Automatic Partitioning of
Database Applications

Alvin Cheung Owen Arden
Samuel Madden Andrew C. Myers

MIT Cornell

Writing Efficient DB Apps is Difficult!

» Database applications are everywhere
— Basically all web apps

* Why is writing efficient database
applications so difficult?

— Let’s first review a typical architecture

8/29/2012 VLDB 2012 2

Architecture of DB Applications

Database Queries

—
— é
—

App Server DB Server

8/29/2012 VLDB 2012 3

Running Example

discount = executeQuery("select discount from customers
where 1id = " + cid);

totalAmount = orderTotal * (1 — discount);

credit = executeQuery("select credit from customers
where id = " + cid);

if (credit < totalAmount)
printToConsole("Only " + credit + " in account!”);
else

executeUpdate("update customer set credit = " +
(credit - totalAmount) + " where id =" + cid);

8/29/2012 VLDB 2012 4

DB

APP

DB

APP

DB

Speeding up DB Apps: Take 1

discount = executeQuery("select discount from customers
where id = " + cid);

totalAmount = orderTotal * (1 — discount);

credit = executeQuery("select credit from customers
where id = " + cid);

if (credit < totalAmount)

printToConsole("Only " + credit + " in account!”);
else
executeUpdate("update customer set credit = " +

(credit — totalAmount) + " where id = "

+ cid);

8/29/2012 VLDB 2012

Speeding up DB Apps: Take 1

discount = executeQuery("select discount from customers

DB "
et
network communication
APP | totalAmount = ‘
1@#$. =
network communication
OB credit = executeQuery("select credit from customers
cati
network communication
if (credit < totalAmount
APP .
printToConsole("0On "+ + " ount!”);
1@#$. 2
else network communication
executeUpdate("update customer set credit = " +
DB (credit - totalAmount) + " where id = " + cid);

8/29/2012 VLDB 2012 6

Speeding up DB Apps: Take 2

discount = executeQuery("select discount from customers
where id = " + cid);

totalAmount = orderTotal * (1 — discount);
DB

credit = executeQuery("select credit from customers
where id = " + cid);

if (credit < totalAmount)

APP printToConsole("Only " + credit + " in account!");

else

executeUpdate("update customer set credit = " +

DB (credit — totalAmount) + " where id = " + cid);

8/29/2012 VLDB 2012 7

Speeding up DB Apps: Take 2

discount = executeQuery("select discount from customers
where id = " + cid);

totalAmount = orderTotal * (1 — discount);
data dependency

DB
Icrediti: executeQuery("seléet credit from customers

control dependency

credit|+ " in account!"”);

if (credit < totalAmount)
printToConsole("Only " +

AP,

else

executeUpdate("update customer set credit = " +

DB (credit — totalAmount) + " where id = " + cid);

8/29/2012 VLDB 2012 8

Speeding up DB Apps: Take 3

discount = executeQuery("select discount from customers
where id = " + cid);

totalAmount = orderTotal * (1 — discount);
data dependency

DB

credit |= executeQuery("seléet credit from customers DB Server

control dependency

credit|+ " in account!"”);

if (credit < totalAmount)
printToConsole("Only " +

AP,

else

executeUpdate("update customer set credit = " +

DB (credit — totalAmount) + " where id = " + cid);

8/29/2012 VLDB 2012 9

DB

APF

DB

Speeding up DB Apps: Take 3

discount = executeQuery(”"select discou

totalAmount = orde

credit|= e This iS d

rom customers

d);
7

wher \id = ~

[

5rS DB Server

B I G geontrol dependency

prinToCon MESS !

else

y

executeUpdate(S oner

et credit = " +
otalAmount) + " where id = " + cid);

g1t —

(

8/29/2012

VLDB 2012 10

Introducing Pyxis

 “Store-procedurizes” DB apps and
pushes computation to the DB

» Adaptively controls the amount of
computation pushed to DB for optimal
performance

* No programmer intervention required

8/29/2012 VLDB 2012 11

Using Pyxis

8/29/2012 VLDB 2012

How Pyxis Works

"”"’fa_ Deploy

Monitor

TR

App Server DB Server

8/29/2012 VLDB 2012 13

How Pyxis Works

‘ Partition

Monitor
E N

App Server DB Server

8/29/2012 VLDB 2012 14

Source Code Partitioning

8/29/2012 VLDB 2012

Application Profiling

Automatically instrument source code to count the number of

times each statement was executed for a short period of time
* Measure capabilities of the application and DB servers

Counts

100 discount = executeQuery("select discount from customers
where id = " + cid);
100 totalAmount = orderTotal * (1 — discount);

19090 credit = executeQuery("select credit from customers
where id = " + cid);

100 if (credit < totalAmount)

25 printToConsole("Only " + credit + " in account!”);
else
75 executeUpdate("update customer set credit = " +
(credit — totalAmount) + " where id = " +
cid);

8/29/2012 VLDB 2012 16

Control Dependencies

* Create program dependence graph that describes control
flow and links up variable definitions and uses

Idiscount = executeQuery("select discount from customers where id = " + cid); I

|

ItotalAmount = orderTotal * (1 — discount); I

l

Icredit = executeQuery("select credit from customers where id = " + cid); I

|

credit < totalAmount
—> Control dep.

