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Abstract

As technology continues to scale beyond 100nm, there is
a significant increase in performance uncertainty of CMOS
logic due to process and environmental variations. Tra-
ditional circuit optimization methods assuming determin-
istic gate delays produce a flat “wall” of equally critical
paths, resulting in variation-sensitive designs. This paper
describes a new method for sizing of digital circuits, with
uncertain gate delays, to minimize their performance vari-
ation leading to a higher parametric yield. The method is
based on adding margins on each gate delay to account
for variations and using a new “soft maximum” function
to combine path delays at converging nodes. Using ana-
lytic models to predict the means and standard deviations
of gate delays as posynomial functions of the device sizes,
we create a simple, computationally efficient heuristic for
uncertainty-aware sizing of digital circuits via Geometric
Programming. Monte-Carlo simulations on custom 32bit
adders and ISCAS’85 benchmarks show that about 10% to
20% delay reduction over deterministic sizing methods can
be achieved, without any additional cost in area.

1. Introduction

Extensive research has been done on automatic circuit
sizing for minimizing delay under an area or power con-
straint, using both model based [2] and simulation based [1]
approaches. While these approaches have been very suc-
cessful, they assume deterministic gate delay models and
invariably result in large number of equally critical paths
that form a wall in the path delay histogram [13]. As we
scale technology to the sub-100nm feature size, both intrin-
sic device variations and process lithography control issues
are increasing the statistical variability of each gate in a cir-
cuit [4]. This delay variation causes the expected delay for
a circuit, which is the expected value of the maximum of all
the path delays, to grow larger as the wall of critical paths
gets taller. Statistical Static Timing Analysis (SSTA) us-
ing Monte Carlo simulations show that such deterministic
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Figure 1. Monte Carlo Analysis on a deterministi-
cally sized 32-bit adder

optimization drives the sizing into an extremely variation
sensitive corner. On the other hand, guard banding – de-
signing the circuit to meet specs in the worst-case corner,
results in an exceedingly pessimistic timing estimate, due
to the inherent assumption of complete correlation among
all the gates. Figure 1 compares the delay of a deterministi-
cally optimized 32 bit adder as estimated by Deterministic
Static Timing Analysis (DSTA) using typical and worst case
models to the delay distribution of the same circuit obtained
after Monte Carlo SSTA.

Clearly, the statistical variability causes a significant er-
ror, about 20%, if we look at the difference between the
estimated deterministic delay and the mean of the expected
delay with statistical variations. The error is even larger
if we want the delay that say 90% of the distribution will
meet. This large error has led a number of researchers
to create statistical timing analyzers, using approaches that
range from Monte Carlo analysis to propagating delay Prob-
ability Distribution Functions (PDFs) through the netlist
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[10, 11, 12]. While these techniques have been successfully
integrated into SSTA, it is less clear how to extend these
techniques to solve the circuit sizing problem. Furthermore,
while they are clearly needed to accurately estimate the tim-
ing of these circuits, it is less clear that this degree of fidelity
is needed to optimize their device sizes.

Our approach is based on the intuition that the circuit siz-
ing problems tend to have large relatively flat minima. The
sizer mostly needs to avoid making bad choices (or hav-
ing variation push the solution into a bad case) rather than
choosing the precisely correct value. As a result we took
a different approach to the problem. We asked what small
changes could we add to the current sizing approach to im-
prove its performance when dealing with circuits with sta-
tistical variation. Our goal was to see how well we could do
by extending current optimization techniques. Following
this approach, the new uncertainty aware sizing algorithm
we present here is an extension of the deterministic method.
We augment the gate delay models using margins related to
the standard deviation. The path delays at converging nodes
are combined using the soft maximum function in order to
correctly capture the statistical behavior of the � � � of a set
of random variables.

The next section provides a quick overview of the sizing
problem, and reviews the solution for deterministic circuits.
These techniques are then extended in

�
3 to provide the op-

timizer some indication of the uncertainty of each gate de-
lay. While the techniques in

�
3 can be used with any delay

model, the models we used for the expected delay and the
sigma of the delay are described in

�
4. These models are

then used to produce the results that are shown in
�
5.

Throughout this paper, bold capital letters, e.g., � , � ,
and � , denote random vectors or variables, while the cor-
responding lower case letters denote their particular real-
izations. We use 	 � � � to denote the expected value of a
random variable � , � � � � to denote its standard deviation,
and � � � � � to denote the � � � percentile point on its proba-
bility distribution curve. For a vector � , the � � � component
is denoted as � � .

