
Physical Placement Driven by Sequential Timing Analysis

Aaron P. Hurst1 Philip Chong1 Andreas Kuehlmann1,2

1 University of California at Berkeley, CA, USA
2 Cadence Berkeley Labs, Berkeley, CA, USA

Abstract

Traditional timing-driven placement considers only combina-
tional delays and does not take into account the potential of sub-
sequent sequential optimization steps. As a result, the potential of
re-balancing path delays through post-placement applications of
clock skew scheduling and in-place retiming cannot be fully real-
ized. In this paper we describe a new placement algorithm that is
based on a tight integration of sequential timing analysis in the in-
ner loop of an analytic solver. Instead of minimizing the maximum
path delay, our approach minimizes the maximum mean delay on
any circuit loop, thus enabling the full optimization potential of
clock skew scheduling and in-place retiming. We present two ver-
sions of the new algorithm: one approximates sequential critical-
ity and weights wires accordingly [1], the other extends this with
the inclusion of explicit wire-length constraints for loops that limit
the final clock period. Our algorithms are implemented using a
hybrid, GORDIAN-style sequence of analytical placement steps in-
terleaved with cell partitioning [2]. Our experiments on a set of
large industrial designs demonstrate that the presented placement
algorithm can minimize the contribution of interconnection delays
to the clock period on average by 23.5% compared to a solution
based on combinational delays.

1 Introduction

Sequential optimization techniques have the potential to signif-
icantly improve the performance, area, and power consumption of
a circuit implementation to a degree that is not achievable with
combinational synthesis methods. The goal is to balance the path
delays between registers and thus to maximize the circuit perfor-
mance without changing its input/output behavior.

Practical sequential optimization methods of interest are retim-
ing [3, 4] and clock skew scheduling [5]. Retiming is a structural
transformation that moves the registers in a circuit without chang-
ing the positions of the combinational gates. Retiming, although
algorithmically well studied, has gained only limited use because
of its impact on the verification flow and the inability to accurately
model the load changes caused by register moves. When applied
before placement, retiming can perform a coarse balancing of paths
delays using wiring estimates. In-place retiming is applied after
physical placement and incrementally repositions individual regis-
ters based on a precise evaluation of the timing impact including
the change of interconnect delays. In-place retiming is limited to
local perturbations of the placement and cannot correct for global
problems.

Clock skew scheduling preserves the circuit structure by apply-
ing non-zero delays to the register clocks — thus virtually moving
them in time. In recent years, clock skew scheduling has gained
practical acceptance in multiple design flows, typically applied as

a post-placement optimization technique. Implementation strate-
gies vary from clock tree topology construction [6, 7] to clock tree
routing algorithms [8]. Recent work on multi-domain clock skew
scheduling [9] has demonstrated that even with a very limited num-
ber of skew possibilities, almost all of the benefits can be realized;
implementing a non-zero clock skew schedule in hardware may
be easier than commonly believed. For the purposes of this work,
however, we remain implementation independent.

The optimization potential of retiming and clock skew schedul-
ing is bounded by thecritical cycle, which is among all struc-
tural cycles of a circuit the one with the maximum value for
φcycle= total delay/numberregisters. If the combinational delays
of all paths along this cycle are perfectly balanced by retiming or
clock skew scheduling, then the design can be clocked with a pe-
riod φ≥ φcycle.

Traditional timing-driven placement (e.g. [10]) minimizes the
overall wire-length with the additional constraint that no combina-
tional path is timing critical, i.e. the sum of the gate and intercon-
nect delays on every path between two registers does not exceed
the clock periodφ. This notion of timing criticality is confined to
the paths between single sets of registers and does not adequately
capture the timing picture of the circuit when registers positions
can be moved. A cyclic set of paths may be non-critical with re-
spect to a flexible register clocking even if some of the individual
paths significantly exceeds the cycle period. Likewise, combina-
tional paths that have significant combinational slack may be part
of the critical cycle. The combinational delay view of a design does
not reveal much information about its true sequential criticality and
may easily mislead the placer with respect to the overall optimiza-
tion problem.

Previous work has addressed the integration of selective sequen-
tial optimization techniques and placement but remains incomplete.
In [1] a partitioning and floorplanning approach is presented that
considers retiming moves for registers on long interconnects. This
work introduces the concept ofsequential slackto express the se-
quential mobility of a register. These slacks are used as weights
in the partitioning algorithm to approximate the sequential criti-
cality of an edge. This work is extended in [11] for a multilevel
placement algorithm using simulated annealing. However, as fur-
ther discussed in Section 3, the sequential slack may dramatically
underestimate the edge criticality in the presence of multiple criti-
cal regions and thus lead to suboptimal placements; the version of
sequential slack computation using the reference point of [1] en-
tirely misses the critical cycle in several of our examples. The first
version of our algorithm presented in Section 4.1 builds on this no-
tion of sequential slack. Unlike the work in [1], we guarantee that
the most critical cycle will always be identified, since we choose a
register which lies on this cycle as the reference point for the se-
quential slack computation. The second version of our algorithm

y z

a c

x
6

4

26
4in

out

1

Figure 1: An example of two sequential cycles with the gate delays
labeled. The lower set of registers{x, y, z} forms the critical cycle
and will limit the clock period after sequential optimization. How-
ever, a static timing-driven tool will incorrectly target pathc→ x,
likely at the expense of other paths.

presented in Section 4.2 corrects the problem for all potentially
critical cycles by introducing explicit wire-length constraints for
circuit loops that are near critical. We use Lagrangian relaxation to
handle these constraints in an analytical placement phase similar to
the approach presented in [10]. Repeating the timing analysis after
each placement iteration additionally improves the odds that such
cycles are identified and algorithmic convergence is achieved.

