
Towards Traceability across Sovereign, Distributed RFID Databases

Rakesh Agrawal† Alvin Cheung‡ Karin Kailing‡ Stefan Schönauer‡

†Microsoft Search Labs ‡IBM Almaden Research Center

1065 La Avenida 650 Harry Road

Mountain View, CA San Jose, CA

rakesh.agrawal@microsoft.com {alvin, kkailin, sschoena}@us.ibm.com

Abstract

Tracking and tracing individual items is a new and

emerging trend in many industries. Driven by matur-

ing technologies such as Radio-Frequency Identification

(RFID) and upcoming standards such as the Electronic

Product Code (EPC), a rapidly increasing number of enter-

prises are collecting vast amounts of tracking data. To en-

able traceability over the entire life-cycle of items data has

to be shared across independent and possibly competing en-

terprises. The need to simultaneously compete and cooper-

ate requires a traceability system design that allows compa-

nies to share their traceability data while maintaining com-

plete sovereignty over what is shared and with whom.

Based on an extensive study of traceability applications,

we introduce the formal concept of traceability networks

and highlight the technical challenges involved in shar-

ing data in such a network. To address these challenges,

we present an innovative combination of query process-

ing techniques from P2P networks and distributed as well

as parallel databases with confidentiality enforcement tech-

niques.

Keywords: traceability, RFID, query processing, data

sovereignty, distributed databases

1 Introduction

Tracking and tracing individual objects throughout their

lifetime is key to many applications, such as supply chain

management, counterfeit detection, or targeted product re-

call. There are two main enablers for such tracking today:

unique identification of objects, and automated recording

of object movements. For example, the Electronic Product

Code (EPC) [13] provides a standard to uniquely identify

individual objects globally. Maturing technologies such as

Radio-Frequency Identification (RFID) and new standards

such as RuBee [25] allow automated recording of informa-

tion about movement of objects.

The pharmaceutical industry provides a good example

for the importance of accurate and efficient tracking and

tracing of individual objects. The World Health Organiza-

tion estimates that as much as 10% of the half trillion dollar

pharmaceutical market is counterfeit [11]. To address this

issue some states in the USA have introduced pedigree laws

[8, 16]. These laws require that the complete history of a

drug including its movement throughout the supply chain is

recorded and verifiable at any point in time. This data can

also be used to do timely and targeted recalls of defective

drug batches instead of indiscriminate recalls of everything

on the market as done today.

The required level of object traceability can only be

achieved if all participants in the production and distribution

process share object-related information. To enable end-to-

end traceability, (possibly competing) enterprises have to

cooperate. However, object movement and related data are

valuable business information which companies are reluc-

tant to share freely. Thus, any traceability data sharing sys-

tem will have to grant enterprises the ability to define and

enforce a policy that specifies the data to be shared, with

whom and under what circumstances.

Reconstructing the trace of an object is complicated by

the fact that objects may get assembled into other objects

or may be packed into or unpacked from a container. Some

RFID readers may record the appearance of only the outer-

most object (e.g. a crate) but may not read the tags of the

contained objects (e.g. smaller boxes inside the crate). Thus

information about associations has to be taken into account

when constructing the complete history of an object.

Finally, the scalability of the data management system is

a crucial factor. The volume of data generated as a conse-

quence of having RFID-tagged objects is enormous. For ex-

ample, a major electronics manufacturer estimates that the

RFID implementations at three of its manufacturing plants

alone will generate between 1 to 5 Terabytes of data per day

[17]. In addition, the number of organizations that adopt

RFID technology to enable traceability is growing rapidly.

The large amount of data and the strong confidentiality



concerns prohibit the use of centralized indexing or query-

ing services and demand new approaches to the problem of

data sharing and query processing in distributed environ-

ments. In this paper, we take the first step towards such

a system. We will describe a system design for data man-

agement in traceability networks, geared towards efficiently

and effectively supporting traceability applications while

maintaining the sovereignty of each participant over its data.

Specifically, we address the following challenges: unify-

ing traceability functionality to simplify application devel-

opment, balancing benefits and risks of sharing traceability

data, and providing a scalable system design to cope with

large-scale RFID deployments.

We assume in our work that traceability data, such as

RFID readings, is already captured, cleansed, and stored in

one or more databases. There is rich literature on these top-

ics (e.g. [12, 26]); we build upon this body of prior work.

We also do not discuss issues related to time synchroniza-

tion among different systems, which has been studied in

sensor networks (e.g. [35]) as well as in ad-hoc networks

(e.g. [32]).

The rest of this paper is organized as follows. Section 2

reviews related work on RFID data management. Section

3 gives a definition of traceability networks and introduces

a conceptual and logical data model for traceability appli-

cations. Section 4 describes a new system architecture for

traceability query processing, which is discussed and eval-

uated in Section 5. Section 6 concludes the paper.

2 Related Work

Traceability data management touches many active re-

search areas. In this section, we give a brief overview of re-

search and industry approaches that address different parts

of the outlined challenges.

2.1 Related Research Areas

Distributed, Federated, and P2P Databases. Dis-

tributed [29] and federated [33] database systems approach

query processing across multiple sites by leveraging global

knowledge about the data distribution. P2P content-sharing

networks [4, 19] either flood queries or use globally avail-

able information about data distribution (e.g. in the form of

distributed hash-tables [34]) to route queries. In traceability

networks, data distribution, i.e. movement of objects be-

tween companies, is confidential information and not to be

shared globally.