2. Circuit Sizing

Assuming the objective is minimizing the circuit delay� ! # ! & '
(i.e., the maximum of the set

�
o of signal arrival

times at the circuit outputs), under constraints on total area
A, the deterministic optimization problem can be formu-
lated as shown below (1) [1].

minimize
� ! # ! & '

subject to � � � � � + � - � ! # ! & ' 0
1 - 1 3 4 6 0
7 9 � : � - = 0 ? A = 0 B B B 0 D B

(1)

Here
1 3 4 6

is a given limit on total circuit area, : is the vec-
tor of transistor sizes (or cell sizes in case of standard cell
design) and

7 9 � : � represent, for each gate
?
, a set of con-

straints on its device sizes, signal slopes, and delay propa-
gation from its inputs to the output.
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Figure 2. Gate delay constraints for problem (1)

For instance, Figure 2 shows a typical gate for which we
can write: � ] ^ _ A � � �� a c e f e g � � � h j � l + � B

(2)

where
� � is the signal arrival time of input � and j � l +

, the
typical gate delay from input � to the output m is a function
of the load capacitance n & ] 4 o , transistor sizes : , channel
length p , supply voltage q o o , threshold voltage q _ r

, oxide
thickness s ] 6 , and mobility 	 t :

j � l + A 7 � n & ] 4 o 0 : 0 p 0 q o o 0 q _ r 0 s ] 6 0 B B B � B
(3)

Rising and falling delays are considered separately. The
complexity of solving this optimization problem depends
on the form of the j � l +

and other constraints. In particular,
if j � l +

is a generalized posynomial [20], this becomes a
geometric program, which can be efficiently solved using
convex optimization techniques.

3. Sizing for Robust Design

In presence of variations each j � l +
is a random

variable with mean 	 � j � l + � given by (3) and the
standard deviation � � j � l + � modeled as a function of

n & ] 4 o 0 : 0 p 0 q o o 0 q _ r 0 � � q _ r � 0 � � 	 t � 0 	 t etc..
The deterministic algorithm only considers 	 � j � l + � and

results in many equally critical paths, which is mainly
responsible for the statistical delay spread. The exact
statistical sizing problem considering detailed distribution
and propagation of each gate delay is computationally in-
tractable. We want to achieve statistical tuning without hav-
ing to propagate PDFs but instead, propagate a delay num-
ber that represents the tail of the distribution.
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3.1. Augmenting the mean delay

We propose to use gate delays � � � �
defined as

� � � � � � 	 
 � � � � � �  � 	 
 � � � � (4)

in (2) in place of 
 � � �
. In other words � � � �

for the
� � �

gate includes extra margins (scaled � 	 
 � � � � ) to account for
the variation and uncertainty in the gates delays. We call� 

margin coefficients. This can be interpreted as adding
a delay penalty term to each gate that is proportional to its
delay uncertainty.

3.2. Use of soft maximum

Since
� � � �

in (2) is a maximum of a set of input delays
that are random, the distribution of

� � �
� is shifted to the

right of all the input delay distributions. This shift is more
pronounced when several of the input arrival time distribu-
tions are near the maximum, and negligible when, say, one
of the inputs arrive much later than the others. To take into
account the right shift caused by taking the maximum of a
set of random variables, we propose to use a soft maximum
function � � �  � defined as

� � �  � 	 
 � � � � � 
 � � � � # � � $

where � is the exponent that represents the penalty for close-
ness of arguments and the sum accounts for increase in un-
certainty with every extra input. This steers the optimizer
away from making the paths equally critical. The soft max
retains in spirit the fact that under variations even a path
with smaller mean can contribute to the delay spread at
the converging node, while it asymptotically approaches the

� �  function.
Combining the two techniques we can write (2) for the

gate in Figure 2 as:

� � � � � � �
� ' # * + * ,

� � � � � � � � � � � # � � .

Since these techniques retain the computational merits
of the deterministic sizing problem (like sparsity), the al-
gorithm is easily scalable to larger circuits. Moreover, if
the � 	 
 � � � � and � 	 
 � � � � of gate delays are generalized
posynomials (which is the case if we use the Elmore delay
model [6], the velocity saturated delay model [8], or curve
fit model [2]), then the problem can be cast as a general-
ized geometric program (GGP) [20], which can be solved
globally with great efficiency. A crude search loop in the� � � space around the basic optimization routine can eas-
ily be implemented to obtain the best statistical sizing (as
validated by SSTA).