IprintToConsole(”Only " + credit + " in account!"); I

executeUpdate("update customer set credit = " +
(credit — totalAmount) + " where id = " + cid);

8/29/2012 VLDB 2012 17

Node Weights

* Create program dependence graph that describes control
flow and links up variable definitions and uses

Idiscount = executeQuery("select discount from customers where id = " + cid); I 100

|

ItotalAmount = orderTotal * (1 — discount); I 100

l

Icredit = executeQuery(”select credit from customers where id = " + cid); I 100

|

A{//////Icredit < totalAmount

IprintToConsole(”Only " + credit + " in account!"); |2

—> Control dep.

executeUpdate("update customer set credit = " +
(credit — totalAmount) + " where id = " + cid);

75

8/29/2012 VLDB 2012 18

Data Dependencies

* Create program dependence graph that describes control
flow and links up variable definitions and uses

Idiscount = executeQuery("select discount from customers where id = " + cid); I 100
discount l

ItotalAmount = orderTotal * (1 — discount); I 100

l

Icredit = executeQuery(”select credit from customers where id = " + cid); I 100

|

A{//////Icredit < totalAmount

—> Control dep.

IprintToConsole(”Only " + credit + " in account!"); |2 [)ata(jeFL
75 | executeUpdate("update customer set credit = " +
(credit — totalAmount) + " where id = " + cid);

8/29/2012 VLDB 2012 19

Data Dependencies

* Create program dependence graph that describes control
flow and links up variable definitions and uses

Idiscount = executeQuery("select discount from customers where id = " + cid); I 100
discount l
ItotalAmount = orderTotal * (1 — discount); [100
l totalAmount
Icredit = executeQuery(”select credit from customers where id = " + cid); I 100

credit l,

credit credit A{////,/{ credit < totalAmount

—> Control dep.

IprintToConsole(”Only " + credit + " in account!"); |2 [)ata(jeFL
75 | executeUpdate("update customer set credit = " +
(credit — totalAmount) + " where id = " + cid);

8/29/2012 VLDB 2012 20

Linear Program Formulation

Minimize: E € " We, -
Solution
e; € edges

n; =0 -> APP
n; =1-> DB

Subject to: e, =1 iff n;# n , ,
Represented using Pyxil
where e; connects (PYXis Intermediate
n,- and n/-, and 0 I_anguage)
otherwise

z n; - wy, < budget

n; € nodes

8/29/2012 VLDB 2012 21

Pyxil Example

:D: discount = executeQuery("”select discount from customers
where id = " + cid);

:D: totalAmount = orderTotal * (1 — discount);
:D: credit = executeQuery("select credit from customers
where id = " + cid);

if (:D: credit < totalAmount)
:A: printToConsole("Only " + credit + " in account!”);

else
:D: executeUpdate("update customer set credit = " +
(credit — totalAmount) +
" where id = " + cid);

8/29/2012 VLDB 2012 22

Pyxil Compilation & Runtime

8/29/2012 VLDB 2012

Pyxil Compiler and Runtime

* Compiles pyxil program into two Java
programs

— To be executed by the Pyxis runtimes on the
app and DB server

* Pyxis runtime is simply a Java program
running on a standard JVM on the two
servers

8/29/2012 VLDB 2012 24

Pyxil Compilation

e Two Issues:

— Control transfer implementation

— Heap Synchronization

8/29/2012 VLDB 2012 25

Control Transfer and Heap Sync

:D: discount = executeQuery("”select discount from customers
where id = " + cid);

:D: totalAmount = orderTotal * (1 — discount);
DB| :D: credit = executeQuery("select credit from customers
where id = " + cid);

if (:D: credit < totalAmount)

Apd :A: printToConsole("Only " + credit + " in account!”); |
else
:D: executeUpdate("update customer set credit = " +
DB (credit — totalAmount) +

n

where id = " + cid);

8/29/2012 VLDB 2012 26

Control Transfer and Heap Sync

Entry — — — — 1 discount = executeQuery("select discount from customers
cid, orderTotal where id = " + cid);

totalAmount = orderTotal * (1 — discount);

credit = executeQuery("select credit from customers

where id = " + cid);
if (credit < totalAmount)
credit o —— |
— -
printToConsole("Only " + credit + | F
" in account!"”); \l,
I executeUpdate("update customer set credit = " +
¢, (credit — totalAmount) + " where id = " + cid);
0[_ Monitor

I
el

App Server DB Server

8/29/2012 VLDB 2012 27

Experiments

8/29/2012 VLDB 2012

Experiment Setup

* TPC-C Java implementation
— 20 terminals issuing new order transactions
—0.2ms RTT between app and DB servers
— DB server has 16 cores total

— Compared against two implementations:
* JDBC: everything on app server except for JDBC stmts

* Manual: custom “store procedurized”
implementation where everything is on the DB server

8/29/2012 VLDB 2012 29

All Cores Available

== DBC
Manual ——
“=Pyxis

Pyxis generated implementation:
3x latency reduction
1.7x thruput increase

Average Latency (ms)

5

100 300 500 700 900 1100 1300
Average Thruput (xact/ s)

VLDB 2012 30

8/29/2012

Limited Cores Available

35

<#=)DBC

Manual

“®=Pyxis

Pyxis automatically reduces to

Average Latency (ms)

JDBC when resources are
limited

10

5
100

8/29/2012

400 500
Average Thruput (xact/ s)

VLDB 2012

200 300

600

700

31

Dynamic Switching

N
S

(O8]
1

w
)

N
(O}

most efficient implementation
based on current server load

Average Latency (ms)

“®=Pyxis

10 All cores available > Manual

N%: percent of transactions
served using JDBC partition

Reduced CPU resources

0 50 100 150 200 250 300 350 400 450 500
Time (s)

8/29/2012 VLDB 2012 32

Pyxis

Ease DB application development

Fully automatic code partitioning using
application and server characteristics

Adaptive optimization based on server load

db.csail.mit.edu/pyxis

8/29/2012 VLDB 2012 33