Confidentiality Enforcement. Increasing legal require-

ments to keep personally identifiable information private in-

spired the development of policy-based, privacy-preserving

databases [20, 2]. Similarly, confidentiality requirements

can be expressed as a policy and technologies such as Hip-

pocratic Database Active Enforcement [28] can ensure that

based on the query issuer and the purpose of a query, infor-

mation is only revealed in accordance with the confidential-

ity policy.

Moving Object Databases. Querying large sets of mov-

ing objects is a well-studied research topic in the context of

spatio-temporal databases [23]. Moving object databases

were mostly designed for application scenarios with a de-

fined set of moving objects (e.g. all taxis) whose location

is recorded continuously. In contrast, supply chains mon-

itor a constantly changing set of objects whose location is

only recorded at the few places at which RFID readers are

installed.

RFID Data Management. An RFID cube is introduced

in [21] to support warehousing and analysis of massive

RFID data sets. Oracle presented a new bitmap data type

for Oracle DBMS to support RFID-based item tracking ap-

plications in [24]. Both approaches assume that RFID data

is stored within a single data repository. Apart from this

work, academic research has mostly focused on privacy and

security issues surrounding RFID technology. An overview

can be found in [5]. However, confidentiality of RFID data

once it is read and stored has so far not been addressed.

2.2 Industry Status

Despite all the work in academic research there is cur-

rently no industry solution that fully supports tracking of

items across independent organizations.

In a 2004 paper, SAP presented an overview of their

existing RFID infrastructure pointing out that a distributed

infrastructure that supports sharing and synchronization of

data across multiple nodes is still an open issue [7]. In 2005,

Siemens described their middleware for RFID data manage-

ment [36]. Their data model uses relations to store how long

an object stayed at a certain location and how long an ob-

ject was associated with another object. This would require

that independent enterprises update each other’s data which

clearly violates the data sovereignty requirement.

Lacking a compelling solution, large retail companies

have started to build traceability warehouses. However, as

competing retailers are not wiling to store their data in a

shared repository, suppliers are forced to continuously up-

load their respective RFID data to the warehouse of ev-

ery retailer they deliver to. As the amount of RFID data

increases, the total amount of data that needs to be pub-

lished may put serious constraints on a central warehouse

approach.

Standardization efforts by industry consortia such as

EPCglobal (formerly Auto-ID Center) [13] have promoted

the adoption of RFID technology. EPCglobal has proposed

an architecture for a network of RFID databases where each



database provides a standardized query interface [14, 15, 9].

To enable sharing of RFID data across organizations, cen-

tral registries are envisioned that keep track of each object

movement between organizations. At this point it is un-

clear how to realize these central registries in a way that

allows companies to enforce their confidentiality require-

ments. While the EPCglobal model supports storing and

retrieving of traceability data it does not provide support for

cross-organizational traceability functionalities such as re-

cursion, aggregation, and joins across databases.

3 Traceability Networks

As neither research nor industry have sofar formalized

the concept, we introduce the notion of traceability net-

works. The definitions outlined in this section are based

on an in-depth study of a number of different traceability

applications including supply chain optimization, pedigree

generation, product recall, patient surveillance, and cargo

tracing.

3.1 Definitions

We define traceability as the ability to track the current

and all previously recorded states of an object. The state of

an object changes over time and includes its spatial location,

association with other objects, and other properties such as

temperature.

We call locations that are equipped with RFID readers

sensing locations (e.g. conveyor belt #1, dock door #2).

Each location belongs exclusively to one organization (e.g.

manufacturer, distributor, hospital).

An event is the recording of the state of an object at a

sensing location at a certain time.

Recording the spatial location of objects establishes an

object movement graph. The nodes are locations and a

directed edge e(l1, l2) between locations l1 and l2 labeled

{o1, ..., on} denotes that objects o1, ..., on moved from lo-

cation l1 to location l2. Figure 1 shows an example of an

object movement graph. Dotted lines indicate object move-

ment, and dotted smaller circles denote sensing locations.

If the locations involved in building a complete object

movement graph are distributed across multiple organiza-

tions, only a subgraph of the object movement graph is

available at each organization. The subgraph associated

with organization X contains only locations that belong to

X .

Let Org be a set of organizations, Loc the set of all lo-

cations belonging to any organization in Org, Obj the set

of all objects sensed at any location in Loc and OMG the

object movement graph associated with Loc and Obj.

A traceability network is a network where the nodes are

organizations in Org, and an edge e(org1, org2) between

l1

l2

l3

l4

l5

l6

l7

l8l9

{o1}
{o1}{o1}

{o1}

{o1}{o2}

{o2}

{o2}

l10

l12

{o1}

{o1}

Object Movement Graph

Traceability Network

{o1}
{o
1 ,o

2 }

{o2}

{o1}

Figure 1. Example of an Object Movement
Graph and a Traceability Network

two organizations org1 and org2 denotes that there is at

least one edge e(loci, locj) in the associated object move-

ment graph OMG with loci, locj belonging to org1, org2

respectively. e(org1, org2) is labeled with the union of the

labels of all such edges e(loci, locj).
Figure 1 shows an example of a traceability network.

Solid larger circles denote organizations, and solid lines de-

note movement of objects between organizations.

The core of such a traceability network is the data stored

at each node. In the remainder of this section we intro-

duce concepts necessary for participants of a traceability

network to share their data. We introduce a conceptual

data model for traceability, we show how this model can be

transformed into a logical data model, and finally demon-

strate how traceability queries can be expressed in the de-

rived logical model.

3.2 A Conceptual Data Model for Trace-
ability

A common conceptual model for traceability data pro-

vides participants of a traceability network with the ability

to specify queries across the entire network. It allows the

formulation of a query without knowledge about how the

data is stored at each organization, where it is located, and

how a query is executed. We use ER constructs [10] to de-

scribe the model.