3.3. Validation

Consider two (Gaussian for convenience) random vari-
ables / # and / + . Let � 	 / # � � 2 and � 	 / # � � � . 2
while we sweep � 	 / + � from 0.7 to 1.3 and � 	 / + � �

	 � . � � $ � . 2 $ � . 2 � � . Let 6 � � �  	 / # $ / + � . We find 8  ! 	 6 �
and 8 # % 	 6 � (i.e. 8 # & 	 6 � and 8 + & 	 6 � ) of the random
variable 6 using Monte Carlo samples. These are plotted
as solid curves of varying � 	 / + � for three values of � 	 / + �
in figure 3. We then define '8  ! 	 6 � and '8 # % 	 6 � as:

'8  ! 	 ) � � � � �  % : 	 � 	 / � � � � . � � 	 / � � � $ ; � 2 $ -
'8 # % 	 ) � � � � �  / : 	 � 	 / � � � 2 . 0 � � 	 / � � � $ ; � 2 $ -

(5)
in order to fit 8  ! 	 6 � and 8 # % 	 6 � by choosing the right �
and � (plotted as dashed curves).
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Figure 3. Soft max with margins – validation for 1 �
and 2 � points

The plots in figures 3 shows that our � � �  � and � � mar-
gins give close estimates of the 8  ! 	 6 � and 8 # % 	 6 � for
specific values of � and � . Here / # and / + represent the
delay of two converging critical paths which can vary by
30% from each other in their mean and differ by 50% in
their standard deviation. For simplicity, we consider a uni-
form � and � for all gates. A value of � between 30 and
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50 and margin coefficient between 0.5 and 2.5 give good
statistical sizing in most circuits.

Of course, in a real netlist, the number we obtain for the
signal arrival time

�
at any net, using our heuristic, is cer-

tainly not the exact � � � � � (for a specific � ) on its timing
distribution. It just represents a measure of the criticality of
the arrival time to the overall delay. The timing results we
present are always from a SSTA done after the robust opti-
mization; SSTA is the only trustworthy method for compar-
ing results. We use our soft max function, and the simple
augmented delay expression only to design the circuit, and
not to analyze it.

4. Statistical Delay Model

While the above techniques can be used with a number
of different timing models, we have been using a simple
analytical model to estimate delays. Ideal quadratic tran-
sistors can be nicely modeled as resistors [7], but all mod-
ern transistors are current velocity saturated. Although this
makes the analysis a little more difficult, it is still possible
to create simple, accurate analytical timing models, that are
compatible with GP solvers. Our model uses Channel Con-
nected Component (CCC) as the basic gate structure. This
is a group of transistors that have their source/drain con-
nected, with some transistors connecting to � � � and oth-
ers to ground. For full custom designs, each transistor can
be optimized individually, while in cell based designs, all
the transistors in the cell are sized together. In ISCAS’85
benchmarks, each cell may contain one or more CCCs and
cell sizes are the design variables.

4.1. Mean Delay Model

We have extended the Meyer velocity saturated current
model described in [5, 8] to obtain the delay of CMOS
CCCs. In this model, the current � � through a MOS transis-
tor is:

� � 
 � � � �  � � � � �� �
� � � � 	 � �

where � � � 
 � � � � �  �
, � � � 

is the saturation velocity and
	 �

is the electric field that sets the onset of velocity satura-
tion.

To use this model for gates, we need to find the effective
� and effective � for a chain of 
 NMOS transistors. We
estimate the current by creating an effective transistor where

� � � 
 � � � � � � �    � � � � �

� � � 
 � ! � � � � � ��
" # �

% � � "  

Using this current equation, we estimate the fall delay
(time to discharge the output to

�  � � � � ) � � by

� � 
 � ' � � � � � �
� � � � � � � � �

where � � � is the input slope and � is a constant determined
by � � � and �  �

. While formulating the gate delay con-
straints, the added delay due to � � � is absorbed in the delay
of the fan-in gate.

If the input is at the bottom of the chain, then it has to
discharge all the intermediate nodes. In this case we decom-
pose the fall delay as sum of fall delays where each interme-
diate capacitor is discharged by the chain below it, just like
in the Elmore delay calculation. The accuracy of the delay
model remains well within 8% for chains of upto 4 transis-
tors, for reasonable � ' � � � and signal slews ( � � � ). Similar
expressions can be written for the rise delay through PMOS
chains

The * " + ,
can be formed by considering all chains that

contain the input - and help to drive the output . and taking
the maximum of these delays, for static problem formula-
tion. The mean delay of a CCC thus obtained is a general-
ized posynomial [20] of its transistor widths. For ISCAS’85
circuits, the cell size are design variables. The cell delay
models are obtained using posynomial fitting [20] on the
cell library data.

4.2 Standard Deviation Model

We use Pelgrom’s model [3] for the variation of a device
current, which states that parameter variations tend to re-
duce as the area of the fabricated MOS structure increases.
We extend this idea to the chain of 
 transistors by express-
ing the relative / � � � � as

/ � � � �
� �


 2
��

� � � � � �

where
2

� is a constant depending on the fabrication pro-
cess. Thus the variance of the drain current of an 
 transis-
tor chain is inversely proportional to the “electrically” ef-
fective area of the chain. The effective area is a weighted
sum of the device areas, so that the contribution to the / � � � �
variations is weighted according to the contribution to � � .

