
The Case for Validating Inputs in Software-Defined WANs

Alexander Krentsel†∗, Rishabh Iyer†, Isaac Keslassy‡, Sylvia Ratnasamy†∗, Anees Shaikh∗, Rob Shakir∗

†UC Berkeley ‡Technion ∗Google

Abstract
We highlight a problem that the networking community has
largely overlooked: ensuring that the inputs to network con-
trollers in Software-Defined Network (SDN) WANs correctly
reflect the state of the network. We show that “incorrect” in-
puts are a common cause of major outages in production and
propose new directions to address these.

CCS Concepts
• Networks → Control path algorithms; Network design prin-
ciples; Network reliability; Network manageability.

Keywords
Software-defined Networking, Traffic Engineering, Input Val-
idation, Verification

ACM Reference Format:
Alexander Krentsel, Rishabh Iyer, Isaac Keslassy, Sylvia Ratnasamy,
Anees Shaikh, Rob Shakir. 2024. The Case for Validating Inputs in
Software-Defined WANs. In The 23rd ACM Workshop on Hot Topics
in Networks (HOTNETS ’24), November 18–19, 2024, Irvine, CA,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3696348.3696874

1 Introduction
Availability is a network operator’s highest priority and yet,
despite considerable effort and investment, state-of-the-art
networks continue to exhibit regular outages. For example,
recent papers report that the frequency of major outages in
large cloud provider WANs has remained roughly constant
over the years [11, 15, 19, 22, 33, 38].

What (more) can we do to avoid such outages? To answer
this question, we analyzed the root cause of all major outages
in a large cloud provider’s SDN WAN over the last five years.

Our analysis revealed that a root cause of over one third of
these major outages is one that has received relatively little at-
tention within the research community: incorrect inputs to the
SDN controller. In fact, incorrect inputs are the single largest
contributing root cause in the outages we analyzed. In all these

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner/author(s).
HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696874

Demand Topology

A
DB

C

SDN Controller

Control Infra

…

Figure 1: Simplified view of control infrastructure today.

outages, the SDN controller itself operates correctly, but is
compromised because it receives inputs that do not accurately
reflect the current state of the network. For example, in several
of the outages we analyzed, the controller received an incom-
plete view of the current traffic demand, leading to sub-optimal
routes, congestion, and packet drops. In other outages, the
controller received an incorrect view of the topology, which
caused it to overload the links it believed to be operational.

This data is troubling not only due to the large fraction of
outages but also because such inputs can render most existing
techniques for ensuring availability (e.g., verification, repli-
cation, testing, etc.) futile. This is because these techniques
validate a system’s output assuming correct inputs. As such,
the guarantees they provide are rendered meaningless when
the inputs to the system themselves are incorrect.

One may wonder how incorrect inputs are possible when the
SDN controller reads network state directly from the routers.
We delve into this question in §2 but, briefly, the answer lies
in the complexity of production WANs. For one, the control in-
frastructure (Figure 1) that aggregates these inputs is complex,
and spans dozens of services with millions of lines of code sub-
ject to frequent updates, making bugs unavoidable [12, 19, 20].
Additionally, incorrect inputs may result from faulty device-
level telemetry signals that arise due to bugs in router hardware
and software, both of which are complex in terms of lines of
code and often blackboxes to network operators.

One might also wonder: what are operators currently doing
to catch incorrect inputs? Our discussions with operators re-
vealed that they do perform sanity checks on the inputs to their
SDN controller. However, these checks are typically static
in nature, and are often crafted to prevent impossible values
of the input; i.e., values that cannot possibly occur, such as
topologies with more nodes than actually exist in the network.
Operators also use static checks to catch unlikely inputs, using

https://doi.org/10.1145/3696348.3696874
https://doi.org/10.1145/3696348.3696874
https://doi.org/10.1145/3696348.3696874

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Krentsel et al.

heuristics based on historically correct values, past outage ex-
periences, and so forth. Unfortunately, such checks are often
ad-hoc and hard to manage; they accumulate over time across
disparate parts of the system, and are local to their part of the
system. Even worse, these heuristics are dangerous since they
can result in false positive scenarios where atypical inputs are
discarded despite correctly reflecting the state of the network
at that time; e.g., in a disaster scenario that impacts a large
number of routers.

Perhaps more fundamentally, our analysis reveals that inputs
are often incorrect not because they cannot possibly occur or
are unlikely to occur, but because they are not currently occur-
ring; i.e., they do not reflect the current state of the network.
Thus, detecting incorrect inputs requires comparing the inputs
against the current network state. Existing approaches (based
on static checks) are ill-suited for this because current state is
dynamic and spans a wide range of operating points.

The goal of our paper is to shine a light on the problem of
input validation in SDN networks. As our analysis indicates,
this is an important problem that remains unsolved. We argue
that input validation must be based on dynamic invariants that
ensure an SDN controller’s inputs reflect current network state.

Our proposed solution starts with the observation that dy-
namic validation requires an accurate view of current state, one
that is resilient to bugs in even our low-level telemetry signals.
To build confidence in these signals, we take advantage of the
symmetry inherent to a network, which creates opportunities to
corroborate a telemetry signal from one network location with
independent signals taken from different vantage points in the
network. For example, a trivial symmetry might be that the
“bytes out” counter on one end of a link must match the “bytes
in” counter on the other end, though more nuanced symmetries
exist (§4).