Figure 2 shows our basic traceability model. We rep-

resent the essential building blocks of the object move-

ment graph and the traceability network as entity types

Object, Location, and Organization. The relationship

type BelongsTo associates a location with its organiza-



Location

IDID

Object

ID

Organization
111

C
h
il

d
1

temporal:

Assembled

temporal: Observed

te
m

p
o

ra
l:

D
is

as
se

m
b

le
d

P
ar

en
t

Child

Parent

1

Belongs to

Figure 2. ER Diagram of the Basic Model

tion. To represent events, we use the relationship types

Observed, Assembled, and Disassembled.

Observed. The relationship Observed captures that an

object was seen at a certain location at a certain time. Thus,

we have a ternary relationship between object, location,

and a timestamp. For readability we introduce the notation

‘temporal:Observed’ in the ER diagram to denote that each

relationship instance is associated with a timestamp [18].

Objects can be associated with each other such that one

object is the parent of another object. Examples of such

hierarchical associations are packing (e.g. smaller boxes

placed inside a crate) and product assembly (e.g. an engine

block used in a car). We use the term assembled to denote

a hierarchical association.

Assembled. The relationship Assembled captures that

two objects start a parent-child-relationship at a certain

time.

Disassembled. The relationship Disassembled cap-

tures that two objects end a parent-child-relationship at a

certain time.1

The relationship type Observed implicitly represents the

edges of an object movement graph, thereby mitigating the

need for an organization to know about another’s locations.

This relationship type, together with the relationship type

BelongsTo, similarly represents the edges of a traceability

network. This approach necessitates a join to reconstruct

the edges, but it preserves confidentiality.

The basic model captures common requirements of

traceability applications (i.e. tracking object movement and

recording associations). However, some organizations or

traceability applications may need to capture additional in-

formation. To satisfy such needs, we extend the basic model

with the notion of properties (name-value pairs). Figure 3

shows the ER diagram for the extended model. The dotted

lines indicate aggregation of a relationship [31].

1We assume that assembly or disassembly events cannot be generated

without observing the involved objects, i.e any assembly or disassembly

event is always preceded or followed by an observation event. In this case,

the location where an assembly or disassembly takes place can be com-

puted by joining the observation event with the ”closest” timestamp. If

assembly or disassembly does not require observation, the relationships

Assembled and Disassembled can be extended to a ternary temporal

relationship between objects and a location.

Location

Name

IDID

Object

ID

OrganizationProperty

B
el

o
n

g
s 

to

1

Value

Value

Value

Value

11

C
h
il

d

1

temporal:

Assembled

temporal: Observed

te
m

p
o

ra
l:

D
is

as
se

m
b

le
d

Value

Value

P
ar

en
t

Child

Parent

1

Figure 3. ER Diagram of the Complete Model

With this extension, properties can be associated with an

organization, a location, or an object (e.g. company name,

location address, production date, respectively). Properties

can also be associated with any of the three relationships

Observed, Assembled, and Disassembled. For example,

when a container is observed, its temperature and humid-

ity values may be recorded as properties of the relationship

Observed.

The extended model allows organizations and applica-

tions to represent proprietary information without imposing

proprietary schemas on other participants.

3.3 A Logical Data Model for Traceability

For our implementation and to illustrate query execution

in a traceability network, we chose to convert the conceptual

model to a relational model. We call this relational model

the global schema and assume that every organization in the

network knows about it. We use a subset of SQL to express

queries over that schema. (We could have chosen a different

logical model, for example an XML-based model similar to

that proposed by EPCglobal [13].)

Figure 4 shows the relational schema generated from our

conceptual model. The attributes parent and child are object

identifiers (oids) and the attribute ts is a timestamp.

This logical model allows organizations to specify a

query without prior knowledge about where and how data is

stored within the network. Physically, the global relations

Observed, ObsPropertySet, Assembled, AsmProper-

tySet, Disassembled, DsmPropertySet are partitioned

horizontally such that each partition belongs exclusively to

one organization.

A query specified against the global schema needs to be

executed against the local schema and data model of each



Property(name)

Organization(gid)

OrgPropertySet(gid, propertyName, value)

Location(lid, parentLid, gid)

LocPropertySet(lid, propertyName, value)

Object(oid)

ObjPropertySet(oid, propertyName, value)

Observed(oid, lid, ts)

ObsPropertySet(oid, lid, ts, propertyName, value)

Assembled(parent, child, ts)

AsmPropertySet(parent, child, ts, propertyName, value)

Disassembled(parent, child, ts)

DsmPropertySet(parent, child, ts, propertyName, value)

Figure 4. Logical Data Model

organization. An organization is free to choose a local re-

lational schema different from ours, or even use a different

data model such as XML. For example, in our experiments

we used a different relational schema to improve the effi-

ciency of local query processing. As we only used a fixed

number of properties, we chose a flat representation that re-

quires fewer joins than the generic global representation (for

details see Section 5). To execute a global query on the local

schema an organization can either provide a mechanism to

rewrite global queries to conform to their schema or provide

a view of their data that fits the global schema.

3.4 Important Traceability Queries

Based on the logical model, we are now able to for-

mulate global traceability queries, i.e. traceability queries

whose result may depend on data from multiple organiza-

tions. In this subsection, we introduce three common trace-

ability query types (pedigree, recall, and bill-of-material)

and briefly talk about other queries.

