state line for
the fault-free circuit during the preprocessing phase. The ON-set (OFF-set)
of a signal is the complete set of cubes (in terms of the primary inputs and
the present state lines) that produces a logic 1 (logic 0) at a signal. The
ON-sets and OFF-sets of the primary outputs and next state lines can be
generated using a modified PODEM algorithm. For a given fault, PODEM
is used to generate one combinational test. The state transfer sequence and
fault propagation sequence are constructed by intersecting the proper
ON/OFF-sets. In general, an ON/OFF-set is a more compact representation
than the state transition graph. Therefore, STEED can handle larger
circuits than STALLION. STEED shows good performance for circuits that
have relatively small ON/OFF sets. However, generating, storing, and
intersecting the ON/OFF-sets are very expensive (in terms of both CPU
time and memory) for certain functions, for example, parity trees, and
therefore STEED may have difficulties generating tests for circuits contain-
ing such functions. Also, like STALLION, the transfer and fault propaga-
tion sequences derived from the ON/OFF sets of the fault-free circuit may
not be valid for the faulty circuit and therefore need to be verified by a fault
simulator.
VERITAS [Cho et al. 1993] is a BDD-based test generator which uses the

Binary Decision Diagram (BDD) to represent the state transition relations
as well as sets of states. In the preprocessing phase, a state enumeration
algorithm based on such BDD representations is used to find the set of
states that are reachable from the reset state and the corresponding
shortest transfer sequence for each of the reachable states. In the test
generation phase, similar to STEED, a combinational test is first gener-
ated. The state transfer sequence to drive the machine into the activation

432 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

state is readily available from the data derived from a reachability analysis
done in the preprocessing phase. Due to the advances in BDD representa-
tion, construction, and manipulation, VERITAS in general achieves better
performance than STEED.
In addition to the assumption of a known reset state, another common

principle used by the above three approaches is to incorporate a preprocess-
ing phase to compute (explicitly or implicitly) the state transition informa-
tion. Such information could be used during test generation to save some
repeated and unnecessary state justification effort. However, for large
designs where the state space is huge, such preprocessing could be an
overkill. For example, complete reachability analysis used in the prepro-
cessing phase of VERITAS typically fails (due to memory explosion) for
designs with several hundreds of flip-flops. Either using partial reachabil-
ity analysis or simply performing state justification on demand during test
generation is a necessary modification for large designs.

4.1 Computing Reset Sequences

For circuits with an unknown reset state, it is possible to find a synchro-
nizing sequence (or called reset sequence) to drive the circuit into a fixed
known state and then, starting from that state, to use one of the above
mentioned test generators (STALLION, STEED, or VERITAS) for test
generation. However, because the reset sequence may be corrupted by some
faults, the derived test sequence needs to be validated by a fault simulator.
Several approaches are recently proposed for determining whether a

reset sequence exists and for efficiently computing short reset sequences.
Pixley and others [Pixley and Beihl 1991] show that the problem of
deciding whether a design is resettable can be solved without actually
finding a reset sequence. If a reset sequence exists, the method calculates
the reset sequence heuristically by implicit enumeration of states of the
product machine of the design (the product machine of the design is a
disjoint union of two copies of the design sharing their primary inputs)
[Cho et al. 1993; Pixley et al. 1994]. This procedure is based on the
Fundamental Alignment Theory developed in Pixley [1990]. In Rho et al.
[1993], a technique for generating minimum length reset sequences is
proposed. The method is based on BDD model of the iterative array model
of the sequential circuit. It implicitly calculates all possible minimum
length sequences and corresponding reset states by deciding the satisfiabil-
ity of a boolean formula derived from the next state functions. The main
disadvantage of this method is that the exhaustive nature of this method
may not be suitable for large designs. Further improvement to this method
is reported in Keim et al. [1996]. In Wehbeh and Saab [1994], a partitioning
technique is used for handling larger designs. The circuit is decomposed
into multiple smaller components and the initializability techniques are
applied starting from the first level partitions toward the higher levels.