Building on the above insights, we discuss the space of
possible approaches, and propose our approach to input val-
idation, Hodor, that proceeds in two steps. First, we exploit
symmetry to validate device-level signals, yielding what we
term a “hardened” set of router signals. Next, we dynamically
generate invariants that validate the high-level inputs to an
SDN controller against these foundational signals. Our early
analysis suggests that this methodology could have averted the
majority of the outages that stem from incorrect inputs in our
dataset, though many open questions remain (§6).

2 Incorrect Inputs In Production SDN WANs
In an SDN WAN, the controller takes an abstract view of the
network state as input. To create this input, the network’s con-
trol infrastructure first collects signals from individual routers
in the network (e.g., link status, link metrics, demand, etc.), and
then aggregates them (e.g., by constructing a topology from
individual link statuses), before passing them to the controller.

Since incorrect inputs caused over one third of all major
outages over the past five years in the production SDN WAN
we analyzed, we sought to better understand why these inputs
occur; i.e., why inputs to the SDN controller do not always
reflect the current state of the network.

We observed that incorrect inputs arise in two scenarios:
(1) when routers produce incorrect signals, and (2) when cor-
rect router signals are incorrectly processed and aggregated by
the control infrastructure. We provide examples of both, along
with brief descriptions of the outages they can lead to.

2.1 Incorrect Router Signals
Router signals can be of two types: those that reflect the state
of the network (e.g., telemetry signals), and those that reflect
the intent of network operators (e.g., a router’s drain status).
We find that both can be incorrect, and lead to outages. Though
our outage analysis focused on an SDN WAN, below we also
include examples of vendor router bugs experienced in a large
cloud provider’s traditional WAN that can impact the inputs
to traffic management systems.
Telemetry Bugs. Telemetry data provided by routers is the
primary way to gain visibility into network state. However,
modern routers consist of not only complex hardware but also
millions of lines of code of software, both of which provide a
large surface area for bugs. For example, one observed bug in
the router OS caused certain telemetry messages to be dupli-
cated, with one of the two messages reporting (at random) that
the number of packets received on the router’s interfaces was
zero. These messages led the control plane to interpret these
interfaces as faulty and refrain from routing traffic through
these otherwise functioning interfaces. Other reported bugs
have included OS-level bugs that led to malformed telemetry
responses, changes in telemetry format (e.g., from string to
int), delayed telemetry reporting, and incorrect QoS marking
on telemetry packets, all of which led to incorrect or missing
router signals. Note, all of these bugs manifested in produc-
tion despite extensive pre-rollout testing, since the wide range
of configurations, network loads, OS versions, etc. makes it
infeasible to catch all such bugs before deployment [31].
Incorrect intent. Routers also report certain configurable sig-
nals that reflect the intent of network operators; for example,
the “drain status” is used to mark a router undergoing mainte-
nance or experiencing faulty behavior, and serves as a signal
to the SDN controller to refrain from sending traffic to it. How-
ever, bugs in the router software can lead to this signal differing
from the operator-intended view of the network. For example,
in one outage, the interaction between a controller job restart-
ing and a router marking itself as drained led to an inconsistent
view of the drain status of the router’s links, resulting in link
congestion. Another outage was caused by an incorrect drain
condition that had the opposite effect, and erroneously drained

The Case for Validating Inputs in Software-Defined WANs HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

a series of routers that were actually capable of carrying traffic,
leading to congestion.

2.2 Incorrect Aggregation of Router Signals
Even when routers produce correct signals, the SDN controller
can still receive a different view of the network.
Bugs in the control plane infrastructure. Bugs at any point
in the processing infrastructure can cause correct router signals
to be mutated or delayed. For example, in one outage, a new
rollout of the topology instrumentation service introduced a
bug that did not wait for all routers to provide their link statuses
before stitching together the topology, thus providing the SDN
controller with a partial view of the network causing severe
congestion. In a second outage, a bug in a different instrumen-
tation service caused it to misreport the liveness of particular
links; this led to the SDN controller receiving a topology that
had less bandwidth than was actually available, which caused
sub-optimal traffic placement and local congestion. Finally, in
a third outage, a router’s (correct) drain signal was partially ig-
nored by the topology instrumentation service; this led the ser-
vice to incorrectly include the drained router’s link capacities
in the total available capacity which caused severe congestion.
External Input. The final reason we observed for incorrect
inputs was because, unlike the simplified diagram shown in
Figure 1, some portions of the input to the SDN controller
may be collected outside of the network (i.e., not from the
routers). For instance, in the network we analyzed, demand
information is collected from measurements at the end hosts
rather than from routers directly (similar to [21]). This can lead
to scenarios where the SDN controller can receive an incorrect
view of such external inputs, despite everything in the network
working correctly. For example, in one scenario, a new rollout
of the demand instrumentation system introduced a bug that
incorrectly aggregated demand at the end hosts. This caused
the SDN controller to receive a partial view of the demand,
which led to severe congestion and a major outage since the
routes programmed by the controller did not take into account a
significant fraction of the demand. In another major outage, the
demand instrumentation service correctly measured demand,
but this traffic was incorrectly throttled at the end hosts causing
the measured demand to differ from the traffic that was allowed
onto the network, and the SDN controller to make sub-optimal
pathing decisions.
In summary, incorrect inputs to the SDN controller arise ei-
ther due to bugs in router hardware and software that lead to
incorrect input signals, or bugs in the control infrastructure
that cause correct inputs to be aggregated incorrectly. Given
the scale and complexity of production networks, detecting
and eliminating these bugs in their entirety, using either test-
ing or formal verification, is intractable [20]. Instead, we aim
to validate the inputs, i.e., provide confidence about whether

the inputs correctly represent the current state of the network,
despite any potential bugs in network components.