Pedigree Query. Pedigree queries are used to recon-

struct the complete history of an object. A pedigree query

has the following general form (expressed in relational al-

gebra):

Q1 : πpList(σoid=o(T o S))

where o denotes the left outer join, T is one of the rela-

tions Observed, Assembled, Disassembled, and S is one of

the relations ObsPropertySet, AsmPropertySet, DsmProp-

ertySet respectively, and pList is a (sub)set of attributes of

T o S.

As outlined in Section 3.3, all global relations are parti-

tioned horizontally such that each partition belongs exclu-

sively to one organization. For pedigree queries, the parti-

tions of S and T that fulfill the join condition are always

located at the same organization. Thus, it is sufficient to

execute the query at each organization where the respective

partitions have at least one tuple that matches the selection

criteria. A complete result can be computed by a union of

the individually retrieved results. The key issue is how to

detect all such partitions. We will address this in Section

4 when we describe how query processing is done in our

architecture.

Recall Query. Recall queries are used to detect the cur-

rent location of an object. A recall query has the following

general form:

Q2 : πlid(maxts(σoid=o(Observed)))

A recall query needs to be executed at each organization

where there is an entry with oid = o in the respective parti-

tion of the relation Observed. An overall maximum can be

built on all retrieved results to detect at which location the

object was last seen (because max is distributive).

Bill-of-Material Query. Recursion is needed to express

traceability queries that involve assembly and disassembly

of objects. We use α-extended relational algebra [1] to ex-

press such queries. A bill-of-material (BOM) query asks for

everything that is contained in an object.

Q3 : πchild(σparent=o(α(πparent,child(Assembled)))

where α(πparent,child(Assembled)) computes the transi-

tive closure of Assembled using the attributes parent and

child. Note, that disassembly is not taken into account in

this example. How to execute recursive queries in a dis-

tributed environment is described in Section 4.

Other Queries. In addition to the three outlined query

types, there are a lot of other useful traceability queries.

While the join between event data and event property

data in a pedigree query can be computed locally at each

organization, there are other traceability queries where the

join needs to be computed for data from different organi-

zations. “Which objects have exceeded their maximum al-

lowed storage temperature throughout their lifetime?” is an

example of such a query.

Q4 : πoid(σObjectPropertySet.value<ObsPropertySet.value

(σpropertyName=′maxTemp′(ObjPropertySet)

./oid

σpropertyName=′temperature′(ObsPropertySet)))

In this case, the information about the maximum allowed

storage temperature is only stored at the organization that

created the object. It needs to be joined with observed tem-

perature readings which are spread across all organizations

on the object’s path.

Based on the data model and the traceability query types

presented in this section, the next section discusses query

processing for traceability applications.



4 An Architecture for Traceability Query

Processing

In this section, we introduce an architecture to sup-

port query processing for arbitrary traceability applications.

This architecture combines all query capabilities in a query

engine middleware to support information sharing across

multiple organizations. The fundamental principle of our

approach is to process a query locally to the maximum

extent possible and, if necessary, enhance it using locally

available information before forwarding it to appropriate re-

mote organizations for further processing. Given a global

traceability query, our query engine rewrites it exploiting

local data, locates remote data sources, forwards it to re-

mote query engines, and combines local and remote results.

This process repeats itself at the other nodes allowing each

node to enforce all confidentiality constraints before return-

ing local results. The basic idea is depicted in Figure 5. We

show an approach where the query engine is completely in-

dependent from any central services to locate the necessary

data sources. However, if location services are available the

query engine is able to exploit them.

In our architecture, organizations are peers, running the

same query-engine middleware. A naming service exists

in the network that assigns a unique address to each node

for communication purposes (similar to the DNS in the In-

ternet). In the rest of this section, we describe our query

processing algorithms.

4.1 Overview of Query Processing

In our approach the complete distribution of data across

nodes is not known in advance, instead it is discovered grad-

ually while processing the query. The number of nodes ac-

cessed in order to completely process a query is kept min-

Retailer 2

Retailer 1

Box 1

Box 2

Distributors and

Wholesalers

Boxes 1,2,3

Manufacturer

Query for 

Boxes 1 and 2

Query for 

Box 1

Query for 

Box 2

Query is 

rewritten

Box 3

(other parties)

Boxes 1,3

Figure 5. Query Flow in the Process-and-
forward Approach.

processAndForward(q)

1 //analyze and rewrite query appropriately

2 {qremote,qlocal,qpost} := analyzeAndRewrite(q)

3 //obtain results from appropriate remote nodes

4 if (qremote != null)

5 r := forwardAndCombineResults(qremote)

6 //combine local results with remote results

7 if (qlocal != null)

8 r = r ∪ executeQuery(qlocal, localData)

9 //postprocess combined results

10 if (qpost != null)

11 r = executeQuery(qpost, r)

12 return r

Figure 6. Algorithm processAndForward

imal. To maintain the information about the path an object

took, each organization is required to store two additional

properties for each shipping or receiving event, namely

sentTo and receivedFrom. This information can be gained

by joining traceability data with other enterprise data such

as billing or accounting information. If an organization is

not able to provide the precise data, the number of nodes in

the network that have to be visited increases, in the worst

case all trading partners need to be contacted.