Gate-Level Test Generation • 433

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

5. PARTIAL SCAN AND SEQUENTIAL CIRCUIT TEST GENERATION

Due to its high complexity, sequential circuit test generation alone is still
not a complete solution to testing sequential circuits. For highly sequential
circuits, design for testability is still required. Many recently proposed
partial-scan techniques (e.g., Cheng and Agrawal 1990; Gupta and Breuer
1990) can automatically identify a set of memory elements that would
cause problems for the test generators and select these flip-flops for scan.
The first-order criterion for selecting scan flip-flops is to break all cycles
such that the resulting partial-scan circuit is feedback-free. As discussed
earlier, the test generation complexity for feedback-free circuits is rela-
tively low and test generators can usually achieve high fault coverages for
such circuits. It has also been shown empirically [Cheng and Agrawal 1990]
that cycles of length greater than 1 pose a greater problem for test
generation than cycles of length 1 (self-loops). Therefore, if we cannot scan
all the flip-flops necessary for breaking all cycles due to the area and/or the
performance constraints, the longer cycles should be broken first. Figure 19
shows the trade-off curve of the area overhead versus the test generation
complexity. This figure only illustrates the general trend. The actual
trade-off curves for different circuits may vary. The horizontal axis repre-
sents the percentage of scan. Four cases are explicitly marked in the axis:
(1) The non-scan case. The test generation complexity for such circuits is
generally very high and, even for a medium size circuit, a high fault
coverage can seldom be achieved. (2) The case that all loops of length
greater than one are broken (by scanning a proper subset of flip-flops). For
many medium size benchmark circuits, the computational complexity drops
to a level where an existing test generator could produce high coverage
tests. For larger benchmark circuits, some of the self-loops still need to be

Fig. 19. Trade-off of area overhead vs. test generation effort.

434 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

broken by selecting more scan flip-flops. (3) The case that all loops,
including self loops, are broken. (4) The full-scan case for which all
flip-flops are scanned and a combinational test generator is used. The area
overhead is roughly proportional to the percentage of scan and is estimated
by the straight line in the graph. To date, most of the ASIC designs still use
100% full scan or a very high percentage of scan (a design point close to the
right end of the horizontal axis). In the future, as sequential ATPG
algorithms continue to improve, the complexity curve will drop lower. Also,
as the scan flip-flop selection algorithms improve, for the same percentage
of scan, the test generation complexity will also drop. These trends should
be part of the driving forces for a wider acceptance of partial scan and
sequential ATPG tools.

6. APPROACHES USING CIRCUIT MODELS AT HIGHER LEVELS OF
ABSTRACTION

Test generation could be significantly sped up if a circuit model at a higher
level of abstraction is used. In this section, we discuss briefly the principles
of approaches using RTL models and state transitions graphs. Understand-
ing the principles of such methods is helpful for the discussion of functional
learning to be discussed later. Because the main focus of this paper is
gate-level approaches, we do not intend to give a detailed survey for such
approaches but only a brief description of representative methods.

Approaches using register transfer level models. Approaches using RTL
models have the potential to handle larger circuits because the number of
primitives in an RTL description is much smaller than the gate count.
Some methods in this class of approaches use only RTL description of the
circuit [Brahme and Abraham 1984; Cheng and Krishnakumar 1996;
Hansen and Hayes 1995; Lee and Patel 1991; 1994; Thatte and Abraham
1980] while others assume that both gate-level and RTL models are
available [Hill and Huey 1977; Breuer and Friedman 1980; Ghosh et al.
1990]. Note that automatic extraction of the RTL description from a lower
level of description is still not possible and therefore the RTL descriptions
must be given by the designers. It is also generally assumed that data and
control are separated in the RTL model. For approaches using both RTL
and gate-level models [Hill and Huey 1977; Breuer and Friedman 1980;
Ghosh et al. 1990], typically a combinational test is first generated using
the gate-level model. The fault-free justification sequence and the fault
propagation sequence are generated using the (fault-free) RTL description.
Justification and fault propagation sequences generated in such a manner
may not be valid and therefore need to be verified by a fault simulator.
These approaches, in general, are suitable for data-dominated circuits but
not appropriate for control-dominated circuits. For approaches using only
RTL models [Thatte and Abraham 1980; Brahme and Abraham 1984; Lee
and Patel 1991, 1994; Cheng and Krishnakumar 1996; Hansen and Hayes
1995], functional fault models at RTL, instead of the single-stuck-at fault
model at the gate-level are targeted. The approaches in Thatte and Abra-