3 Approach
Given the complexity of production SDN WANs, building a
system that guarantees correct inputs at all times is likely infea-
sible. Instead, we seek to mitigate the problem, by developing
techniques that enable operators to quickly identify and fix
incorrect inputs when they occur.

Our key insight is that signals in networked systems are
heavily correlated; for example, a packet arriving at router X
and leaving at router Y will be accounted for in the demand
reported from X and to Y, as well as in incoming and outgoing
interface counters at each router that the packet traverses. Thus,
incorrect inputs will likely lead to inconsistencies in the set of
signals obtained from the network (e.g., discrepancies between
a router’s reported demand and the packet counts at adjacent
interfaces). We seek to use these inconsistencies to detect the
likelihood of an input being incorrect, and suggest fixes based
on other correlated signals.

3.1 Design Space
The approach used to detect and fix incorrect inputs can vary
based on the available knowledge of the system’s design.

The most general approach assumes no prior knowledge
about how different signals in the system are correlated—such
as which values were derived from others (as in §2.2), which
should be equal, or which should sum to others. Unsupervised
learning techniques can be applied to discover this structure by
analyzing historical system data, bundling all available data (in-
cluding telemetry and control inputs) for each timestamp, and
using methods like masked autoencoders [13] and symbolic
regression [9] to identify relationships within these bundles
that persist over time. However, these techniques may capture
spurious relationships that, while true during the historical ob-
servation period, are not fundamental to the system’s operation.
For example, if the routers in a particular Point of Presence
(POP) remain drained (up but not carrying traffic) during the
historically observed period, unsupervised methods might in-
fer that all interface counters in that POP should always be
equal, which would no longer be accurate once the routers in
the POP are undrained and counters become non-zero.

We propose a more specialized approach that incorporates
constraints on how signals are correlated based on expert
knowledge of the system’s design. We leverage two aspects
of our system knowledge. First, we partition the system data
into low-level signals (e.g., interface counters) which are close
to the routers (§2.1) and high-level abstract data (e.g., control
inputs) which are aggregated from these signals (§2.2). This
allows us to independently establish a trusted low-level view
of the network before verifying that the high-level view aligns
with it. Second, we manually define the expected relationships

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Krentsel et al.

Collection

Demand Topology

Control Infra

A
DB

C

SDN Controller

Hardening

Dynamic Checking

Control Infra

…

1

2

3

Figure 2: Our three-step approach to input validation.

within low-level signals and between the low-level network
state and the high-level abstract data. We detail this approach
below, and leave exploring a more general approach to future
work.

3.2 Our Approach: Hodor
Our proposed approach to input validation (Hodor) consists of
three steps (shown in Figure 2): 1 Collection, which comprises
reading (possibly incorrect) signals from individual routers to
get a comprehensive view of the current network state, 2 Hard-
ening, which comprises detecting and (when possible) repair-
ing incorrect signals to obtain a correct view of the current net-
work state, and 3 Dynamic checking, which comprises check-
ing that the inputs to the SDN controller are consistent with the
current network state. Hodor is currently only an approach; we
envision implementing it as an always-on system that continu-
ously validates inputs to the SDN controller as it receives them.
Step 1 : Collecting input signals. The goal of this step is to
gather all the router signals that represent network-state inputs
to the SDN controller. The key challenge here is to identify
what signals are available, and whether they are relevant to
the inputs to the SDN controller. To overcome this challenge,
Hodor leverages the fact that network operators today maintain
detailed network models [23, 25, 35], and use vendor-agnostic
APIs [5, 26, 29] which provide detailed documentation about
each available router signal. The relevant signals are chosen
once at system design time, after which they are automatically
collected, providing Hodor with a continuous and comprehen-
sive view of the current network state.

Interestingly, we found that collecting a comprehensive view
of router-level signals has another positive side effect: we dis-
covered cases where inputs were incorrect because the system
designers had defined their inputs on incorrect or insufficient
signals. This was a design time bug and yet our approach (based
on corroborating across multiple available signals) is able to
detect the error. We discuss such a scenario in the context of
a topology input in §4.2.
Step 2 :Hardening input signals. This step answers the ques-
tion of how to obtain a correct view of the network state, when
bugs in routers may cause some of the signals collected in step

1 to incorrectly reflect either the network state or operator
intent, or be missing entirely (§2.1).

The key observation that helps us answer this question is that
networks contain an inherent amount of redundancy, due to
which a telemetry signal from one network location can often
be corroborated against signals from other locations. Hodor
leverages this redundancy to first detect signals that are likely to
be incorrect (since they are inconsistent with signals observed
from other locations), and then repair such signals (and miss-
ing signals), by using the values observed from other locations.
We refer to this detection+repair process as “hardening.”

The primary source of redundancy (𝑅1) that Hodor leverages
to detect possibly incorrect signals is the symmetry across the
two ends of a link: for example, the “bytes out” counter at one
end of a link must approximately equal the “bytes in” counter
at the other end,1 and the “link status” reported at one end of
the link must equal the status reported at the other end. When
the two signals are not equal, Hodor flags both as “possibly
incorrect” and proceeds to repair them.