In [12] a budgeting algorithm is presented that computes delay
bounds for a traditional placement algorithm under the assumption
that retiming can be applied. In contrast to our work, this approach
separates the budgeting and placement phases and as a result can-
not take the dynamic interaction between placement, wire delays,
and sequential optimization into account. A tight integration of se-
quential timing and placement is needed to capture this complex
interaction.

Work on integrating retiming and placement for field pro-
grammable gate arrays is described in [13]. There, the authors
also extend on the sequential slack computation technique found
in [1]. However, they attempt to overcome the shortcomings of [1]
through a process of random sampling of reference points. While
this is certainly better than choosing a single arbitrary reference,
this will still be ineffective in identifying the critical cycle if the
sampling process does not happen to choose a register which lies
on that cycle. The authors of [13] also demonstrate good results
using a net weighting heuristic similar to our technique. However,
given their framework of annealling-based placement, it is unclear
how to efficiently include explicit cycle contraints, described here
in Section 4.2. Our use of a quadratic programming-based formu-
lation allows easy addition of these powerful constraints through
Lagrangian relaxation.

2 Motivating Example
Timing-driven placement makes possible performance improve-

ments over the pure minimization of wire-length. The portions of
interconnect that have been identified as being timing critical can be
given increased weight or attention to further reduce their lengths.
This objective may come at the expense of other wires, but the slack
available on these non-critical nets allows the wire delay increase
to not affect the final clock period.

With the availablility of in-place retiming or clock skew
scheduling, the wires that limit the achievable clock period after
sequential optimization are not necessarily the ones that limit the
clock period beforehand. The example in Figure 1 shows a simple
sequential circuit. It is clear that without any changes to the clock-
ing, pathc→ x is period-limiting. However, if the relative arrival
of the clock at registersa andc can be moved by 1 delay unit back-
ward and 3 delay units forward, respectively, the paths betweenx,

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

φ 2 φ 3 φ 4 φ

pa

th
s

be
tw

ee
n

re
gs

.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

φ 2 φ 3 φ 4 φ

pa

th
s

be
tw

ee
n

re
gs

.

Figure 2: Design ind08 combinational slack distribution plotted
above the true sequential slack distribution, both measured in the
paths between registers. The slacks are labeled in multiples of the
clock cycle after sequential optimization.

y, andz will limit the period. The information from static timing
analysis is essentially meaningless when register boundaries can be
moved.

Our experimentation suggests that the failure of static timing
analysis to give an accurate picture of the post-sequential optimiza-
tion timing is present and significant in industrial designs. Figure 2
plots the distribution of combinational path slack next to the distri-
bution of true sequential path slack in one typical industrial design.
It is immediately apparent that they offer very different versions of
the timing criticality of the circuit. True sequential slack, which
is described in more detail in Section 3.3, measures the amount of
delay that can be added to a path before it becomes critical during
post-placement retiming or clock skew scheduling. There is clearly
much more flexibility when sequential optimization techniques are
considered; because slack can accumulate across multiple register
boundaries, most of the paths in this design see more than one clock
period of slack.

The use of inappropriate timing information to guide the place-
ment process can have deleterious effects for the final design per-
formance. If we reconsider the example in Figure 1, a decision to
shorten pathc→ x at the expense ofy→ zappears to be beneficial
from a static timing standpoint, however doing so would actually
result in an increase in the clock period after sequential optimiza-
tion. Our experimental results, shown at the end of this paper in
Table 1, indicate that this effect is demonstrably present in several
industrial designs; timing-driven placement indeed improved the
clock period obtained before sequential optimization, but the final
clock period became worse than what could be achieved without
any timing optimization at all. Our research addresses this prob-
lem. Instead of simply trying to correct the results of combinational
timing analysis, however, we attempt to fully exploit the potential
of in-place retiming and clock skew scheduling.

Figure 3(a) illustrates a placement generated using a tradi-
tional QP placement tool based on GORDIAN [2], with the set
of paths that are limiting the post-sequential optimization timing
highlighted. Figure 3(b) shows the same circuit placed using a
timing-driven placer which uses combinational static timing analy-
sis. Figure 3(c) shows again the same circuit placed using CAPO,
a state-of-the-art placement tool developed at UCLA [14].

In these three cases, the tools have done a visibly suboptimal

(a) GORDIAN Placement (b) Comb. Timing-Driven

(c) CAPO (UCLA) (d) Cycle Constrained

Figure 3: Placements for design ind08. Critical cycles shown in
black; standard cells in gray.

job of minimizing the wire segments that are timing-critical; many
of them nearly cross the width of the die. Even with register move-
ment through in-place retiming, it is not likely that the severe mis-
location of the critical registers in this particular layout could be
fully corrected. In contrast, Figure 3(d) is the resulting placement
from our own sequential placement tool. The critical elements are
much more localized, and the contribution of interconnect delay to
the clock period is dramatically reduced. In this example, the inte-
gration of sequential timing analysis into the physical design pro-
cess has significantly boosted the utility of clock skew scheduling
or in-place retiming.

3 Sequential Timing Analysis
Given a circuit with timing information, we are interested in the

minimum clock period achievable under sequential optimization to
evaluate its fitness, and to characterize the sequential criticality of
each component. There are three phases of this analysis: construc-
tion of the sequential timing graph, identification of the minimum
feasible clock period, and the determination of sequential slacks.