Gate-Level Test Generation • 435

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

ham [1980] and Brahme and Abraham [1984] target microprocessors, and
functional fault models are defined for various functions at the control
sequencing level. Tests are generated for the functional fault models and
therefore a high coverage for gate-level stuck-at faults cannot be guaran-
teed. The methods suggested in Lee and Patel [1991, 1994] focus on
minimizing the value conflicts during the value justification and fault
propagation processes using the high-level information. A recently pro-
posed technique [Hansen and Hayes 1995] can guarantee that the func-
tional tests for their proposed functional faults achieve a complete gate-
level stuck-at fault coverage. This approach also uses an efficient method
for resolving the value conflicts during propagation/justification at the RT
level. A method of characterizing a design’s functional information using a
model extended from the traditional finite state machine model with the
capability of modeling both the data-path operations and the control state
transitions is suggested in Cheng and Krishnakumar [1996]. However, this
method does not target any fault model and only generates functional
vectors for design verification.

Approaches using state transition graphs. For finite state machines
(FSMs) for which the state transition graphs are available, test sequences
can be derived using the state transition information. In general, this class
of approaches can handle only relatively small circuits due to the known
state-explosion problem in representing a sequential circuit using its state
table. However, successful applications of such approaches to protocol
performance testing [Sabnani and Dahbura 1988] and to testing the bound-
ary-scan Test Access Port (TAP) controller have been reported [Dahbura et
al. 1989]. The earliest method is the checking experiment [Hennie 1964]
which is based on distinguishing sequences. The distinguishing sequence is
defined as an input sequence that produces different output responses for
each initial state of the FSM. This approach is concerned with the problem
of determining whether or not a given state machine is distinguishable
from all other possible machines with the same or fewer number of states.
No explicit fault model is used. The distinguishing sequence may not exist
and the bound on length, if it exists, is proportional to the factorial of the
number of states. This method is impractical because of the long test
sequence. Improved checking experiments, based on either the Simple I/O
sequence [Hsieh 1971] or the Unique Input/Output (UIO) sequence [Sab-
nani and Dahbura 1988] of the FSM, significantly reduce the test length. A
functional fault model in the state transition level has recently been used
in a test generator FTG for FSMs [Cheng and Jou 1992]. In the single-
state-transition (SST) fault model, a fault causes the destination state of a
single state transition to be faulty. It has been shown [Cheng and Jou 1992]
that the test sequence generated for the SST faults in the given state
transition graph achieves high fault coverages for the single stuck-at faults
as well as the transistor faults in its multi-level logic implementation. As
an approximation, FTG uses the fault-free state transition graph to gener-
ate the fault propagation sequence. AccuraTest [Pomeranz and Reddy

436 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

1991] further improves the technique and uses both fault-free and faulty
circuits’ state transition graphs to generate accurate test sequences for the
SST faults as well as for some multiple-state-transition faults.

7. SUMMARY AND CONCLUDING REMARKS

The presence of flip-flops and feedback loops substantially increases the
complexity of the automatic test pattern generation problem. Due to the
inherent intractability of the problem, it remains infeasible to automati-
cally derive high quality tests for large, non-scan sequential designs.
However, because of the great progress made during the past few years and
the availability of robust commercial ATPG tools, the partial-scan design
methodology that relies on such tools for test generation is becoming a
reasonable alternative to the full-scan design methodology.
Like most other CAD tools, there are many engineering issues involved

in building a test generator to handle large industrial designs. Industrial
designs may contain tristate logic, bidirectional elements, gated clocks, I/O
terminals, and so on. Proper modeling is required for such elements and
the test generation process also needs some modification. Many of these
issues are similar to those in the combinational ATPG problem that have
been addressed by, for example, Breuer [1983], Ogihara et al. [1983], and
Chakradhar et al. [1995].
Many sequential ATPG approaches try to extract some functional infor-