In the repair step, our approach relies on more nuanced
forms of redundancy to first obtain additional correlated obser-
vations, and then uses these observations to infer the true value
for missing and possibly incorrect signals. The second source
of redundancy (𝑅2) that Hodor relies on is flow conservation
across all router ports; i.e., the total number of “bytes in” across
all interfaces of a router, must approximately equal the sum
of the total number of “bytes out” and the “bytes dropped” at
the router. When the counters for “bytes in” and “bytes out” at
the two ends of the link are not approximately equal, Hodor
checks if each counter maintains flow conservation with other
counters at its router. Assuming an isolated incorrect counter,
only one of the two counters would pass the above check, al-
lowing Hodor to detect which counter is most likely incorrect
and also repair its value.

The final two sources of redundancy that Hodor uses are:
alternative signals (𝑅3) and manufactured signals (𝑅4). In
𝑅3, Hodor uses the fact that routers provide different signals
that can serve as possible alternatives; for example, to check
whether a link is up, one can not only look at the reported
status at both ends but also see if the “bytes in” and “bytes
out” counters are zero at both ends. In 𝑅4, Hodor relies on
additional techniques that are deliberately introduced to create
redundant signals. For example: using active neighbor probes
to obtain additional signals as to whether a link is up or down.
Hodor primarily uses 𝑅3 and 𝑅4 to increase confidence during
the repair process. Since this involves inferring an unknown
ground truth, the greater the number of signals, the higher the
confidence that Hodor’s inference is correct.
1The need for approximation arises due to discrepancies in the time window
over which counters are measured and are accounted for as described in §4.

The Case for Validating Inputs in Software-Defined WANs HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

An open question is how much Hodor’s hardening process
efficacy may be diminished by correlated failures: for example,
a bug in the vendor OS that causes multiple routers to report
incorrect, but equal signal values. While such bugs are indeed
possible, network operators already take several steps to re-
duce their impact including employing multiple vendors, and
performing staged rollouts of router software updates. Using
alternative signals adds another layer of protection through re-
lying on different router-level signals: e.g., a link status signal
that is based on optical transceiver components vs. byte counts
that are based on interface counters. That said, a detailed eval-
uation of hardening efficacy remains an open question that we
are actively exploring.
Step 3 :Dynamic checking. In the final step, Hodor checks
that the inputs to the SDN controller are consistent with the
hardened signals constructed in step 2 . The checks are input-
specific, and we provide examples for three inputs to the SDN
controller in §4.

A natural question is: What course of action should Hodor
take if the inputs are inconsistent with the hardened signals?
This is a non-trivial question to answer, and one that arises
even today with existing sanity checks in SDN WANs. We
anticipate Hodor’s validation checks to be integrated in a sim-
ilar process to how existing checks are integrated today into
alerting and management tools: for instance, Hodor can reject
inputs that fail validation and fall back temporarily to the last
input state, or trigger an alert for a reliability engineer to inter-
vene. We leave this policy for operators to configure based on
their operational model.
In summary, we propose a three-step approach to validate
inputs. After 1 collecting all relevant router signals, Hodor
uses the redundancy inherent in networks to 2 harden router
signals, and mitigate the challenge posed by signals that incor-
rectly reflect network state or operator intent (§2.1). Finally,
in step 3 , Hodor checks inputs against the (hardened) current
network state. Since this network state is obtained directly
from routers, and is untouched by the control infrastructure’s
processing and aggregation logic, this step enables Hodor to
detect bugs in both the control infrastructure and code that
collects inputs from locations external to the network (§2.2).

One may ask whether Hodor is itself vulnerable to bugs
and how this impacts its usefulness? While true, we note that
this is a general concern for any validation/alarm system that
pursues defense-in-depth; Hodor merely adds another layer
of protection. Additionally, we believe that the surface area
for bugs that Hodor introduces is relatively small since (unlike
the existing SDN control infrastructure) Hodor does not pro-
cess or aggregate signals but only reads and compares them.
In addition, Hodor checks will likely be easier to maintain
and manage since they do not rely on heuristics drawn from

prior outage experiences. That said, we acknowledge that this
question is best answered through production experience.

4 Design
We now describe how one might apply our approach for the
three inputs to an SDN controller: the traffic demand (§4.1),
the topology (§4.2), and the drain status of individual routers
(§4.3). We focus on these three inputs since incorrect versions
of these were the root cause of all large input-related outages
we described in §2. Due to space constraints, we explain vali-
dation in detail for demand and provide high-level descriptions
of our approach for topology and drain, leaving more detailed
descriptions to follow-on work.

4.1 Demand
The high-level input for demand is matrix 𝐷, where 𝐷𝑖 𝑗 rep-
resents the rate of traffic arriving at ingress router 𝑖 that is
destined for egress router 𝑗 [36]. In the network we analyzed,
𝐷 is computed from measurements at endhosts [21].

The router signals that we collect are interface counters that
record the traffic rate sent/received on each interface measured
over a few second rolling window. Note that these counter val-
ues are semantically different from 𝐷𝑖 𝑗 : the latter captures an
ingress-egress flow that travels multiple hops, while interface
counters capture many flows on a single link. Nonetheless,
their values are interdependent and we exploit this dependence
for validation as described below.