3.1 Constructing the Sequential Timing Graph
The sequential timing graphG = (V,E) is extracted from a cir-

cuit as follows. TakeV to be the registers of the design, together
with an additional vertexvext representing the primary inputs and
outputs. Add an edge(u,v) to E iff there exists a timing path from
u to v in the original circuit. Every edgee= (u,v) is labeled with
d(e), the maximum delay betweenu andv in the circuit. During
placement, the estimated wire delays are included ind(e).

3.2 Finding the Critical Cycle
Finding the critical cycle is equivalent to computing the

maximum mean cycle(MMC) for G, which is given by
max̀ ∈C ∑e∈` d(e)/|`|, whereC is the set of all cycles inG. The
MMC is equal to the minimum clock period which may be obtained

using unconstrained clock skew scheduling. In our implementa-
tion, we use Howard’s algorithm [15] to compute the MMC. [16]
suggests that Howard’s algorithm is the fastest known algorithm
for computing MMC. Our own empirical observations concur with
those of [16].

The general idea behind Howard’s algorithm is to maintain a
small set of edgesπ which starts as an initial guess of the critical
cycle in the graph. The setπ then has edges added and removed
iteratively to monotonically increase the delays seen at the nodes
in its induced subgraph (i.e. the subgraph obtained by discarding
all edges except those edges inπ). When the delays in the induced
subgraph are maximized and can no longer be increased by chang-
ing π, then we know thatπ must contain the critical cycle, and thus
we obtain the MMC. More details and a proof of correctness of
Howard’s algorithm can be found in [15].

It is important to note that not only is the MMC an obvious
lower bound on the clock period for the design, but also that it
is always possible to find a clock skew schedule for the registers
which achieves the MMC. We therefore use the MMC as a metric
to evaluate the fitness of a design, since we are assured that, given
the freedom of clock skew scheduling, the final clock period will
be equal to the MMC.

3.3 Assigning Sequential Criticality
Once the critical cycle has been identified, the relative sequen-

tial criticality of the other vertices can be determined. We use a
variant of the sequential timing analysis proposed in [1]. There, the
concepts ofsequential arrival and required timesand sequential
slackare presented. Given a target clock period ofφ, the sequential
arrival and required times at all verticesv∈V with respect to a ref-
erence vertexvref can be computed from equations (1) through (3)
using a modified version of the Bellman-Ford algorithm.

Aseq(v,vref) = max
(u,v)∈E

Aseq(u,vref)+d((u,v))−φ (1)

Rseq(v,vref) = min
(v,w)∈E

Rseq(w,vref)−d((v,w))+φ (2)

Aseq(vref ,vref) = Rseq(vref ,vref) = 0 (3)

The sequential slack isSseq= Rseq−Aseq.
AseqandRseq represent respectively the earliest and latest rela-

tive position in time to which a register can be moved (by retiming
or clock skewing) while still meeting timing with respect to the
reference point.Sseq measures the feasible range of temporal po-
sitions forv relative to the reference node. Intuitively, sequential
slack represents a metric for quantifying sequential criticality, but
we note that this criticality is only with respect to the givenvref . A
different choice ofvref will impose different constraints. Figure 4
shows an example where the given choice ofvref gives an incorrect
value for the criticality of other vertices in the graph.

We define thetrue sequential slackas

Strue(v) =− max
(u,v)∈E

Aseq(u,v)+d((u,v))−φ (4)

Strue(v) gives the true sequential flexibility ofv. However, in prac-
tice, computingStrue can be prohibitively expensive; using the
above equations, this is equivalent to the all-pairs longest path prob-
lem on the sequential timing graph. Thus we use the ordinary se-
quential slackSseqto approximateStrue as an estimate of criticality.
Note, though, that the potential difference betweenStrue andSseq
can be large; we must choosevref carefully to minimize the poten-
tial error. [1] takesvref = vext, but this seems to be a poor choice,

as it may completely miss the actual critical cycle. The nodes most
likely to impose tight constraints on other nodes are those that are
themselves highly constrained, i.e. nodes on the critical cycle itself.
We thus useSseq(v,vref) | vref ∈ CRITICAL CYCLE(G) to measure
sequential criticality.

4 Placement Driven by Sequential Timing
We introduce a placement algorithm that uses sequential timing

information to maximize the potential of post-placement retiming
or clock skew scheduling. The general procedure outlined in Al-
gorithm 1 involves three phases: sequential timing analysis, the
assignment of weights based on sequential criticality, and the in-
troduction of explicit cycle constraints. The algorithm is to some
measure independent of the method used to generate placements;
the ability to weight nets and to include inequality constraints are
the only specific requirements.

Algorithm 1 Sequential Slack Weighting
1: sequential timing analysis
2: assign net weightsw(i)
3: partitionP0← allcells
4: while ∃P(|P|> m) do {GORDIAN main loop}
5: solve global constrained QP
6: bipartition allP where|P|> m
7: solve final global constrained QP
8: (optional) do placement with cycle constraints (Algorithm 3)
9: legalize placement into rows

We have implemented a modified version of GORDIAN [2]. In
this procedure, phases of global optimization are interleaved with
bipartitioning. A quadratic programming (QP) problem is con-
structed to minimize the total weighted quadratic wirelength

∑αi j

[

(xi −x j)
2 +(yi −y j)

2
]

subject to a set of linear constraints. This problem is solved for the
entire chip, and the positions of all cells are updated. Based on this
information, the cells in every subregion that contains more thanm
members are bipartitioned to minimize the total number of wires
across the cut and maintain reasonably balanced halves.