mation from the gate-level circuit description in the pre-processing phase.
Such information, if properly used for value justification and fault propaga-
tion, may save some unnecessary and/or repetitive computation during test
generation. In Figure 20, we place several gate-level approaches in the
horizontal axis, according to the degree of functional learning conducted in
the pre-processing phase. To the very left, FTG [Cheng and Jou 1992] and
AccuraTest [Pomeranz and Reddy 1991] extract the complete state transi-
tion graph. For these approaches, complete functional knowledge (such as
the state transition graph) is learned and test generation is performed
completely on the functional level. To the very right, STG3 [Cheng 1988]
and HITEC [Niermann and Patel 1991] are mainly based on the gate-
level information and no functional knowledge is pre-computed.
STALLION [Ma et al. 1988] requires a (partial) state transition graph
for state justification but uses a gate-level description for fault propaga-
tion. So the amount of functional knowledge learned in preprocessing is
less than the amount learned by FTG and AccuraTest. STEED [Ghosh et
al. 1991] computes and stores the ON and OFF sets of each state
variable in preprocessing and intersects the appropriate sets during test
generation for both state justification and fault propagation. The degree
of learning is lower than STALLION.
According to the reported results, FTG, STALLION, and STEED run

substantially faster than STG3 for some pure control circuits that have a
small number of flip-flops but have a relatively complex structure (i.e., each
next state line or primary output is a function of most of the present state

Gate-Level Test Generation • 437

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

lines and the primary inputs). Such circuits include s386, s1488, and s1494
in ISCAS-89 benchmark circuits [Brglez et al. 1989]. These circuits have a
small number of flip-flops and their state transition graphs are compact
and easily extractable. On the other hand, STG3 and HITEC run much
faster than STALLION, STEED, and FTG for circuits such as s1196, s1238,
and most of the larger circuits. These circuits have a simpler circuit
structure (i.e., most next state lines/primary outputs depend on a few
present state lines/primary inputs), while the total number of flip-flops is
relatively large and, therefore, the state transition graph is difficult to
extract, store, or manipulate. It is the author’s belief that for circuits
having both data-path and control, the average complexity curve should
resemble the one marked in Figure 20. The lowest point should be between
STEED and STG3. To approach the optimal point, the test generators
should be programmed to automatically identify what is the right func-
tional knowledge to learn and to store in preprocessing, and what should be
generated dynamically during test generation. To date, ATPG tools do not
have such intelligence and further research is required to achieve this
objective.
Developing special versions of ATPG algorithms/tools for circuits with

special circuit structures and/or properties could be a good way to further
improve the ATPG performance. For example, if the target circuit has a
pipeline structure and is feedback-free, the algorithm described on pages 98
to 101 of Miczo [1986] is much more efficient than any algorithm surveyed
in this paper that targets circuits with a more general circuit structure.
Many partial-scan circuits have special circuit structures. For example, the

Fig. 20. Test generation approaches.

438 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

partial-scan circuits using the cycle-breaking strategy to select scan flip-
flops do not contain cycles with more than one flip-flop. Developing algo-
rithms and tools to target circuits with such special circuit structures is
worth pursuing.

ACKNOWLEDGMENTS

The author would like to thank M. Abramovici, V. D. Agrawal, W.-T.
Cheng, S. Davidson, C. J. Lin, T. Ma, F. Maamari, I. Pomeranz, and S. M.
Reddy for many useful discussions on sequential ATPG during the past few
years, and A. Krstic for her helpful comments and many valuable sugges-
tions. The author would also like to thank the anonymous reviewers whose
comments made the paper more balanced in the treatment of some topics.

REFERENCES

ABRAHAM, J. A. AND AGRAWAL, V. K. 1986. Test generation for digital systems. In Fault-
Tolerant Computing Theory and Techniques, D. K. Pradhan, Ed. Prentice-Hall, Englewood
Cliffs, NJ.

ABRAMOVICI, M., BREUER, M. A., AND FRIEDMAN, A. D. 1990. Digital Systems Testing and
Testable Design. IEEE Computer Society Press, Los Alamitos, CA.

AGRAWAL, V. D. AND CHAKRADHAR, S. T. 1995. Combinational ATPG theorems for identifying
untestable faults in sequential circuits. IEEE Trans. Comput. Aided Des. 14, 9, (Sept.),
1155–1160.

