Demo: Automatically Generating Interesting Events with LifedJoin

Alvin Cheung
MIT CSAIL, Cambridge, MA

akcheung@csail.mit.edu

Abstract

This demo will showcase LifeJoin, a system that collects
raw sensor data from phones and laptop computers to gen-
erate interesting events. Given the raw sensor data, LifeJoin
implements a number of activity recognition algorithms to
generate higher-level events. Furthermore, it uses supervised
learning techniques to learn from users’ feedback to generate
only events of interest. In this demo, the audience will get to
interact with the LifeJoin system and be able to examine the
internals of LifeJoin.

Categories and Subject Descriptors:

H.4 [Information Systems Applications]: Miscellaneous
General Terms: Human Factors, Performance
Keywords: Sensor Data, Supervised Learning

1 Introduction

Modern phones and laptop computers have an abundance
of sensors. In this demo, we will show a system called Life-
Join, which uses the sensing and recording capabilities on
phones and laptop computers to automatically create and
generate events regarding users’ activities and encounters.
LifeJoin helps users discover interesting facts that they share
in common with their friends by joining event streams from
multiple users. LifeJoin can then report such events to so-
cial media websites like Facebook and Twitter. For instance,
events such as “Jogged along the Charles River from 4-5 with
@smadden” can be generated by collecting Bluetooth prox-
imity data, joining the GPS location data from phones, and
resolving GPS locations to textual names on the map.

In addition to real-time status generation, automatically
generating events from data collected from phones has many
uses. For instance, when a tourist arrives at a new city, an ap-
plication can mine the previously generated location events
that were marked as interesting by her friends to suggest
tourist attractions and restaurant venues.

To summarize, the key features of LifeJoin are:

1. It employs low-overhead data collection and transmis-
sion techniques to avoid consuming excess resources (e.g.,
energy and bandwidth) on user’s devices. It automatically
adjusts the types of data collected and the collection fre-
quency based on the amount of remaining battery on the de-
vice and the users’ interests.

2. Itincludes a number of activity recognition algorithms
(e.g., walking, running, etc) that use the sensors on smart-
phones, such as accelerometer, gyroscope, and GPS to gen-
erate events. We are developing libraries to collect applica-
tion statuses, and adapt activity recognition algorithms from
the literature [1]] for this purpose.

3. It implements algorithms to infer further events given
the raw data collected from the devices. This event genera-
tion process is nontrivial. For example, consider inferring the
Copyright is held by the author/owner(s).

SenSys’11, November 1-4, 2011, Seattle, WA, USA.
ACM 978-1-4503-0718-5/11/11

Arvind Thiagarajan
MIT CSAIL, Cambridge, MA

arvindt@csail.mit.edu

Samuel Madden
MIT CSAIL, Cambridge, MA

madden@csail.mit.edu

“likes” & 49
[Preference learner)‘—E*
Interesting
events

Event filter

Inferred

events
_ User Event Aggregator
\

[pata | - —
B | Collection! Location Activity

| Module ! Resolver Recognizer

777777 Events generator
T T

Raw
Crawled data
sensor N
from websites
data

LifeJoin
frontend

- \
| Data |
ICollection
\ Module

Events storage and user cache

LifeJoin backend
Figure 1. LifeJoin System Diagram
fact that “Arvind and his friend Alvin went to the Red Sox
game at Fenway Park tonight.” Assume we have collected
GPS and Bluetooth data from Arvind’s and Alvin’s phones,
to create this event LifeJoin would need to infer that:
e Arvind and Alvin were at Fenway Park, as detected
from the GPS traces and a reverse-geocoding service.
e Knowing that there was a Red Sox game at Fenway
Park tonight by crawling local events online.
e The two are friends from their friends’ networks.
e They went to the event together, as inferred by Blue-
tooth proximity data.
All of the facts above require different algorithms to deduce,
many of which are open research questions [2]. LifeJoin im-
plements a number of these algorithms for event detection
from the raw data collected on users’ devices and websites.
4. Users typically are interested in only a subset of
the generated events, for instance events about their close
friends, or specific type of events such as exercises. Ask-
ing users to indicate all their interests is too cumbersome.
Instead, LifeJoin implements a supervised learning algo-
rithm to learn users’ interests given their feedback (e.g., from
clicks of the “like” button). Furthermore, the results from the
learning algorithm are used to guide both data collection and
event generation in order reduce device battery consumption.
For instance, if no users are interested in reading the where-
abouts of another user, LifeJoin will reduce the frequency or
simply not collect any location data from that user’s phone.
Likewise, raw data from the devices are combined to gener-
ate only events that LifeJoin believes are of interest to users.
In the following, we first describe the components of Life-
Join, followed by several demonstration scenarios.

2 System Components

Fig. [T shows the different components in LifeJoin, con-
sisting of a low-overhead data collection component, a back-
end engine that includes the event generators and preference
learner, and the frontend web application. We briefly de-
scribe each of these below.