We utilize two different partitioning techniques. At the topmost
levels, where the partitioning is coarse and the information from the
QP solution is less useful to guide the partitioning, we use hMetis
[17] to partition the hypergraph without regard to geometry. For
finer divisions, we choose a cut-minimizing spectral partition based
on the QP solution, similar to the technique described in [18].

The coordinates of the center of each subregion are computed
and a linear center-of-gravity (COG) constraint is imposed on its
members. The QP is updated to include these new constraints and

10

10

10

10

5

5

Sseq= 0

Aseq= 0; Rseq= 0

Aseq= 0; Rseq= 0

Sseq= 0

Aseq= -5; Rseq=5

Sseq= 10

Sseq= 10

Aseq= -5; Rseq= 5

Figure 4: An example of a register timing graph with sequential
slacksSseq computed with respect to the solid vertex. The true
sequential slackStrue for every node is zero; the illustrated result
does not offer an accurate picture of sequential criticality.

the global optimization is repeated. GORDIAN is ideally suited to
the requirements described above; nets can be easily weighted in
both the global optimization and bipartitioning phases, and addi-
tional constraints can be seamlessly imposed on the solution of the
QP.

4.1 Sequential Slack Weighting
Each net is assigned a weight proportional to its relative se-

quential criticality. This is done to give priority to minimizing the
lengths of the most critical wires as they are the most likely ones
to limit the achievable clock period. After the sequential timing
analysis described in Section 3, we have a functionSseq that gives
an approximation of the sequential flexibility at each timing point;
this is the inverse of sequential criticality. We use the following
equation to compute the net weightw(i):

w(i) = 1+
β

γ+Sseq(i)/φ

The constantsβ andγ are chosen to tune the distribution of weights
between the most and least critical nets. This is then applied to
every connectionαi j , in addition to scaling based on fanout.

This weighting alone is enough to produce layouts with im-
proved sequential timing characteristics, but its limitations should
be recognized. Like their combinational counterparts, sequential
slacks are inherently incompatible. Also, without computing the
true sequential slacks, the problems described in Section 3.3 can
also arise. Both of these problems can be solved with the introduc-
tion of cycle constraints. Our iterative algorithm to handle these
constraints helps ensure that we catch all critical cycles.

4.2 Explicit Cycle Constraints
Assuming complete flexibility in assigning skew to all registers,

for a cycle` in the circuit to satisfy a target clock periodφ, we must
have

tg(`)+ tw(`)≤ |`|φ

wheretg(`) is total intrinsic gate delay around̀and tw(`) is the
total wireload delay around̀.

Suppose we have an existing placementP′ in which the above
constraint is violated. Lett ′w(`) be the wireload delay around̀for
P′, and letd(`) be the total delay around̀for P′. Then we have

tg(`)+ t ′w(`) = d(`) and
tw(`)

t ′w(`)
≤
|`|φ− tg(`)

d(`)− tg(`)
, µ(`)

which defines thewireload delay reduction factor µ(`) necessary
for ` to have a valid clock skew schedule for the target period.

Let (x′,y′) be the locations of the cells for the given placement
P′. We wish to derive a new placementP = (x,y) which satisfies
the above given delay constraints. As an approximation, we take
the wire delay for a cycle as being proportional to the sum of the
squared Euclidean distances between cells in that cycle. That is,

tw(`) = η∑(u,v)∈`
(xu−xv)

2 +(yu−yv)
2

whereη is a constant. Thus the physical placement constraints are

∑(u,v)∈` (xu−xv)
2 +(yu−yv)

2

∑(u,v)∈` (x′u−x′v)
2 +(y′u−y′v)

2 ≤ µ(`) (5)

The denominator in inequality (5) as wellµ(`) are completely de-
termined from the given placement and timing information. Thus

inequality (5) contains only quadratic terms in(x,y). Also note that
these constraints are convex.

We justify approximating total wire delay with the sum of
square Euclidean distances by our use of an iterative algorithm to
solve the constrained system. We aim to make only small changes
to the layout during each iteration, so that any error in this approxi-
mation can be subsequently corrected. Details may be found below.

4.2.1 Lagrangian Relaxation
To realize the placement constraints, we useLagrangian relax-

ation, a standard technique for converting constrained optimiza-
tion problems into unconstrained problems. For brevity, we only
present a simplified description of this approach here. More infor-
mation about Lagrangian relaxation can be found in [19, 20, 10].

Let f (x,y) be the sum of square wirelengths over all wires in
the design for the placement(x,y). Recall that the classical ana-
lytic placement formulation is simply the unconstrained problem
minx,y f (x,y). Our constrained problem is then

minx,y f (x,y) such that g(x,y)≤ 0 (6)

where the vectorg represents the placement constraints. For each
cycle in the design, there is a single element ing which corresponds
to the constraint inequality (5) for that cycle. We create theLa-
grangian L(x,y,k) = f (x,y)− k · g(x,y), wherek is a vector of
Lagrangian multipliers; k can be thought of as “penalties” which
serve to increase the value of the cost function whenever a con-
straint is violated. TheLagrangian dual problemis

maxk≥0 minx,y L(x,y,k) (7)

Our interest in the dual problem lies in the fact that, for convex
problems such as ours, a solution for (7) corresponds directly to a
solution for the original problem (6). We use the standard technique
of subgradient optimizationto solve the dual; see Algorithm 2.