AGRAWAL, V. D. AND SETH, S. C. 1988. Tutorial—Test Generation for VLSI Chips. IEEE
Computer Society Press, Ch. 3, Los Alamitos, CA.

BRAHME, D. AND ABRAHAM, J. A. 1984. Functional testing of microprocessors. IEEE Trans.
Comput. C-33, 7, (July), 475–485.

BREUER, M. A. 1971. A random and an algorithmic technique for fault detection and test
generation. IEEE Trans. Comput. C-20, (Nov.), 1366–1370.

BREUER, M. A. 1974. The effects of races, delays, and delay faults on test generation. IEEE
Trans. Comput. C-23, 10, (Oct.), 1078–1092.

BREUER, M. A. 1983. Test generation models for busses and tri-state drivers. In Proceedings
of the 1983 IEEE ATPG Workshop (March), 53–58.

BREUER, M. A. AND HARRISON, L. M. 1974. Procedures for eliminating static and dynamic
hazards in test generation. IEEE Trans. Comput. C-23, 10 (Oct.), 1069–1078.

BREUER, M. A. AND FRIEDMAN, A. D. 1980. Functional level primitives in test generation.
IEEE Trans. Comput., (March), 223–235.

BRGLEZ, F., BRYAN, D., AND KOZMINSKI, K. 1989. Combinational profiles of sequential
benchmark circuits. In Proceedings of the 1989 IEEE International Symposium on Circuits
and Systems (May), 1929–1934.

CHAKRADHAR, S. T., ROTHWEILER, S., AND AGRAWAL, V. D. 1995. Redundancy removal and
test generation for circuits with non-Boolean primitives. In Proceedings of the 13th IEEE
VLSI Test Symposium, (April), 12–19.

CHAPPELL, S. G. 1974. LAMP: Automatic test generation for asynchronous digital circuits.
Bell Syst. Tech. J., (Oct.), 1477–1503.

CHENG, K.-T. 1993. Redundancy removal for sequential circuits without reset states. IEEE
Trans. CAD, (Jan.), 13–24.

CHENG, K.-T. AND AGRAWAL, V. D. 1989. Unified Methods for VLSI Simulation and Test
Generation. Kluwer Academic, Norwell, MA.

CHENG, K.-T. AND AGRAWAL, V. D. 1990. A partial scan method for sequential circuits with
feedback. IEEE Trans. Comput. 39, 4, (April), 544–548.

CHENG, K.-T. AND JOU, J.-Y. 1992. A functional fault model for sequential circuits. IEEE
Trans. CAD, (Sept.), 1065–1073.

Gate-Level Test Generation • 439

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

CHENG, K.-T. AND KRISHNAKUMAR, A. S. 1996. Automatic generation of functional vectors
using the extended finite state machine model. ACM Trans. Des. Autom. Electron. Syst. 1, 1
(Jan.), 57–79.

CHENG, K.-T. AND MA, H-K. T. 1993. On the over-specification problem in sequential ATPG
algorithms. IEEE Trans. Comput. Aided Des. (Oct.), 1599–1604.

CHENG, W. T. 1988. The BACK algorithm for sequential test generation. In Proceedings of
the 1988 IEEE International Conference on Computer Design (Oct.), 66–69.

CHENG, W. T. 1989. Private communications, Aug.
CHO, H., HACHTEL, G. D., SOMENZI, F. 1993. Redundancy identification/removal and test
generation for sequential circuits using implicit state enumeration. IEEE Trans. CAD
(July), 935–945.

CHO, H., JEONG, S., SOMENZI, F., AND PIXLEY, C. 1993. Synchronizing sequences and sym-
bolic traversal techniques in test generation. J. Electron. Testing, Theor. Appl. 4, 1, 19–31.

CORNO, F., PRINETTO, P., REBAUDENGO, M., REORDA, M. S., AND MOSCA, R. 1996. Advanced
techniques for GA-based sequential ATPGs. In Proceedings of the 1996 European Design and
Test Conference, (March), IEEE Computer Society Press, 375–379.