Figure 6 is a pseudo code description of the main steps of

the algorithm that runs within the query engine at each or-

ganization. An incoming query is analyzed and rewritten if

necessary. The details for the procedure analyzeAndRewrite

are given in Figure 8 and discussed below. The rewritten

query is then forwarded to other organizations in the net-

work and the results are united. Section 4.2 describes how

the relevant organizations are detected. The algorithm for

the procedure forwardAndCombineResults is described in

Figure 7. The global query is also translated to a query that

can be executed on the organization’s data. Policy enforce-

ment [28] is used to limit data disclosure. This enforcement

is done by further rewriting the query based on the query is-

suer and the purpose of the query. The rewrite ensures that

only tuples compliant with the policy are retrieved from the

data system. The local result is added to the results retrieved

from the network. If necessary, postprocessing is performed

on the results. We illustrate the details of the query execu-

tion using the example queries given in Section 3.4.

4.2 Query Forwarding

As mentioned in Section 3.4, all that needs to be done

for basic pedigree and recall queries is to execute them at all

relevant organizations and “combine” the results. Relevant

nodes can be detected by analyzing all selection predicates

in a query. If a selection predicate specifies locations or

organizations (e.g. a query asking only for the pedigree at

a specific location) the query only needs to be forwarded to



forwardAndCombineResults(q)

1 //collect information for query routing

2 orgsRelevant := extractOrganizations(q)

3 objsRelevant := extractObjects(q)

4 //forward query to all relevant organizations

5 for each org in orgsRelevant

6 r = r∪ forward(org, q)

7 for each obj in objsRelevant

8 q’ = restrictTo(q,obj)

9 if (obj is known)

10 if (fromOrg(obj) != null)

11 r = r∪ forward(fromOrg(obj), q’)

12 if (toOrg(obj) != null)

13 r = r∪ forward(toOrg(obj), q’)

14 else

15 r = r ∪ flood(q’)

16 return r

Figure 7. Algorithm forwardAndCombineRe-
sults

the corresponding organizations.

The general pedigree query (Q1) does not specify any lo-

cation or organization. However, as the query specifies a list

of relevant object identifiers, relevant organizations need to

be on the paths of these objects. If the objects are known

(i.e., at least one observation event per object exists locally)

they can be forwarded based on information specified by the

properties sentTo and receivedFrom. For unknown objects

the query needs to be flooded to the network. If two ob-

jects o1 and o2 were received from different organizations,

two queries restricted to o1 or o2 respectively are sent out

to the organizations from which o1 and o2 were received.

The pseudo code of procedure forwardAndCombineResults

is given in Figure 7. Note that, although it is not shown

in the pseudo code, our implementation groups objects and

sends out only one query for each relevant organization.

4.3 Query Rewriting: Non-Local Join

Certain queries cannot be executed as-is at every or-

ganization as data needs to be joined across organiza-

tions. There are many general query execution methods

for distributed query processing (see [27] for a survey).

However, these methods are based on the availability of

the knowledge about which data sources need to be ac-

cessed, in order to optimize the query plan. This knowl-

edge is not available in the process-and-forward approach

before starting query execution. A solution is to split

the query such that each resulting query has only local

joins. A postprocessing query is generated that operates

on the results retrieved for the individual queries and pro-

duces the final result. For example, query Q4 is split into

q1 = σpropertyName=maxTemp(ObjPropertySet) and

analyzeAndRewrite(q)

1 qremote := q

2 //handle non-local joins

3 qSet := splitIntoLocalJoinQueries(q)

4 rSet := ∅
5 qfinal := buildFinalQuery(q, qSet)

6 for each qsplit in qSet

7 rSet = rSet ∪ processAndForward(qsplit)

8 return executeQuery(qfinal, rSet)

9 //algorithm terminates

10 //handle recursion

11 for each recursive component p in q

12 rtemp := executeQuery(p, dblocal)

13 addResultsToRemoteQuery(qremote, p, rtemp)

14 //handle aggregate functions

15 for each aggregate function f in q

17 if (f is avg(X))

18 //need count to compute overall average

19 addQueryFragement(qremote, “count(X)”)

20 //determine postprocessing

21 addToPostprocess(qpost, f )

22 //process other aggregate functions

23 //build local query

24 qlocal := mapToLocalSchema(qremote)

25 qlocal = enforcePolicy(qlocal)

26 return {qremote,qlocal,qpost}

Figure 8. Algorithm analyzeAndRewrite

q2 = σpropertyName=temp(ObsPropertySet). A query

qfinal = πoid(σrq1.value<rq2.value(rq1 ./oid rq2)) is built

and executed on the result rq1 and rq2. The pseudo code

for handling non-local joins is given in Figure 8, lines 2-9.

There is a lot of optimization potential for executing non-

local joins. However, this is beyond the scope of this paper.

4.4 Query Rewriting: Aggregate Func-
tions

Queries containing aggregate functions require addi-

tional treatment. For certain aggregates, such as average,

the remote query needs to be extended to retrieve addi-

tional information from the remote sites. For all aggregates

a postprocessing query needs to be created that computes

the overall aggregation based on the individual aggregation

values returned. The pseudo code for handling aggregation

is given in Figure 8, lines 14-22. Distributive aggregate

functions such as summation, algebraic aggregate functions

such as standard deviation and holistic aggregate functions

such as median have to be handled appropriately [22]. We

only show the code for executing the algebraic aggregate

function average as an example.