Algorithm 2 Subgradient Optimization For Lagrangian Dual
1: k← 0
2: x,y← argminx,y L(x,y,k)
3: while KKT conditions are not satisfieddo
4: k←max(0,k+ γ ·g(x,y))
5: x,y← argminx,y L(x,y,k)

Note that for a fixedk, minx,y L(x,y,k) can be solved as an
ordinary unconstrained quadratic program. Subgradient optimiza-
tion works by starting with an initial arbitraryk, solving the re-
sulting unconstrained QP, then adjustingk based on the violated
constraints which are found. If a constraint is violated, the corre-
sponding penalty ink is increased, so that subsequent iterations will
move to reduce the violations, since the objective function, includ-
ing the penalty terms, is to be minimized. Heuristics are available
to determine an appropriate step sizeγ to adjustk; e.g. [10, 19].
TheKarush-Kuhn-Tucker(KKT) conditions for stopping the algo-
rithm are described fully in [19]. Roughly speaking, the procedure
stops once the penalty multipliers grow large enough to force all
constraint violations to zero.

Of course, the design may have many cycles, and thus there may
be many constraints involved. We propose an iterative technique,
given in Algorithm 3, which reduces the number of cycles under
consideration by ignoring non-critical cycles.

In each iteration, we add the critical cycles found in the current
placement to the constraint setS. A clock periodT is chosen which
we use as a target period for determining the cycle constraints for

Algorithm 3 Placement Using Cycle Constraints
1: input: an initial placement
2: Tc← current MMC,S←{critical cycles}
3: while Tc > Tf do
4: choose target clock periodT,Tf ≤ T < Tc
5: for all cycles` ∈ Sdo
6: add cycle constraint for̀ with targetT
7: remove all cells inS from COG bins
8: solve QP with cycle constraints (ALGORITHM 2)
9: reassign all cells inS to nearest COG

10: solve QP with cycle constraints (ALGORITHM 2)
11: Tc← current MMC,S← S∪{critical cycles}

S. T is decreased slowly fromTc, the feasible clock period for the
current placement, down toTf , the final overall target clock period
for the design. A slow adjustment ofT helps ensure that we do
not overconstrain the current constraint setS while ignoring other
cycles. That is, we do not wish to “squeeze too hard” on those
cycles which are currently critical, as this may cause some other
cycle not under consideration to violate its timing constraint. Also,
as noted before, we wish to perturb the placement only by small
amounts, so that any error in our quadratic approximation of the
wire delays can be corrected.

A significant benefit to using the iterative technique proposed
in Algorithm 3 is that we are able to correct errors in our estimate
of the true sequential slack so that subsequent iterations may have
a better estimate of the sequential flexibility of each gate. Recall
from Section 3.3 that we useSseq(v,vref) to approximateStrue(v),
the true sequential slack, by choosingvref to be a vertex on the
critical cycle. As the set of critical cycles tends to change with each
iteration, this helps to ensure that we computeSseqwith respect to
several different choices ofvref , so that if we mistakenly identify a
critical vertex as non-critical, we will likely correct the mistake in
subsequent iterations. In contrast, [1] always takesvref = vext, and
so has no opportunity to correct such errors.

COG constraints are commonly used with analytic placement
techniques to ensure that the cells are spread out relatively evenly
over the entire die area. We also wish our constrained placement to
be appropriately spread out over the die area, but we do not wish
the COG constraints to overconstrain our solution. We approach
this problem using Steps 7–10 in Algorithm 3, which allows crit-
ical cells to “migrate” to appropriate locations on the die to avoid
violation of timing constraints.

As a practical point, we also introduce cycles which are near-
critical during each iteration, instead of only the critical cycles, to
help reduce the number of iterations performed. Also, the main
loop is terminated whenever either of the constrained QPs indicate
that the problem may have become overconstrained, as no further
improvement becomes possible in such case.

Our approach shares some similarity with that of [10], which
also uses Lagrangian relaxation in an analytic placement frame-
work to resolve timing constraints. However, there are several key
differences between our work and that of [10]. First, and most im-
portant, is that we deal with the cyclic timing constraints which
arise during clock skew scheduling, rather than simply path con-
straints. Second, we do not use the analytic placement step itself to
perform timing analysis. The practical effect of this is twofold: our
approach allows us to use general, nonlinear (and nonconvex) wire
delay models, and we also do not encounter the degeneracy prob-
lems inherent in the constraints which come from timing analysis,

as mentioned in [10]. Finally, we enjoy much greater computa-
tional efficiency, as our Lagrangian function can be seen as sim-
ply augmenting the weights of edges between cells byk. Solving
the Lagrangian dual for fixedk requires no more computation than
solving an unconstrained QP for our circuit.

4.3 Row Legalization

We use a greedy approach to detailed placement and legaliza-
tion of the standard cells into rows. Such an approach has the prime
benefit of speed. However, instead of direct minimization of wire-
length as the search goal, as is typical of most other placement
tools, our legalization technique instead seeks to minimize the total
perturbation of the final placement with respect to the solution of
the last QP obtained during placement (Step 7 of Algorithm 1, or
Step 10 of Algorithm 3). We do this because we wish our place-
ment to be timing-aware. Since the placement obtained by solving
the QP respects the timing requirements of the circuit, we wish to
deviate from such an ideal solution as little as possible.

Algorithm 4 Standard Cell Row Legalization
1: input: a placement solution from QP
2: Sort cells by theiry-axis
3: Place cells into nearest rows with overflow into adjacent rows
4: for all rowsR do
5: Solve LP forR to minimize perturbation from QP
6: while not donedo
7: Sort cells in decreasing order of perturbation
8: for all cellsc do
9: Movec to minimze perturbation

10: for all rowsR do
11: Solve LP forR to minimize perturbation

Algorithm 4 outlines our legalization technique. We first find
an initial legal placement solution by putting cells into the nearest
rows. Cells are spilled into adjacent rows whereever row capacities
are exceeded. Then, for each row, a linear program is formulated
and solved to obtain the placement of each cell in the row. The cost
represents the sum of the displacements of each cell from its ideal
location (as given by the QP solution), while constraints are added
to forbid overlap of adjacent cells within the row.