DAHBURA, A. T., UYAR, M. U., AND YAU, C. W. 1989. An optimal test sequence for the
JTAG/IEEE P1149.1 test access port controller. In Proceedings of the IEEE International
Test Conference (Aug.), 55–62.

DEVADAS, S., MA, H.-K. T., AND NEWTON, A. R. 1990. Redundancies and don’t-cares in
sequential logic synthesis. J. Electron. Testing, (Feb.), 15–30.

FUJIWARA, H. AND SHIMONO, T. 1983. On the acceleration of test generation algorithms.
IEEE Trans. Comput. C32, (Dec.), 1137–1144.

GHOSH, A., DEVADAS, S., AND NEWTON, A. R. 1990. Sequential test generation at the
register-transfer and logic levels. In Proceedings of the 27th ACM/IEEE Design Automation
Conference, (June), 580–586.

GHOSH, A., DEVADAS, S., AND NEWTON, A. R. 1991. Test generation and verification for
highly sequential circuits. IEEE Trans. Comput. Aided Des. (May), 652–667.

GLAESER, U. AND VIERHAUS, H. T. 1995. FOGBUSTER: An efficient algorithm for sequential
test generation. In Proceedings of the European Design Automation Conference (EURO-
DAC’95), (Sept.), IEEE Computer Society Press, 230–235.

GOEL, P. 1981. An implicit enumeration algorithm to generate tests for combinational
circuits. IEEE Trans. Comput. C-30, (March), 215–222.

GOLDBERG, D. E. 1989. Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley, Reading, MA.

GOLDSTEIN, L. H. 1979. Controllability/observability analysis for digital circuits. IEEE
Trans. Circuits Syst. CAS-26., (Sept.), 685–693.

GUPTA, R. AND BREUER, M. A. 1990. The ballast methodology for structured partial scan
design. IEEE Trans. Comput. 39, 4, (April), 538–544.

HANSEN, M. C. AND HAYES, J. P. 1995. High-level test generation using symbolic scheduling.
In Proceedings of the IEEE International Test Conference, (Oct.), 586–595.

HENNIE, F. C. 1964. Fault-detecting experiments for sequential circuits. In Proceedings of
the 5th Annual Symposium on Switching Circuit Theory and Logical Design, (Nov.), 95–110.

HILL, F. J. AND HUEY, B. 1977. SCIRTSS: A search system for sequential circuit test
sequences. IEEE Trans. Comput. C-26, (May), 490–502.

HSIAO, M. S., RUDNICK, E. M., AND PATEL, J. H. 1996. Alternating strategy for sequential
circuit ATPG. In Proceedings of the European Design and Test Conference (March), IEEE
Computer Society Press, 368–374.

HSIAO, M. S., RUDNICK, E. M., AND PATEL, J. H. 1996. Automatic test generation using
genetically-engineered distinguishing sequences. In Proceedings of the 14th IEEE VLSI Test
Symposium, (April), 216–223.

HSIEH, E. P. 1971. Checking experiments for sequential machines. IEEE Trans. Comput.
C-20, (Oct.), 1152–1166.

IYER, M. A. AND ABRAMOVICI, M. 1994. Sequential untestable faults identified without
search. In Proceedings of the IEEE International Test Conference, (Oct.), IEEE Computer
Society Press, 259–266.

440 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

KELSEY, T. P., SALUJA, K. K., AND LEE, S. Y. 1993. An efficient algorithm for sequential
circuit test generation. IEEE Trans. Comput. 42, 11, (Nov.), 1361–1371.

KEIM, M., BECKER, B., AND STENNER, B. 1996. On the (non-)resettability of synchronous
sequential circuits. In Proceedings of the IEEE VLSI Test Symposium, (April), 240–245.

KIRKLAND, T. AND MERCER, M. R. 1987. A topological search algorithm for ATPG. In
Proceedings of the 24th ACM/IEEE Design Automation Conference, (June), 502–508.

KUBO, H. 1968. A procedure for generating test sequences to detect sequential circuit
failures. NEC Res. & Dev., (Oct. 1968), 69–78.

LEE, D. H. AND REDDY, S. M. 1991. A new test generation method for sequential circuits. In
Proceedings of the IEEE International Conference on Computer-Aided Design (ICCAD-91),
(Nov.), 446–449.