As sketched in §3 our approach is to first harden the low-
level interface counter values, and then check our high-level
input𝐷 against these hardened counter values. We present each
step in the validation process with a running example, shown
in Figure 3, in which one counter on the A→B link reported
a faulty erroneous measurements.
Hardening. For detection, we take advantage of the redundant
signals that arise from link symmetry (𝑅1 from §3), comparing
the outgoing interface count to the incoming interface count
on each side of each link in the network. We deem any pairs of
measurements missing or differing by more than some small
hardening threshold 𝜏ℎ2 to be spurious and replace them with
an unknown variable as we do not know which one is correct.
The threshold allows for some natural difference due to the
measurements being collected over a few second window. We
average all other pairs of entries, producing a flow vector con-
taining constants and variables for traffic volume on each link.

For repair, to correct the detected anomalies we take advan-
tage of the flow conservation principle of networks (𝑅2 in §3):

∀𝑣 ∈𝑉 ,
∑︁

𝑒∈𝐸in (𝑣)
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑒)=

∑︁
𝑒∈𝐸out (𝑣)

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑒)+𝑑𝑟𝑜𝑝𝑝𝑒𝑑 (𝑣)

2This threshold depends on the network sampling frequency and traffic
patterns. Based on production logs, we find 2% to be an appropriate threshold.

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Krentsel et al.

out: 74

BA
in: 25 out: 23

in: 5
in: 76

out: 24

… …

in: 23
out: 75

76

BA
24

76

24
2375

Hardening

0D
23

74
0

=

DemandInvariant
Generation …

… …76 ≈ 0 + 74 + …
24 ≈ 23 + 0 + …

…

Invariants

Collection

Figure 3: Simple example of demand validation, with external
ingress/egress links shown on the left and right. The value on
link A→B is detected to be spurious (red). Flow conservation
at B finds the correct value is 76. The demand matrix contains
demand from rows (A,B,...) to columns (A,B,...).

where 𝐸in/out (𝑣) denotes the set of edges directed in/out of
router 𝑣 . Formulating this as a dot product between the inci-
dence matrix 𝑀 and ®𝑣𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , we can solve for up to |𝑉 |−1 un-
knowns, the rank of𝑀 [4], to recover missing/corrupted values.

We show this in Figure 3, with the underlined counters for
link A→B being detected as faulty due to their difference. We
produce a graph with all other values hardened, then solve for
the faulty link counter through flow conservation at B3:∑︁

𝑖𝑛

=
∑︁
𝑜𝑢𝑡

−→ 𝑥+23=75+24 −→ 𝑥 =76

Dynamic Checking. Using the hardened set of interface coun-
ters, we can now produce invariant checks that relate our high-
level demand matrix 𝐷 to the per-interface counter values.
Intuitively, the two are interdependent since the traffic in 𝐷𝑖 𝑗

contributes to the per-interface counters at every edge along
the path from 𝑖 to 𝑗 . We exploit this interdependence at each
ingress and egress router. Concretely, we check that the total
external4 ingress rate at a router must equal the reported sum
of demands from that router to all other routers. Likewise, to-
tal external egress at a router must equal the reported sum of
demands from all other routers to this router. We show one of
each for our running example in Figure 3.

The final result is 2𝑣 unique invariants, which is not enough
to fully re-derive 𝐷 (which contains 𝑣2 entries) but does sig-
nificantly constrain its range of acceptable values. To account
for slightly differing numbers due to the hardening tolerance

3We could equally have solved at A, where we would get a slightly differing
solution due to rolling network telemetry. We could average solutions from
all adjacent routers, or simply pick one.
4By external, we mean traffic leaving or entering the network domain, e.g.,
to a datacenter Top-of-Rack (TOR) switch.

threshold, we choose an equality threshold 𝜏𝑒 , which accepts
invariants within 𝜏𝑒 percent of equality.
Preliminary Evaluation. An initial analysis reveals that our
approach would have successfully detected each case of incor-
rect demand inputs discussed in §2. In addition, as a sensitivity
analysis, we tested the accuracy of our validation using demand
matrices from the Abilene network [27] that we artificially “per-
turbed” to mimic buggy demand matrices. Our initial findings
are encouraging: with 𝜏𝑒 =0.02, our approach detects 99.2% of
perturbed matrices with two zeroed-out (missing) values out of
144, and 100% of perturbed matrices with three or more zeroed-
out values. In ongoing work, we are evaluating the accuracy
of our methods under a much wider range of scenarios.

4.2 Topology
The topology input to the SDN controller is a graph view of
the network, derived from link status information reported by
routers; this status signal is low level, reporting whether light
is passing through and the link is administratively up.

A closer analysis of our scenarios involving incorrect topol-
ogy inputs reveals that an input topology can be incorrect
in two ways: either (1) the topology is misrepresenting the
(non)existence of links, or (2) the reported data is semantically
incorrect or insufficient, e.g., a link is included in the topology
as its interface status is up but traffic can’t flow due to other
reasons such as bugs in the dataplane, misconfigured ACLs,
etc. Such bugs are introduced at design time, when the devel-
oper selected some router signals and defined how their inputs
would be computed from the same. Thus, the role of hardening
is both catching buggy or faulty signals, but also re-enforcing
the intended semantic meaning of the signal.