Once the initial legalized solution is found, we then proceed to
make individual cell moves to improve the solution greedily. The
cells are sorted in order of descending perturbation from the QP
solution; this helps ensure that cells which stand the most to gain
are moved first. For each cells, we determine the legal nonover-
lapping placement location which minimizes the perturbation from
the QP solution, and move the cell to that location. After all cells
are moved in this fashion, we compact all rows using the same lin-
ear programming technique used to obtain the initial solution. This
process is iterative; we empirically found that only a small fixed
number of iterations is required before most cells find a stable lo-
cation.

5 Experiments

We ran our design flow on a set of thirteen industrial benchmark
circuits as well as fourteen synchronous designs freely available
for academic use, including the largest designs from the ISCAS89
benchmark suite. The academic circuits were technology mapped
using an industrial synthesis tool into an arbitrary library from the
industrial benchmarks.

The industrial libraries provided with the designs used interpo-
lated lookup-table based models to characterize the cells. Both ca-
pacitive load and slew rate dependencies were incorporated in our
timing model. The design technology files gave the electrical char-
acterization for the wires; in all cases, we assumed the use of metal
layer 3 for routing. We used the half-perimeter bounding box met-
ric as our estimate of the wirelength, noting that our algorithms are
actually independent of the wireload estimation technique used, un-
like other works, e.g. [10].

Currently, our placement tool can only handle single-row cells,
so for the purpose of our experiments, it was necessary to convert
larger circuit elements to single-row instances. Double-row cells
were given a different aspect ratio, keeping the same area. Large
macros were given an arbitrary size so as to fit in a single row. I/O
pads were assigned randomly around the die perimeter.

Limitations in our timing analysis tool required some design
changes to be made. Transparent latches were treated as ordinary
registers, and combinational cycles were broken arbitrarily. Some
hard macros did not have timing information associated with them,
so for the purpose of timing analysis hard macros were treated as
if they were I/Os for the overall circuit. Some designs used multi-
ple clock domains. As we had no additional information regarding
the relative phases and clock frequencies of such, we uniformly re-
garded the circuits as having only a single clock domain. We note,
however, that the techniques described in this paper can be easily
extended to multiple clock domains.

Our experimental results are shown in Table 1. The Size col-
umn indicates the number of placed instances for the design. The
NW MMC column gives the MMC for the design when no wireload
is taken into consideration. This is the minimum feasible clock
period and serves as a lower bound on the post-placement tim-
ing, though any real placement with non-zero wirelengths will
be greater. The REG MMC column shows the MMC achieved
for a completely placed design using our placement flow with
equal weights attached to the wires; effectively, this is a place-
ment tool similar to GORDIAN. The COM MMC column shows
the MMC achieved after placement using a combinational slack-
based weighting function for the nets.

The SEQ MMC column indicates the MMC achieved after
placement using the sequential slack-based weighting for the nets
as described in Section 4.1. The percentage figure indicates the
reduction in wire delayfor the SEQ MMC result compared with
the COM MMC result. We choose this as a better figure of merit
than the absolute reduction in clock period, since no placer can ever
hope to reduce the clock period below the no wireload MMC. The
Run column indicates the run time for this algorithm, in seconds.

The CYCLE MMC column indicates the MMC achieved after
placement using the cycle constraint technique described in Sec-
tion 4.2, again with the percentage indicating reduction in wire
delay compared to the combinational-weighted technique, and the
Run column indicating the run time in seconds.

We also compare our placement tool against Capo, a leading-
edge placer which focuses on wirelength minimization [14]. As
the two placers have very different objectives, we certainly do not
expect either one to be competitive in the other’s problem domain.
However, the comparison serves to quantify the benefit of using a
sequential flexibility-aware placer, rather than choosing an placer
which is best-suited for another task. The CAPO MMC column
in Table 1 shows the MMC obtained after placement using Capo,
the Run column indicates the run time for Capo in seconds, and the
CYvsCA column indicates the percentage improvement in wire de-

NW REG COM SEQ CYCLE CAPO CYvs
Design Size MMC MMC MMC MMC % Run MMC % Run MMC Run CA%
simon 1112 1.17 1.43 1.31 1.30 7.1 3 1.30 7.1 29 1.41 6 45.8
s13207 2179 0.87 1.63 1.28 1.29 -2.4 7 1.29 -2.4 34 1.73 8 51.2
s15850 2496 1.62 2.52 2.32 2.25 10.0 8 2.17 21.4 106 2.36 9 25.7
dsip 3653 0.74 1.09 1.17 1.06 25.6 9 1.06 25.6 80 1.12 25 15.8
diffeq2 4463 1.55 2.04 1.89 1.79 29.4 15 1.79 29.4 28 2.01 27 47.8
tseng 4579 1.55 1.81 1.82 1.75 25.9 15 1.75 25.9 29 1.75 27 0.0
bigkey2 6117 0.67 1.25 1.29 1.29 0.0 24 1.28 1.6 287 1.29 36 1.6
s38584 6903 0.74 2.38 2.35 2.18 10.6 34 2.17 11.2 85 2.33 35 10.1
s38417 7544 0.74 1.06 1.03 1.13 -34.5 43 1.09 -20.7 265 1.05 35 -12.9
s35932 8871 0.62 2.08 1.86 1.87 -0.8 47 1.87 -0.8 113 2.00 32 9.4
80386 9144 2.89 4.26 3.96 3.81 14.0 73 3.81 14.0 152 4.19 74 29.2
viper 10212 2.51 3.44 3.51 3.30 21.0 66 3.27 24.0 135 3.24 69 -4.1
elliptic3 10591 1.34 1.70 1.69 1.65 11.4 58 1.62 20.0 127 1.69 84 20.0
clma 25157 4.16 6.59 6.88 6.50 14.0 241 6.50 14.0 309 6.19 132 -15.3