Observed ObsPropertySet Assembled

oid lid ts … propertyName value parent child ts

C
Y
M cylinder1 l1 t1 sentTo ENM

cylinder2 l1 t1 sentTo ENM

E
N
M

cylinder1 l5 t5 receivedFrom CYM engine1 cylinder1 t10

cylinder2 l5 t5 receivedFrom CYM engine1 cylinder2 t10

cylinder1 l10 t10

cylinder2 l10 t10

engine1 l10 t10

engine1 l15 t15 sentTo CAM

C
A
M

engine1 l20 t20 receivedFrom ENM car1 engine1 t25

engine1 l22 t25

car1 l22 t25

Figure 9. Example Data

4.5 Query Rewriting: Recursion

We handle recursive queries by expanding the recur-

sion locally as much as possible and adding local recur-

sion results to the queries that are forwarded. The pseudo

code for handling recursion is given in Figure 8, lines

10-13. For illustration, we use the data shown in Fig-

ure 9 produced by three organizations, a cylinder manu-

facturer CYM, an engine manufacturer ENM, and a car

manufacturer CAM. An application at CAM is interested

in all parts contained in object car1. The query en-

gine at CAM determines that the query has a recursive

component p = “αAssembled”. Executing this query on

the locally available table αAssembled returns rtemp =
engine1. Based on this information qremote is rewritten

to πchild(σparent=‘car1‘∨parent=‘engine1′(αAssembled)).
The query is forwarded to ENM. At ENM the same pro-

cess takes place and ENM detects that engine1 contains

cylinder1 and cylinder2. The query is forwarded to CYM

where forwarding terminates as the recursion is no longer

expanded.

4.6 Result Routing

To return results in the process-and-forward approach,

two possible solutions exist. One possibility is that each

node directly sends back any local results to the node that

issued the query. In this approach, a node does not know if it

has received all answers to a query, since it has no informa-

tion about how many nodes are supposed to answer. This

could be resolved by informing the query issuer to which

other nodes a query has been forwarded. However, this

results in a large number of additional messages and pro-

cessing overhead at the query origin. It also reveals to the

query issuer which organizations are potentially on the path

of a queried object, even if one of those organizations is not

willing to reveal itself.

A second approach, which we chose for our implemen-

tation, is to propagate the results back along the path the

query took. A node knows that it has complete results, when

all nodes it has contacted have answered; otherwise it has

only partial results. In this approach the path a query took

is only revealed to the extent that can be derived from the

query result.

5 Evaluation

In this section we discuss how the proposed solution ad-

dresses the challenges outlined in Section 1 and give a brief

experimental evaluation.

5.1 Addressing Challenges

Unifying Traceability Functionality Our architecture

provides a global view of traceability networks. We de-

fine a common schema to allow participants in the trace-

ability network to express global queries. However, our

query engine middleware is not dependent on the specific

schema proposed but will work off any common schema

that does not introduce data dependency between organiza-

tions. We described our solution based on the traceability

queries outlined in Section 3.4, but the approach is not lim-

ited to those queries. The outlined principles allow support

for arbitrary SQL and thus, support any traceability appli-

cation. With the ability to execute recursive queries in a

distributed manner, recursive relationships such as product

assembly or container hierarchies are handled naturally.

Balancing Benefit and Risk Our new solution provides

the following benefits. (1) Queries are always executed

against the most recent data as no data needs to be up-

loaded to a central location. (2) Each organization is given

complete sovereignty over all its data including information

about its trading relationships. With technologies such as

Hippocratic Database Active Enforcement [28], confiden-

tiality requirements can be enforced on a query by query

basis. Each incoming query is rewritten based upon pre-

installed data sharing policies. Policies can be installed and

modified without interaction with other parties.

Issues such as security, trust, and reliability need to be

further examined in order to mitigate the risks. These topics

are also addressed in P2P networks and related areas and

some of the results can be directly applied to our solution.

An in-depth discussion is beyond the scope of this paper.

Scalability With the increasing amount of RFID data,

publication of that data to a central location is not practical.

Since only a small fraction of the produced data will actu-

ally be queried, shipping queries instead of data appears to

be far more efficient. In our approach only the text of the

queries and the results are transferred among organizations.

In realistic scenarios, the size of the result sets is typically

only a tiny fraction of the total amount of RFID data stored.

In the next subsection, we investigate the overhead for

query processing incurred by our distributed solution.



5.2 Experiments

To investigate the scalability of our approach, we im-

plemented a prototype system. For comparison purposes,

we also implemented a central warehouse solution and the

EPCglobal architecture, along with a sample traceability

application on top. Throughout this section, we call the

three approaches process-and-forward, central warehouse,

and EPCglobal.

Each architecture was implemented in Java 1.4 as a web-

service using AXIS 1.2 [6] and all communication between

nodes was carried out via webservice calls. For query anal-

ysis and rewriting, the QGM model [30] was used. The

central services in the EPCglobal model as well as the net-

work DNS were implemented using the light-weight Vinci

naming service [3]. Each service was running on a separate

machine. Each party in the network was represented by a

single machine with a Pentium IV processor with 2.4GHz

and 1GB RAM. Each machine was running the same soft-

ware consisting of Linux, a DB2 UDB V8.2 instance and

the respective architecture implementation. The times mea-

sured are wall-clock times and include the latency of the

local area network.

To the best of our knowledge, there is no real RFID data

set publicly available. Therefore, we conducted our experi-

ments on artificially generated data. For this purpose we im-

plemented a reference data generator for RFID traceability

data which is publicly available on the following website:

http://www.almaden.ibm.com/software/projects/iis/rfid.

We developed our data generator based on data charac-

teristics we found in our application scenarios. It generates

observation events, association events and property data for

a given number of objects. The data generator is given a

specific network layout and a set of nodes at which objects

may be created. It creates data for the following schema:

Observed(oid, lid, ts, obsType, temp)

Location(lid, locationName, locationAddress)

ObjectProperties(oid, color, maxTemp, minTemp)

The data is generated as follows. After an object is created,

one of three actions is taken for that object: It is shipped to a

neighboring node, associated with an existing object, or its

path is terminated. The action is randomly chosen and the

probability of shipping an object to a neighbor gradually de-

creases with the length of the object’s path. For the process-

and-forward approach appropriate entries for receivedFrom

and sentTo, and for the EPCglobal approach data entries for

the central registries are created.