LEE, J. AND PATEL, J. H. 1991. A signal-driven discrete relaxation technique for architec-
tural level test generation. In Proceedings of the IEEE International Conference on Comput-
er-Aided Design, (Nov.), 458–461.

LEE, J. AND PATEL, J. H. 1994. Architectural level test generation for microprocessors. IEEE
Trans. CAD, 13, 10 (Oct.), 1288–1300.

MA, H-K. T., DEVADAS, S., NEWTON, A. R., AND SANGIOVANNI-VINCENTELLI, A. 1988. Test
generation for sequential circuit. IEEE Trans. Comput. Aided Des., (Oct.), 1081–1093.

MARCHOK, T. E., EL-MALEH, A., MALY, W., AND RAJSKI, J. 1995. Complexity of sequential
ATPG. In Proceedings of the European Design and Test Conference, (March), IEEE Com-
puter Society Press, 252–261.

MARLETT, R. 1978. EBT, a comprehensive test generation technique for highly sequential
circuits. In Proceedings of the 15th Design Automation Conference, (June), 332–339.

MICZO, A. 1986. Digital Logic Testing and Simulation, Harper and Row, New York.
MUTH, P. 1976. A nine-valued circuit model for test generation. IEEE Trans. Comput. C-25,
(June), 630–636.

NIERMANN, T. M., CHENG, W.-T., AND PATEL, J. H. 1992. PROOFS: A fast, memory-efficient
sequential circuit fault simulator. IEEE Trans. CAD 11, 2, (Feb.), 198–207.

NIERMANN, T. AND PATEL, J. H. 1991. HITEC: A test generation package for sequential
circuits. In Proceedings of the European Design Automation Conference, (Feb.), 214–218.

NITTA, S., KAWAMURA, M., AND HIRABAYASHI, K. 1985. Test generation by activation and
defect-drive (TEGAD). Integration 3, 12 (Dec.).

OGIHARA, T., MURAI, S., TAKAMATSU, Y., KINOSHITA, K., AND FUJIWARA, H. 1983. Test gener-
ation for scan design circuits with tri-state modules and bidirectional terminals. In Proceed-
ings of the 20th ACM/IEEE Design Automation Conference, (June), 71–78.

PIXLEY, C. 1990. A computational theory and implementation of sequential hardware
equivalence. In DIMACS Tech. Rep. 90-31. In Workshop on Computer-Aided Verification,
vol. 2. AMS, Providence, R.I. 293–320.

PIXLEY, C. AND BEIHL, G. 1991. Calculating resettability and reset sequences. In Proceed-
ings of the IEEE International Conference on Aided Design, (Nov.), 376–379.

PIXLEY, C., JEONG, S., AND HACHTEL, G. 1994. Exact calculation of synchronous sequences
based on binary decision diagrams. IEEE Trans. CAD, 13, 8, (Aug.), 1024–1034.

POMERANZ, I. AND REDDY, S. M. 1991. On achieving a complete fault coverage for sequential
machines using the transition fault model. In Proceedings of the 28th ACM/IEEE Design
Automation Conference, (June), 341–346.

POMERANZ, I. AND REDDY, S. M. 1992. The multiple observation time test strategy. IEEE
Trans. Comput. 41, 5, (May), 627–637.

POMERANZ, I. AND REDDY, S. M. 1993. Classification of faults in sequential circuits. IEEE
Trans. Comput. 42, 9, (Sept.), 1066–1077.

POMERANZ, I. AND REDDY, S. M. 1994. On identifying untestable and redundant faults in
synchronous sequential circuits. In Proceedings of the 12th IEEE VLSI Test Symposium,
(April), 8–14.

POMERANZ, I. AND REDDY, S. M. 1995. LOCSTEP: A logic simulation based test generation
procedure. In Proceedings of the IEEE Fault Tolerant Computing Symposium, (June).

Gate-Level Test Generation • 441

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

PRINETTO, P., REBAUDENGO, M., AND REORDA, M. SONZA 1994. An automatic test pattern
generator for large sequential circuits based on genetic algorithm. In Proceedings of the
IEEE International Test Conference, (Oct.), 240–249.