Average % Improvement, Academic Designs 9.4 12.2 16.0

ind01 6038 3.55 4.30 3.97 3.80 40.5 39 3.80 40.5 45 4.12 24 56.1
ind02 12800 3.36 11.19 7.04 7.72 -18.5 119 7.72 -18.5 212 8.75 56 19.1
ind03 13633 13.55 19.19 18.55 15.55 60.0 129 15.33 64.4 145 15.94 83 25.5
ind04 26503 1.06 1.56 1.51 1.42 20.0 469 1.42 20.0 549 1.45 192 7.7
ind05 27518 5.32 11.04 11.23 10.49 12.5 332 10.51 12.2 786 9.55 140 -22.7
ind06 41077 3.75 5.17 4.75 4.55 20.0 964 4.65 10.0 3014 4.95 295 25.0
ind07 52751 5.67 6.04 5.79 5.80 -8.3 1523 5.74 41.7 1689 5.88 402 66.7
ind08 56861 1.37 1.79 1.64 1.57 25.9 1438 1.56 29.6 2671 1.74 365 48.6
ind09 101884 7.65 12.95 11.45 10.82 16.6 7032 10.82 16.6 9670 11.47 999 17.0
ind10 116921 4.20 4.79 4.45 4.39 24.0 8489 4.39 24.0 9237 4.65 896 57.8
ind11 137536 4.27 11.54 8.57 8.53 0.9 8119 8.53 0.9 10875 8.73 1087 4.5
ind12 140729 7.88 10.53 9.66 9.53 7.3 8826 9.53 7.3 9272 10.09 1133 25.3
ind13 152066 5.08 5.43 5.31 5.18 56.5 8422 5.18 56.5 10153 5.24 1695 37.5

Average % Improvement, Industrial Designs 19.8 23.5 28.3

Table 1: Experimental Results

lay of our cycle constraint-based technique compared to the place-
ment from Capo.

We show significant improvement in acheivable clock period
through application of our algorithm. For the industrial bench-
marks, we achieved an overall improvement in wire delay of 23.5%
over a combinational slack-weighted placement technique, and
28.3% improvement over the results of Capo.

Note that overall the benefits of using the cycle constraints,
compared to simply using the sequential slack-weighting heuris-
tic, was lower for the academic benchmarks than for the industrial
circuits. Our observation is that, for smaller circuits, adding cycle
constraints tends to draw the cells close together, causing signif-
icant cell overlap in the QP solution. Such heavy overlap makes
legalization more difficult, and all of the performance gains made
from drawing the critical cycles close together are lost when le-
galization spreads the overlapping critical cells apart. We have
added some simple heuristics to halt the addition of cycle con-
straints whenever sufficient overlap is seen. However, more work
needs to be done in this area.

We note that such excessive cell overlap tends to happen more
often with small designs rather than large ones. We conjecture that
large designs tend to have more I/O pins on their periphery, which
gives rise to more spreading of cells in the QP solution. One may
therefore wish to avoid the use of cycle constraints, and only utilize
the sequential slack weighting heuristic for small designs.

The wirelength-optimizing version of our tool was 10.7% worse
in total wirelength compared to Capo, a typical result for an ana-
lytic placer. With the addition of cycle constraints, an 18.8% in-
crease was measured over the wirelength-optimizing implementa-
tion. One certainly expects that a final layout which meets the tim-
ing constraints of the design will have longer wirelength than a lay-

out which is done purely with minimization of wirelength as a goal.
The key feature is that even with this wirelength penalty, the timing
still improves. We also note that our tool currently does very little
to control the total wirelength of the final placed design. As there
are many nets in the design which are not critical, there is much op-
portunity for us to further reduce wirelength, especially during row
legalization. Recall our legalization procedure seeks only to mini-
mize the perturbation of the QP solution. For non-critical sections
of the design, it makes sense to ignore the QP solution and focus on
the traditional approach of wirelength minimization instead. Addi-
tionally, more modern partitioning techniques, such as those found
in Capo, can replace our existing partitioning algorithm we use, es-
pecially at the coarsest levels of partitioning where the information
provided by the QP solution is limited.

Run times are measured in CPU seconds on a 2GHz Pentium
4 processor. Although it may seem that our run times are signifi-
cantly worse than the excellent Capo tool, one must note that our
design flow includes timing analysis and additional physical con-
straints for performance optimization, which are completely lack-
ing in Capo.

6 Conclusions

Retiming and clock skew scheduling offer significant opportuni-
ties for improving design performance, but current physical design
tools do not yet exploit these techniques to their fullest potential.
By optimizing the placement of the most sequentially critical com-
ponents, we have demonstrated that it is possible to significantly
improve the post-sequential optimization timing.