To investigate the effects of the different architectures

on query response times, we created data sets of 5 and 10

million objects in a supply chain of length 10. Due to space

limitations we only show the results for the data set with

5 million objects. The results for 10 million objects are

0

500

1000

1500

2000

2500

3000

2 3 4 5 6 7 8 9 10

path length (# of nodes)

a
v
g

. 
e
x
e
c
u

ti
o

n
 t

im
e
 (

m
il
li
 s

e
c
.)

Central Warehouse EPCglobal Process-and-Forward

Figure 10. Average runtime for pedigree

queries.

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6 7 8 9 10

path length (# of nodes)

a
v
g

. 
e
x
e
c
u

ti
o

n
 t

im
e
 (

m
il
li
 s

e
c
.)

Central Warehouse EPCglobal Process-and-Forward

Figure 11. Average runtime for BOM queries.

similar to those with the smaller data set.

We measured the overall runtime for pedigree queries

depending on the length of the path an object took through

the supply chain. Figure 10 shows the average runtime for

100 queries, each asking for all observations of 15 different

objects, starting at one end of the supply chain. The ex-

periments show that, as expected, the response time for the

process-and-forward approach grows with increasing path

length as queries are forwarded and results propagated back

along the path. Since response times are dominated by the

communication cost, the central warehouse approach does

not depend on the path length. The EPCglobal approach is

only slightly affected by it, because after retrieving all rel-

evant nodes from the discovery service, all the remote data

sources can be contacted in parallel. However, the web ser-

vice calls are still initiated sequentially.

Figure 11 shows the results for the same experimen-

tal setup for BOM queries. In this experiment, the depth

of the containment hierarchy was on average one and at



most two. For this experimental setting, the process-and-

forward approach outperforms the EPCglobal approach for

path lengths up to 4. This is due to the fact that for the

EPCglobal model in each recursion step a discovery service

lookup is necessary to determine the remote data sources

for all contained objects retrieved in the previous step. Sub-

sequently, all these data sources need to be queried to find

out which objects are contained in the object identified in

the previous step. This process continuous until no further

contained objects are found. For the experimental setup this

results in an average of 4 sequential web service calls for the

EPCglobal approach. The process-and-forward approach,

on the other hand, computes the contained objects on the

fly while forwarding the query along the path and thus, is

faster than the EPCglobal approach for a path length of up

to 4. Note, that the break even point varies with the depth

of the containment hierarchy.

Our experiments show that the choice of architecture has

noticeable effects on the query response times. The higher

response times for EPCglobal are mostly due to the over-

head incurred by processing multiple web service requests.

Propagating queries and results sequentially leads to wait-

ing times and thereby further increase the overall query re-

sponse time in the process-and-forward approach. Note,

that the load on each node is similar for EPCglobal as well

as process-and-forward approach. In a practical application

of traceability networks, these query performance implica-

tions have to be carefully weighed against data uploading

and data confidentiality requirements.

6 Conclusion

Sharing RFID data across independent organizations is

essential for traceability applications. In this paper, we in-

troduced the formal notion of a traceability network. We

described a generic and extensible conceptual data model

for RFID data, along with a realization of the model in re-

lational schemas. We proposed a new architecture and al-

gorithms for processing traceability queries across organi-

zations. Our architecture and middleware enable rapid de-

velopment of traceability applications on top of it. To the

best of our knowledge this is the first solution to traceabil-

ity in a completely distributed setting. Our approach allows

enterprises to get the full benefit of participating in a trace-

ability network while offering them complete sovereignty to

decide on a query by query basis which data will be shared.

This work can be extended in many directions; we high-

light two.

Hippocratic database technology allows each participant

within the RFID network to exactly define and enforce

which data will be released to which query issuer. How-

ever, a company has no control over what happens to its

data once it is released. Ensuring the privacy and confiden-

tiality of data once it has been disclosed, is an issue not only

in our approach, but in any type of data sharing network. To

reach this goal the confidentiality requirements would have

to be attached to the disclosed data while it travels through

the network.

Another important field of research in this area is data

analytics. Electronic pedigree generation is a first step to-

wards traceability network analysis. However, more sophis-

ticated mining algorithms are necessary to automatically

detect malicious activities in the network such as counter-

feiting. A few of the interesting new mining tasks in this

field are: detecting ‘suspicious’ events in a traceability net-

work; given a ‘problem pattern’, detecting individual items

whose traces resemble that pattern; given a set of problem-

atic items, detecting commonalities among them or even

identifying the source of the problem.

These are only two examples of open research problems

in the area of traceability networks. By providing a new and

more comprehensive approach to traceability data manage-

ment, we hope to inspire more research in this field.

References

[1] R. Agrawal. Alpha: An Extension of Relational Algebra to

Express a Class of Recursive Queries. IEEE Transactions

on Software Engineering, 14(7):879–885, 1988.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic

Databases. In VLDB ’02: Proc. of 28th Int. Conf. on Very

Large Data Bases, pages 143–154, 2002.

[3] R. Agrawal, J. Roberto J. Bayardo, D. Gruhl, and S. Pa-

padimitriou. Vinci: a Service-Oriented Architecture for

Rapid Development of Web Applications. In WWW ’01:

Proc. of the 10th Int. World Wide Web Conference, pages

355–365, 2001.