To create a hardened and more comprehensive view of link
status, we consider link status and interface counters (as men-
tioned in our discussion of demands) and we harden these val-
ues by comparing their values on each side of the link, and to
each other. To provide further confidence, we further consider
“manufacturing” redundancy by running limited active probes
that periodically check that a link is up. A router can conduct
these probes itself through a simple application running on the
router [6, 19], similar to existing mechanisms used to check
L2 link status [1]. Thus, our hardening process here leverages
three of the redundancies discussed in §3: link symmetry, alter-
native signals, and manufactured signals. We leave out the full
truth table of how to combine these signals, but note it can be
adjusted based on risk tolerance of the operator. For example,
if one side of a link reports up and the other down, but rate
counters are all large and a probe succeeds, the link is likely up.

Once we have a hardened view of link status, dynamic check-
ing is straightforward: we compare our hardened link status
directly with the topology view at the SDN controller.

The Case for Validating Inputs in Software-Defined WANs HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

4.3 Drain Status
As discussed in §2, a router drain is a form of intent signal that
marks a router to be avoided. It is applied in many scenarios
including manually during outages to move traffic away from
affected areas, pre-emptively to enable safe maintenance op-
erations, and reactively through automation if faulty behavior
is detected. There are many different drain mechanisms [7, 8,
16, 17] that differ slightly in their method and impact.

Drain is hard to validate as it is semantically overloaded,
making it difficult to know where to seek redundancy. Looking
across the above scenarios we find that, at a high level, an
incorrect drain signal manifests as one of two cases: (1) drain
is not marked when the router is supposed to be drained and
cannot actually carry traffic, and (2) drain is marked when the
router could actually still carry traffic. The first case is captured
by the same mechanism as in §4.2, as interface counters and
probes will be affected while interface status stays up.

The second case is harder as it requires verifying whether the
router is justified in moving to a drain status. Probes may help
to detect that the router can still carry traffic, but there are valid
cases when a router claims to be drained despite being able to
forward traffic, such as preemptive drains for maintenance.

Ultimately, the right approach might be to standardize the
drain process for greater transparency through a mechanism
that enables redundancy. One approach may be to attach rea-
sons to drain labels, which can then be used to validate the
drain. For example, a drain due to faulty neighbor connectivity
can be validated by Hodor by checking the supposedly affected
connection causing the drain. We could require all drains to
be link drains, as link drains contain natural symmetry—both
sides must agree that the link is drained. A node drain would
then simply drain all links. An announced link drain can be
validated by checking that the neighbor also announced a drain
of that link. We leave a full exploration and evaluation of these
approaches to future work.

5 Related Work
There is a vast literature on increasing network availability
through testing [31], emulation [14, 24], and formal verifica-
tion [3, 10, 18, 30, 37]. However, almost all such approaches
aim to prove that an output is correct given a particular input
(e.g., configuration or values), and do not focus on validating
the input itself.

The "Evolve or Die" paper [12] extracts learnings from 100+
outages at Google. While they do include examples of outages
due to incorrect inputs, they do not report incorrect inputs as
their leading cause of outages. We speculate this difference
may be for a few reasons; e.g., their analysis looked across
both their SDN- and protocol-based WANs, is nearly a decade
old, and some of their recommendations may now be common
practice leading to new dominant causes.

Flexible Contracts for Resiliency [32] provides a language
for reasoning about chains of assumptions that connect ground
truth “signals” to higher level abstractions, similar to the ap-
proach we took in reasoning about the relationship between
network signals and controller input. Adopting their formal
methods into Hodor is an interesting direction for future work.

Anomaly detection [2, 28] approaches detecting outliers in
input data through statistical analysis of a signal’s past history.
In contrast, we focus on whether a signal reflects the ground
truth, and for that we look across signals for corroboration.

6 Conclusion and Future Directions
This paper makes the case for input validation as an open
and important problem that merits attention. We sketched one
possible approach to input validation, applied to the specific
context of an SDN controller in the WAN. However, many
open questions remain.
Hodor’s approach. Open questions remain about the details of
Hodor’s design, including evaluating their efficacy and demon-
strating a practical implementation of the same. Additionally,
exploring a more general formulation of input validation as
discussed in §3 may prove fruitful, and ought to be compared
to the specialized approach we take in Hodor’s design.
Designing more reliable networks. We are also curious if
some of the techniques we identified might be useful to incor-
porate back into routers and the control infrastructure to help
prevent the occurrence of incorrect inputs in the first place. For
example, a router may exchange interface counters with its
neighboring routers, in order to detect and self-correct anom-
alies in its reported data.
The broader design space and its applicability. What other
approaches might one pursue for input validation? Are incor-
rect inputs a problem in other environments such as protocol-
based WANs, datacenter fabrics, or CDN infrastructures? And
would the approach we described be applicable to these en-
vironments? More generally, the problems discussed in this
paper show up in all sorts of large systems, beyond just net-
worked systems. For systems that naturally exhibit redundancy
and interdependence due to the structure of the domain they op-
erate on, the approach we propose could generalize to provide
an inexpensive approach to increasing confidence in their in-
puts (compared to maintaining fully redundant control systems,
as in existing critical systems [34]).

7 Acknowledgments
We thank our anonymous reviewers for their feedback and in-
sightful comments. We also thank our colleagues and partners
at Google for their support in exploring this idea and navigat-
ing Google data, including Bikash Koley, Subhasree Mandal,
Hank Levy, David Culler, Doug Browning, and others. This
work was supported by an NSF Graduate Fellowship.

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Krentsel et al.