Another benefit from sequential-driven placement is that the
agressive reduction of interconnect length in the most sequentially
critical cycles will result in their spatial localization. This greatly

Clock Offset Fraction of Registers
20% or more 0.04
10% to 20% 0.01
5% to 10% 0.01
2% to 5% 0.01

-2% to 2% 0.90
-2% to -5% 0.00
-5% to -10% 0.00

-10% to -20% 0.01
-20% or less 0.03

Table 2: Clock skews necessary to implement above MMC times
as a percentage ofTperiod (academic designs)

simplifies the complexity of the distribution problem for clocks
with multiple skews. Table 2 suggests that most registers will not
even require any skewing. In a traditional placement, the relative
locations of the most critical combinational paths are unconstrained
and can be uniformly distributed across the chip, thereby necessi-
tating the need for a clock network with tightly controlled skew
across the die. Since the registers with zero or near-zero slack will
be grouped, the effort to distribute of multiple accurate clock do-
mains can be concentrated on this region.

Much can be done to improve our current tool. As noted before,
addressing total wirelength is an important consideration and we
have already formulated several ways to approach this challenge.
The weighting of nets by their criticality is admittedly somewhat ad
hoc, so we may use the ideas of [21] to provide a stronger mathe-
matical basis for our weighting function. Implementation improve-
ments will allow us to run on larger designs and to present more dat-
apoints by which to judge our work; runtime will also be improved.
Future work includes questions about running the algorithm on par-
titioned designs, addressing implementation limitations of retiming
and clock skew scheduling, and extending the sequentially-aware
timing model to other aspects of the synthesis flow.

7 Acknowledgments
The authors would like to thank Robert K. Brayton and

Christoph Albrecht for helpful discussion and advice about criti-
cal cycles and sequential slack. This work was funded in part by
the MARCO Focus Center for Circuit & System Solutions (C2S2,
www.c2s2.org), under contract 2003-CT-888.

References
[1] J. Cong and S. K. Lim, “Physical planning with retiming,” inDigest of Technical

Papers of the IEEE/ACM International Conference on Computer-Aided Design,
(San Jose, CA), pp. 1–7, November 2000.

[2] J. M. Kleinhans, G. Sigl, and F. M. Johannes, “GORDIAN: A global optimiza-
tion / rectangle dissection method for cell placement,” inDigest of Technical Pa-
pers of the IEEE International Conference on Computer-Aided Design, (Santa
Clara, California), pp. 506–509, November 1988.

[3] C. Leiserson and J. Saxe, “Optimizing synchronous systems,”Journal of VLSI
and Computer Systems, vol. 1, pp. 41–67, January 1983.

[4] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,”Algorithmica, vol. 6,
pp. 5–35, 1991.

[5] J. P. Fishburn, “Clock skew optimization,”IEEE Transactions on Computers,
vol. 39, pp. 945–951, July 1990.

[6] S. Held, B. Korte, J. Maßberg, M. Ringe, and J. Vygen, “Clock schedulingand
clocktree construction for high-performance ASICs,” inDigest of Technical Pa-
pers of the IEEE/ACM International Conference on Computer-Aided Design,
(San Jose, California), pp. 232–239, November 2003.

[7] I. S. Kourtev and E. G. Friedman, “Synthesis of clock tree topologiesto imple-
ment nonzero clock skew schedule,” inIEE Proceedings on Circuits, Devices,
Systems, vol. 146, pp. 321–326, December 1999.

[8] J. G. Xi and W. W.-M. Dai, “Useful-skew clock routing with gate sizing forlow
power design,”J. VLSI Signal Process. Syst., vol. 16, no. 2-3, pp. 163–179, 1997.

[9] A. K. K. Ravindran and E. Sentovich, “Multi-domain clock skew scheduling,”
in Proceedings of the 21th International Conference on Computer Aided Design,
ACM, 2003.

[10] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “RITUAL: A performance-driven
placement algorithm,”IEEE Transactions on Circuits and Systems, vol. 37,
pp. 825–839, November 1992.

[11] J. Cong and X. Yuan, “Multilevel global placement with retiming,” inProceed-
ings of the 40th ACM/IEEE Design Automation Conference, pp. 208–213, 2003.

[12] C.-Y. Yeh and M. Marek-Sadowska, “Delay budgeting in sequential circuit with
applications on FPGA placement,” inProceedings of the 40th ACM/IEEE Design
Automation Conference, pp. 202–207, 2003.

[13] D. P. Singh and S. D. Brown, “Integrated retiming and placement for fieldpro-
grammable gate arrays,” inProceedings of the ACM/SIGDA Symposium on Field
Programmable Gate Arrays, pp. 67–76, 2002.

[14] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive bisectionalone
produce routable placements?,” inACM/IEEE Design Automation Conference,
pp. 477–482, 2000.

[15] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat,
“Numerical computation of spectral elements in max-plus algebra,” inProceed-
ings of the IFAC Conference on System Structure and Control, July 1998.

[16] A. Dasdan, S. S. Irani, and R. K. Gupta, “An experimental study of minimum
mean cycle algorithms,” Tech. Rep. UCI-ICS 98-32, University of Illinois at
Urbana-Champaign, 1998.

[17] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph
partitioning: Application in vlsi domain,” inProceedings of the 34th Annual
Design Automation Conference, pp. 526–529, June 1997.

[18] R.-S. Tsay, E. S. Kuh, and C.-P. Hsu, “PROUD: A sea-of-gates placement algo-
rithm,” IEEE Design & Test Of Computers, vol. 5, pp. 44–56, Dec. 1988.

[19] P. M. Pardalos and M. G. Resende, eds.,Handbook of Applied Optimization.
Oxford University Press, 2002.

[20] E. Golshtein and N. Treityakov,Modified Lagrangians and Monotone Maps in
Optimization. John Wiley and Sons, 1996.

[21] R. Tsay and J. Koehl, “An analytic net weighting approach for performance opti-
mization in circuit placement,” inDesign Automation Conference, pp. 620–625,
1991.