[4] S. Androutsellis-Theotokis and D. Spinellis. A survey of

peer-to-peer content distribution technologies. ACM Com-

puting Survey, 36(4):335–371, 2004.

[5] G. Avoine. Radio Frequency Identification: Adversary

Model and Attacks on Existing Protocols. Technical Re-

port LASEC-REPORT-2005-001, Swiss Federal Institute of

Technology in Lausanne, 2005.

[6] Apache Axis. http://ws.apache.org/axis/.

[7] C. Bornhövd, T. Lin, S. Haller, and J. Schaper. Integrating

Automatic Data Acquisition with Business Processes - Ex-

periences with SAP’s Auto-ID Infrastructure. In VLDB ’04:

Proc. of the 30th Int. Conf. on Very Large Data Bases, pages

1182–1188, 2004.



[8] California Business and Professions Code Sections

4163. http://www.leginfo.ca.gov/cgi-bin/

calawquery?codesection=bpc&codebody=

4163&hits=20.

[9] S. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and

S. Sarma. Managing RFID Data (Extended Abstract). In

VLDB ’04: Proc. of the 30th Int. Conf. on Very Large Data

Bases, pages 1189–1195, 2004.

[10] P. P.-S. Chen. The Entity-Relationship Model Toward a

Unified View of Data. ACM Trans. Database Syst., 1(1):9–

36, 1976.

[11] T. Datz. Drug Busters. CSO Magazine, 2005.

[12] A. Deshpande, C. Guestrin, and S. R. Madden. Using Prob-

abilistic Models for Data Management in Acquisitional En-

vironments. In CIDR ’05: 2nd Biennial Conf. on Innovative

Data Systems Research, pages 317–328, 2005.

[13] EPCglobal. http://www.epcglobalinc.org/.

[14] EPCglobal. The EPCglobal Architecture Framework. Final

Version of 1 July, 2005.

[15] EPCglobal. EPC Information Sevices (EPCIS) Version 1.0

Specification. Working Draft Version of 6 March, 2006.

[16] Florida Statutes, Section 499.0121. http:

//election.dos.state.fl.us/laws/04laws/

ch_2004-328.pdf.

[17] Forrester Research. RFID: The Complete Guide. Forrester

Collection, 2005.

[18] M. Fowler. Analysis Patterns: Reusable Object Models. Ad-

dison Wesley, 1997.

[19] F. Giunchiglia and I. Zaihrayeu. Implementing Database Co-

ordination in P2P Networks. Technical Report DIT-03-035,

University of Trento, Department of Information and Com-

munication Technology, 2003.

[20] S. Godik and T. Moses. eXtensible Access Control Markup

Language (XACML) Version 1.0, OASIS Standard, 18

February, 2003.

[21] H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing

and Analyzing Massive RFID Data Sets. In ICDE ’06: Proc.

of the 22nd Int. Conf. on Data Engineering, page 83, 2006.

[22] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Re-

ichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data Cube:

A Relational Aggregation Operator Generalizing Group-By,

Cross-Tab, and Sub-Totals. Data Mining and Knowledge

Discovery, 1(1), 1997.

[23] R. H. Güting and M. Schneider. Moving Objects Databases.

Morgan Kaufmann Publishers, 2005.

[24] Y. Hu, S. Sundara, T. Chorma, and J. Srinivasan. Support-

ing RFID-based Item Tracking Applications in ORACLE

DBMS Using a Bitmap Datatype. In VLDB ’05: Proc. of

the 31st Int. Conf. on Very Large Data Bases, 2005.

[25] IEEE Begins Wireless, Long-Wavelength Stan-

dard for Healthcare, Retail and Livestock Visibil-

ity Networks. http://standards.ieee.org/

announcements/pr_p19021Rubee.html.

[26] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and

J. Widom. A Pipelined Framework for Online Cleaning of

Sensor Data Streams. Technical Report UCB/CSD-5-1413,

University of California Berkeley, 2005.

[27] D. Kossmann. The State of the Art in Distributed Query

Processing. ACM Comput. Surv., 32(4):422–469, 2000.

[28] K. LeFevre, R. Agrawal, Ercegovac, R. Ramakrishnan,

Y. Xu, and D. DeWitt. Limiting Disclosure in Hippocratic

Databases. In VLDB ’04: Proc. of the 30th Int. Conf. on Very

Large Data Bases, pages 108–119, 2004.

[29] T. Özsu and P. Valduriez. Principles of distributed database

sytems. Prentice Hall, 2 edition, 1999.

[30] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensi-

ble/Rulebased Query Rewrite Optimization in Starburst. In

ACM SIGMOD Conference on Management of Data, pages

39–48, 1992.

[31] R. Ramakrishnan and J. Gehrke. Database Management

Systems. McGraw-Hill, 3 edition, 2003.

[32] K. Römer. Time Synchronization in Ad Hoc Networks. In

MobiHoc ’01, pages 173–182, 2001.

[33] A. P. Sheth and J. A. Larson. Federated database systems

for managing distributed, heterogeneous, and autonomous

databases. ACM Computing Surveys, 22(3):183–236, 1990.

[34] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proc. of the ACM SIGCOMM

2001 Conference, pages 149–160, 2001.

[35] Sundararaman, B. and Buy, U. and Kshemkalyani, D. Clock

Synchronization for Wireless Sensor Networks: A Survey.

Ad-hoc Networks, 3(3), 2005.

[36] F. Wang and P. Liu. Temporal Management of RFID Data.

In VLDB ’05: Proc. of the 31st Int. Conf. on Very Large Data

Bases, pages 1128 – 1139, 2005.