PUTZOLU, G. R. AND ROTH, J. P. 1971. A heuristic algorithm for the testing of asynchronous
circuits. IEEE Trans. Comput. C-20, (June), 639–647.

RHO, J., SOMENZI, F., AND PIXLEY, C. 1993. Minimum length synchronizing sequences of
finite state machines. In Proceedings of the ACM/IEEE Design Automation Conference,
(June), 463–468.

ROTH, J. P. 1966. Diagnosis of automata failures: A calculus and a method. IBM J. Res.
Dev. 10, (July), 278–291.

RUDNICK, E. M., HOLM, J. G., SAAB, D. G., AND PATEL, J. H. 1994. Application of simple
genetic algorithms to sequential circuit test generation. In Proceedings of the European
Design and Test Conference, (March), 40–45.

RUDNICK, E. M. AND PATEL, J. H. 1995. Combining deterministic and genetic approaches for
sequential circuit test generation. In Proceedings of the ACM/IEEE 32nd Design Automa-
tion Conference, (June), 183–188.

RUDNICK, E. M., PATEL, J. H., GREENSTEIN, G. S., AND NIERMANN, T. M. 1994. Sequential
circuit test generation in a genetic algorithm framework. In Proceedings of the ACM/IEEE
Design Automation Conference, (June), 698–704.

SAAB, D. G., SAAB, Y. G., AND ABRAHAM, J. A. 1992. CRIS: A test cultivation program for
sequential VLSI circuits. In Proceedings of the IEEE International Conference on Computer-
Aided Design, (Nov.), 216–219.

SAAB, D. G., SAAB, Y. G., AND ABRAHAM, J. A. 1994. Iterative [simulation-based genetics 1
deterministic techniques] 5 complete ATPG. In Proceedings of the IEEE International
Conference on Computer-Aided Design, (Nov.), 40–43.

SABNANI, K. AND DAHBURA, A. 1988. A protocol test generation procedure. Comput. Netw. 15,
(April), 285–297.

SCHNURMANN, H. D., LINDBLOOM, E., AND CARPENTER, R. G. 1975. The weigthed random
test-pattern generator. IEEE Trans. Comput. C-24, 695–700.

SCHULZ, M. H. AND AUTH, E. 1988. Advanced automatic test pattern generation and redun-
dancy identification techniques. In Proceedings of the 18th IEEE International Symposium
on Fault-Tolerant Computing, (June), 30–35.

SCHULZ, M. H. AND AUTH, E. 1989. ESSENTIAL: An efficient self-learning test pattern
generation algorithm for sequential circuits. In Proceedings of the International Test
Conference, (Aug.), 28–37.

SCHULZ, M. H., TRISCHLER, E., AND SARFERT, T. M. 1988. SOCRATES: A highly efficient
automatic test pattern generation system. IEEE Trans. CAD, (Jan.), 126–137.

SESHU, S. 1965. On an improved diagnosis program. IEEE Trans. Electron. Comput. EC-14,
2, (Feb.), 76–79.

SESHU, S. AND FREEMAN, D. N. 1962. The diagnosis of asynchronous sequential switching
systems. IRE Trans. Electron. Comput. EC-11, (Aug.), 459–465.

SNETHEN, T. J. 1977. Simulator oriented fault test generator. In Proceedings of the 14th
ACM/IEEE Design Automation Conference, (June), 88–93.

SRINIVAS, M. AND PATNAIK, L. M. 1993. A simulation-based test generation scheme using
genetic algorithms. In Proceedings of the IEEE International Conference VLSI Design,
(Jan.), IEEE Computer Science Press, 132–135.

THATTE, S. M. AND ABRAHAM, J. A. 1980. Test generation for microprocessors. IEEE Trans.
Comput., C-29, 6, (June), 429–441.

THOMAS, J. J. 1971. Automated diagnostic test program for digital networks. Comput. Des.,
(Aug.), 63–67.

WEHBEH, J. A. AND SAAB, D. G. 1994. On the initialization of sequential circuits. In
Proceedings of the IEEE International Test Conference, (Oct.), 233–239.

Received January 1996; revised September 1996; accepted September 1996

442 • Kwang-Ting Cheng

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 4, October 1996.