Data Collection Module: To start using the LifeJoin ser-
vice, the user installs the data collection application on their

Figure 2. Android data collection configuration interface.

devices, such as phones and computers. The application col-
lects different types of data that are available on the devices
such as GPS geographical location data, accelerometer and
gyro sensor readings, output from activity recognition algo-
rithms, Bluetooth proximity data, web contents the user has
accessed, etc. To protect privacy, the user can change the
type of data and frequency of data collection on the mod-
ule’s interface. The collected data are summarized and sent
to the LifeJoin backend. A screenshot of our interface for
configuring data collection is shown in Figure

Event Generators: The LifeJoin event generators process
the raw data from the devices by integrating them with
other available data. Each event generator maintains a cache
for each user that stores the most recent events received
(e.g., events received within the past week), and periodically
crawls specific websites to detect local events. Our proto-
type currently includes a number of event generators. The
location resolver takes in GPS readings collected from the
devices and translate them into location events about known
public locations. The activity recognizer uses accelerome-
ter readings and location data to detect users’ activity (such
as walking, running, etc). Finally, the user aggregator groups
together events about individual users that are common (e.g.,
events about two users who performed the task at the ap-
proximately the same time), and generates events of the form
“<user name(s)> <action name(s)> at <location(s)> from
<time> to <time>,” which are then passed to the event
filter. The event filter uses the results from the preference
learner to decide which events the frontend should display.

Frontend: The frontend is the interface that LifeJoin users
interact with. It is a mixed-initiative interface that displays a
list of events about the user and her friends, along with a “like
/ dislike” option below each event for the user to express her
preferences. The preferences are sent back to the preference
learner to drive data and event generation.

To protect the user’s privacy, the frontend allows the user
to control when and what events should be generated from
the raw data collected on her devices, remove previously col-
lected data, and manage which of her friends can view the
generated events published by LifeJoin.

Preference Learner: The preference learner receives the
preferences from the frontend. Since the user does not ex-
plicitly inform the system about why she likes or dislikes
a particular event, the learner needs to infer that informa-
tion. For example, a user “like” the event “Sam went jogging
at MIT from 2PM-3PM today” because she is interested in
events about Sam, events about Sam jogging, or simply be-
cause she has not read events about Sam before. In order to
infer that information, the learner first generates all possible
pairs of entities for each event displayed. For instance, in the
example event above the entities generated will be {Sam},

[J Recent News About You and Your Friends from LifeJoin

Alvin Cheung was in office from 8:30AM to 10:30AM today. LifeJoin Controls

15 minutes ago * Append / post as status - Lke - Dislie - Remove Remove previously collected data

Arvind T and Eugene Wu went jogging at MIT fram 2PM ta 2:30PM this afternoon. &0, Setwho can view news about you

30 minutes ago * Append / past s status - Lke - Disiie - Remove [Control how LifeToin collects data on your

Evan Jones and Carlo Curino went to the Red Sox game at Fenway Park last night. eviees

35 minutes ago - Append / post as status - Like - Dislike - Remove

Sam Madden was in Berkeley, CA from Monday to Wednesday this week.
2 hours ago - Append post as status - Like - Dislike - Remave

Figure 3. LifeJoin Frontend Screenshot
{jogging}, {MIT}, {Sam, jogging}, {Sam, MIT}, {Sam,
2PM-3PM}, etc. We imagine an event is interesting to a
user either because she likes to see events about an entity
(e.g., events about jogging), or it is an usual event for the
user (e.g., a friend visiting an exotic place). In that respect,
for each pair of user u and entity e, the learner maintains two
scores: an “interest” score and a “novelty” score, where:

[likes(u,e) — dislikes(u,e)]/events(u, e)
1 — [events(u, e)/events(u, *)]

interest(u,e) =
novelty(u,e) =

here likes(u,e) returns the number of events containing e
for which u has clicked “like” (vice versa for dislikes), and
events(u, e) returns the number of events that were displayed
to user u containing entity e. Finally, events(u,) returns the
number of events that were ever displayed to user u. The
score for an entity is a weighted sum of the interest and nov-
elty scores, and the overall score for an event is the normal-
ized sum of all the entity scores embedded in the event.

These scores are updated as more events are displayed to
the user. The learner periodically ranks the scores for all
entities and produces a ranked list, which is used to drive
the operations of the other system components. For instance,
the event generators use the list to decide which events to
generate given the raw data. And, if the event filter receives
too many events from the event generators at a given time,
then it uses the ranked list to determine which events to send
to the frontend and their relative ordering.

3 Demonstration Scenario

We will release a prototype version of the LifeJoin sys-
tem before the conference and invite users to install them on
their devices for data collection. Our demo team will run this
application for several weeks as well. During the demo, we
will replay the data that was collected by our demo team and
show how the LifeJoin interface evolved during this period
on two screens:

e One of the screens will show the LifeJoin frontend in-
terface (Fig.[3). The audience will be able to view the
incoming events as published by LifeJoin on the fron-
tend, and be able to provide feedback to the system to
see how their feedback changes the event generators.

e The other screen will look into the LifeJoin backend by
showing the events being collected and streamed into
the system from the devices, the event generators com-
bining the collected data to create events, and the pref-
erence learner periodically producing the ranked list of
entities. It will also show how the system makes use of
the ranked list for optimization.

4 References

[1] S.Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava.
Using mobile phones to determine transportation modes. ACM Trans-
actions on Sensor Networks, 6(2), February 2010.

[2] A. Thiagarajan, J. P. Biagioni, T. Gerlich, and J. Eriksson. Cooperative
transit tracking using gps-enabled smart-phones. In Sensys, 2010.

	Introduction
	System Components
	Demonstration Scenario
	References