From / � � � � , the standard deviation of delay ( / � * " + , � ) is
obtained as

/ � * " + , � 
     

! * " + ,
! � �

    
/ � � � �  

For ISCAS’85 benchmarks we use

/ � * " + , �
* " + , 
 2

�� "
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where
�

is the footprint area of the cell’s layout.
For simplicity, we have not included the variation in

delay due to wire width variation or variation in � � � � � of
fan-out gates. These can be easily included in the detailed
framework. Also, correlation between gates can be incor-
porated by adding additional margins to � � 
 �

in (4).

5. Results

The optimization algorithm was tested on two custom 32
bit adders, a Kogge-Stone (KS) and a Ladner-Fischer (LF)
[17] designed in TSMC 0.18 � 1.8V CMOS with an FO4
delay of 80ps and a ISCAS’85 benchmark in bulk TSMC
0.13 � 1.08V with an FO4 delay of 130ps. For a chain of �
transistors we used  � � � � � � � of � � �

for � � 
 � � 

equiv-

alent to that of a single minimum length transistor with
� � � � . For ISCAS’85 cell based design the 15% vari-
ation was for the minimum sized cell. Internal wire capac-
itances, wherever significant, are also included in the opti-
mization. The circuits were optimized under identical load,
area and other constraints for deterministic and statistical
cases. For custom circuits, the area is the sum of the widths
of all devices while for ISCAS circuits, it is the sum of all
cell areas modeled from the library as a function of cell
sizes. Signal slew rate constraints are indirectly provided
by constraining the delay per logic stage, which is GGP
friendly. The optimizations are done using the MOSEK [21]
convex optimization package.

The results of Monte Carlo timing analysis are shown in
Table 1.

Table 1. Monte Carlo timing analysis

circuit det. sizing stat. sizing improvement
� � � � � 	 � 	 �  � � � � � � 	 � 	 �  �

in
in ns (FO4) in ns (FO4) timing

32-bit LF adder 1.06 (13.3) 0.84 (10.5) 20.6%
32-bit KS adder 0.98 (12.3) 0.81 (10.1) 17.7%

ISCAS c880 2.2 (16.9) 1.99 (15.3) 9.5%

Figure 4 shows the PDFs of the delay of 32-bit LF
adder[17] along with the � � � points. The improvement in

� � � � � � � � � � � is quite significant after statistical sizing. The
improvement in c880 is not significant due to lack of free-
dom caused by having only one size represent the entire cell
and one cell containing possibly multiple CCCs sized to a
fixed ratio.

We have observed that the results are very weakly depen-
dent on the kind of distribution, but are slightly dependent
on the model used for  � � � 
 � � . The improvement increases
as  � � � 
 � � depends more strongly on the effective device
area than that provided by the Pelgrom’s model. Also the
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Figure 4. Deterministic versus robust sizing: Delay
PDF for a 32-bit LF adder.

improvement increases with increasing number of parallel
outputs. The region around the optimal is largely flat, so that
a change of 5 around the optimal � or 0.5 around the optimal

� results in a change of only a few ps in the � � � � � � � � � � � . So
a crude search suffices, drastically reducing the optimiza-
tion time. Each iteration typically consists of about 300s
for optimization and 30s for 10000 sample Monte Carlo on
a 2GHz Pentium PC with 1GB memory, for the presented
circuits.

Figure 5 shows the � vs.  scatter plots of all the path
delays in the LF adder for deterministic and statistical siz-
ing. Clearly, the wall in the deterministic case is broken and
the variation reduced for the statistical case at the expense
of increased mean deterministic delay.

6. Conclusions

Statistical variations in device parameters will likely
continue to worsen as we scale technology. It will be criti-
cal to account for these variation in both analog and digital
circuits. While accurately accounting for uncertainty while
sizing a digital circuit is difficult, we have shown that a few
simple heuristics improve the expected performance of the
resulting circuit, and can be easily fit into today’s optimiza-
tion tools. Our method adds a penalty to each gate that is
proportional to its uncertainty, and then changes the max
function to account for the added delay that occurs when
a set uncertain inputs with similar expected times combine.
Our method attempts to strike a balance between the goal of
having the smallest delay for a given area or power, or vice
versa, and preventing excessive downsizing of non critical
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Figure 5. � – � scatter plot for all paths of 32bit LF
adder.

paths that lead to new critical paths. We are currently work-
ing on extending this framework to optimize other transistor
and circuit parameters, like � � � and � � �

to better optimize
our designs.
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