References
[1] 2022. Ethernet CFM, Y.1731 Basic Concepts, Configuration, and Imple-

mentation. https://www.cisco.com/c/en/us/support/docs/asynchronous-
transfer-mode-atm/operation-administration-maintenance-
oam/117457-technote-cfm-00.html.

[2] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. 2016.
A survey of network anomaly detection techniques. Journal of Network
and Computer Applications 60 (Jan. 2016), 19–31.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,
Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
semantic foundations for networks. SIGPLAN Not. 49, 1 (Jan. 2014),
113–126.

[4] R.B. Bapat. 2014. Graphs and Matrices. Springer London.
https://books.google.com/books?id=LWCSBAAAQBAJ

[5] Carl Lebsack, Marcus Hines, Paul Borman, Anees Shaikh, Rob Shakir,
Wen Bo Li, et al. 2018. gNMI - gRPC Network Management Interface.
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-
specification.md.

[6] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman Kazemkhani,
Rob Sherwood, Ying Zhang, and Hongyi Zeng. 2018. FBOSS: Building
Switch Software at Scale. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication. 342–356.

[7] Cisco. 2005. Uses of the Overload Bit with IS-IS. Technical Report
24509. Cisco.

[8] Cisco. 2016. IP Routing: OSPF Configuration Guide. Cisco.
[9] Miles Cranmer. 2023. Interpretable Machine Learning for Science with

PySR and SymbolicRegression.jl. arXiv [astro-ph.IM] (May 2023).
[10] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh

Govindan, Ratul Mahajan, and Todd Millstein. 2015. A general
approach to network configuration analysis. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation
(Oakland, CA) (NSDI’15). USENIX Association, USA, 469–483.

[11] Tony Fyler. 2023. Azure Outage Disconnects Thousands.
https://techhq.com/2023/01/azure-outage-disconnects-thousands.

[12] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Ko-
ley, and Amin Vahdat. 2016. Evolve or Die: High-Availability
Design Principles Drawn from Google’s Network Infrastructure.
https://dl.acm.org/doi/10.1145/2934872.2934891

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and
Ross Girshick. 2021. Masked Autoencoders Are Scalable Vision
Learners. arXiv:2111.06377 [cs.CV] https://arxiv.org/abs/2111.06377

[14] Marcus Hines and Alex Masi. 2021. Kubernetes Network Emulator.
https://github.com/openconfig/kne.

[15] Santosh Janardhan. 2021. Details About The October 4 Outage. https:
//engineering.fb.com/2021/10/05/networking-traffic/outage-details/.
Engineering at Meta (Oct. 2021).

[16] Juniper. 2015. L2TP drain | Juniper Networks Pathfinder Fea-
ture Explorer — apps.juniper.net. https://apps.juniper.net/feature-
explorer/feature-info.html?fKey=6874&fn=L2TP+drain.

[17] Juniper. 2020. BGP - Delay Route Advertisments - Wait for
KRT Drain. https://apps.juniper.net/feature-explorer/feature-
info.html?fKey=10427&fn=BGP+-+Delay+Route+Advertisments+-
+Wait+for+KRT+Drain.

[18] Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header Space Analysis: Static Checking for Networks. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12). 113–126.

[19] Alexander Krentsel, Nitika Saran, Bikash Koley, Subhasree Mandal,
Ashok Narayanan, Sylvia Ratnasamy, Ali Al-Shabibi, Anees Shaikh,
Rob Shakir, Ankit Singla, and Hakim Weatherspoon. 2024. A Decentral-
ized SDN Architecture for the WAN. In Proceedings of the 2024 ACM

SIGCOMM Conference. https://doi.org/10.1145/3651890.3672257
[20] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner, and Himanshu

Raj. 2021. Decentralized cloud wide-area network traffic engineering
with BlastShield. Technical Report MSR-TR-2021-31. Microsoft.
https://www.microsoft.com/en-us/research/publication/decentralized-
cloud-wide-area-network-traffic-engineering-with-blastshield/

[21] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C Stephen Gunn, Jing
Ai, Björn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi
Siganporia, Stephen Stuart, and Amin Vahdat. 2015. BwE: Flexible,
Hierarchical Bandwidth Allocation for WAN Distributed Computing.
In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (London, United Kingdom) (SIGCOMM ’15).
Association for Computing Machinery, New York, NY, USA, 1–14.

[22] Frederic Lardinois. 2020. IBM Cloud suffers prolonged outage.
TechCrunch (June 2020).

[23] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang,
Hui Xu, Lei Zhou, Qing Ma, and Ming Zhang. 2018. Automatic Life
Cycle Management of Network Configurations. In Proceedings of the
Afternoon Workshop on Self-Driving Networks (Budapest, Hungary)
(SelfDN 2018). Association for Computing Machinery, New York, NY,
USA, 29–35.

[24] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri
Tallapragada, Nuno P. Lopes, Andrey Rybalchenko, Guohan Lu,
and Lihua Yuan. 2017. CrystalNet: Faithfully Emulating Large
Production Networks. In Proceedings of the 26th Symposium on
Operating Systems Principles (Shanghai, China) (SOSP ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, 599–613.
https://doi.org/10.1145/3132747.3132759

[25] Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Douglas
Turk, Bikash Koley, Google Llc Xiaoxue Zhao, and Alibaba Group
Inc. 2020. Experiences with Modeling Network Topologies at Multiple
Levels of Abstraction. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (Santa Clara, CA).
USENIX Association, 403–418.

[26] OpenConfig Project. 2015. OpenConfig. https://www.openconfig.net/.
[27] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. 2010.

SNDlib 1.0—Survivable Network Design Library. Networks
55, 3 (2010), 276–286. https://doi.org/10.1002/net.20371
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.20371

[28] Animesh Patcha and Jung-Min Park. 2007. An overview of
anomaly detection techniques: Existing solutions and latest tech-
nological trends. Computer Networks 51, 12 (2007), 3448–3470.
https://doi.org/10.1016/j.comnet.2007.02.001

[29] Rob Shakir, Xiao Wang, Nathaniel Flath, et al. 2017. gRIBI - gRPC Rout-
ing Information Base Interface. https://github.com/openconfig/gribi.

[30] Ratul Mahajan Ryan Beckett. 2020. Capturing the state of research on
network verification. https://netverify.fun/2-current-state-of-research/.

[31] Rob Sherwood, Jinghao Shi, Ying Zhang, Neil Spring, Srikanth
Sundaresan, Jasmeet Bagga, Prathyusha Peddi, Vineela Kukkadapu,
Rashmi Shrivastava, Manikantan KR, Pavan Patil, Srikrishna Gopu,
Varun Varadan, Ethan Shi, Hany Morsy, Yuting Bu, Renjie Yang, Rasmus
Jönsson, Wei Zhang, Jesus Jussepen Arredondo, Diana Saha, and Sean
Choi. 2024. Netcastle: Network Infrastructure Testing At Scale. In 21st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). USENIX Association, Santa Clara, CA, 993–10008.
https://www.usenix.org/conference/nsdi24/presentation/sherwood

[32] Michael Sievers and Azad M. Madni. 2014. A flexible contracts
approach to system resiliency. In 2014 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC). 1002–1007.
https://doi.org/10.1109/SMC.2014.6974044

https://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html
https://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html
https://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html
https://books.google.com/books?id=LWCSBAAAQBAJ
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://techhq.com/2023/01/azure-outage-disconnects-thousands
https://dl.acm.org/doi/10.1145/2934872.2934891
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://github.com/openconfig/kne
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=6874&fn=L2TP+drain
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=6874&fn=L2TP+drain
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=10427&fn=BGP+-+Delay+Route+Advertisments+-+Wait+for+KRT+Drain
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=10427&fn=BGP+-+Delay+Route+Advertisments+-+Wait+for+KRT+Drain
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=10427&fn=BGP+-+Delay+Route+Advertisments+-+Wait+for+KRT+Drain
https://doi.org/10.1145/3651890.3672257
https://www.microsoft.com/en-us/research/publication/decentralized-cloud-wide-area-network-traffic-engineering-with-blastshield/
https://www.microsoft.com/en-us/research/publication/decentralized-cloud-wide-area-network-traffic-engineering-with-blastshield/
https://doi.org/10.1145/3132747.3132759
https://www.openconfig.net/
https://doi.org/10.1002/net.20371
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.20371
https://doi.org/10.1016/j.comnet.2007.02.001
https://github.com/openconfig/gribi
https://netverify.fun/2-current-state-of-research/
https://www.usenix.org/conference/nsdi24/presentation/sherwood
https://doi.org/10.1109/SMC.2014.6974044

The Case for Validating Inputs in Software-Defined WANs HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

[33] Richard Speed. 2021. AWS runs into IT Problems. https:
//www.theregister.com/2021/12/15/aws_down.

[34] Ronald C Suich and Richard L Patterson. 1990. How much redundancy:
Some cost considerations, including examples for spacecraft systems.
Technical Report E-5592.

[35] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H Y Wong, and Hongyi Zeng.
2016. Robotron: Top-down Network Management at Facebook Scale.
In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis,
Brazil) (SIGCOMM ’16). Association for Computing Machinery, New
York, NY, USA, 426–439.

[36] Paul Tune and Matthew Roughan. 2013. Internet Traffic
Matrices: A Primer. https://matthew.roughan.info/papers/

traffic_matrix_sigcomm.pdf.
[37] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D Ernst, Arvind

Krishnamurthy, and Zachary Tatlock. 2016. Scalable verification
of border gateway protocol configurations with an SMT solver. In
Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing
Machinery, New York, NY, USA, 765–780.

[38] WIRED. 2019. The Catch-22 that Broke the Internet.
https://arstechnica.com/information-technology/2019/06/the-catch-
22-that-broke-the-internet/.

https://www.theregister.com/2021/12/15/aws_down
https://www.theregister.com/2021/12/15/aws_down
https://matthew.roughan.info/papers/traffic_matrix_sigcomm.pdf
https://matthew.roughan.info/papers/traffic_matrix_sigcomm.pdf
https://arstechnica.com/information-technology/2019/06/the-catch-22-that-broke-the-internet/
https://arstechnica.com/information-technology/2019/06/the-catch-22-that-broke-the-internet/

	Abstract
	1 Introduction
	2 Incorrect Inputs In Production SDN WANs
	2.1 Incorrect Router Signals
	2.2 Incorrect Aggregation of Router Signals

	3 Approach
	3.1 Design Space
	3.2 Our Approach: Hodor

	4 Design
	4.1 Demand
	4.2 Topology
	4.3 Drain Status

	5 Related Work
	6 Conclusion and Future Directions
	7 Acknowledgments
	References

