
Partial Replay of Long-Running Applications

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden
MIT CSAIL

{akcheung, asolar, madden}@csail.mit.edu

ABSTRACT
Bugs in deployed software can be extremely difficult to track
down. Invasive logging techniques, such as logging all non-
deterministic inputs, can incur substantial runtime over-
heads. This paper shows how symbolic analysis can be used
to re-create path equivalent executions for very long run-
ning programs such as databases and web servers. The goal
is to help developers debug such long-running programs by
allowing them to walk through an execution of the last few
requests or transactions leading up to an error. The chal-
lenge is to provide this functionality without the high run-
time overheads associated with traditional replay techniques
based on input logging or memory snapshots. Our approach
achieves this by recording a small amount of information
about program execution, such as the direction of branches
taken, and then using symbolic analysis to reconstruct the
execution of the last few inputs processed by the application,
as well as the state of memory before these inputs were ex-
ecuted.

We implemented our technique in a new tool called bbr.
In this paper, we show that it can be used to replay bugs
in long-running single-threaded programs starting from the
middle of an execution. We show that bbr incurs low record-
ing overhead (avg. of 10%) during program execution, which
is much less than existing replay schemes. We also show that
it can reproduce real bugs from web servers, database sys-
tems, and other common utilities.
Categories and Subject Descriptors

D.2.5 [Software Engineering] – Testing and Debugging

General Terms Reliability, Performance

1. INTRODUCTION
A large amount of research effort has been devoted to the

problem of identifying bugs and helping programmers pin-
point their root causes. However, not all bugs are equal.
Most development organizations already have more bug re-
ports than resources to fix them. As such, a bug from an
important customer is much more critical than a bug dis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

covered by an automated test generator. Unfortunately,
pinpointing and fixing such critical bugs in the field can
be very challenging. Stack traces and core dumps can be
helpful when dealing with some errors, and statistical bug
isolation can be used when a bug affects large numbers of
users. However, for bugs only manifest as a result of a spe-
cific input, these techniques are not useful.

The gold standard for pinpointing such bugs is program
replay. If users could provide a log of the entire execution
of their system or all of its inputs, then identifying and fix-
ing such bugs would be simple: when the bug is observed,
you would have a complete trace of the execution that could
be used to reproduce and fix the bug. In fact, replay tools
exist that able to reconstruct an execution by either taking
periodic snapshots of the system state [33], or by logging all
non-deterministic inputs to the target program, such as the
return values from non-deterministic functions (e.g., ran-

dom), system calls, and user inputs [17]. The problem with
these tools, however, is that while they can reproduce the
exact scenario that leads to the buggy behavior (modulo
hardware failures), they can significantly slow down the nor-
mal execution of the program and produce very large data
logs that may grow without bound as long as the program
keeps executing. This makes them impractical for debug-
ging systems like databases and web servers that may run
for months at a time.

To mitigate this runtime overhead problem, there has been
work done on performing software replay using symbolic ex-
ecution [31, 15, 19]. The idea is to capture a subset of the
program state during runtime, thus incurring less overhead,
and then use symbolic execution to reconstruct the missing
information. Even though the reconstructed state might not
be exactly the same as the one that the user experienced, it is
nonetheless useful for debugging purposes, since it is usually
the case that the same bug can be triggered by multiple ex-
ecution traces. Thus, as long as the reconstructed trace can
still trigger the bug then it is good enough. Unfortunately,
all the previous work focuses on replaying programs from the
beginning of the execution, and today’s symbolic execution
engines (which rely on SMT solvers) are not able to replay
programs that have been running for days or months.

In this paper, we explore the idea of using symbolic exe-
cution to perform partial replay from the middle of execu-
tions, rather than replaying long-running programs from the
very beginning. By doing this, we avoid having to store and
transmit very large logs (as required by deterministic replay-
ers) and mitigate the very long replay times that can result
from symbolic execution. Our tool, called bbr, is the first

such partial symbolic replay tool. To use bbr, the developer
annotates the code with checkpoints, for instance at places
in the program that mark the transition from processing one
request or phase to the next, such as at each invocation of
the query parser in a database server. bbr collects a log dur-
ing program execution and, when a checkpoint is reached,
discards all logged data that was previously collected, lim-
iting the size of the logs that need to be maintained. When
the program terminates, the developer gives the (partial)
log to bbr to replay starting from the last checkpoint. bbr
symbolically executes the program, generating constraints
when the program uses values that were not recorded. At
the end of the symbolic execution, the constraints are solved
to find the program state at the beginning of the replay. The
solved state might not be exactly the same as the one in the
original execution, but it is one guaranteed to take the same
control flow path when executed with the logged data. We
refer to this as a branch-deterministic replay, and we show
that such a replay is as useful as a fully deterministic replay
in debugging a number of real-world bugs, while avoiding
the expensive cost of the data-logging approaches.

Unlike the data-logging based schemes, bbr works by record-
ing control flow (one bit per branch) and accessed array in-
dices into a log during program execution, as well the current
stack and file offset information for the currently opened
files. when a checkpoint is taken. This amounts to much
less data than in the data-log based approaches (which can
accumulate large logs even in partial replay scenarios).

In summary, this paper makes the following contributions:

• We introduce the idea of partial symbolic replay at
an arbitrary program point in the target application,
which lets users replay long-running programs without
the burden of maintaining large logs. Furthermore, we
develop an algorithm to handle pointer aliases that
arise during partial replay without using the theory
of bit-vector arrays, which, as our results show, gives
poor performance.

• We propose the concept of branch-deterministic re-
play by recording control flow and non-constant ar-
ray indices, and demonstrate its applicability to data-
intensive applications, showing low runtime overhead
and small log sizes as compared to other existing re-
players.

• We identify several techniques that enable replaying of
real-world applications in our bbr prototype, including
a new memory model, separating constraints into in-
dependent subgroups during solving, and building a
parallel solver implementation.

• We show that our technique can scale to replay real
programs, including sqlite running on a 10 GB TPC-C
database and two different web servers. Our runtime
overheads range from 1% to 33%, with reasonable re-
play and solving times. We also show that we can
reproduce several real bugs in these systems.

The rest of this paper is organized as follows. In Section 2,
we overview the architecture of bbr and provide a sample
usage scenario. In Section 3, we discuss in detail the design
of the different components of bbr. Section 4 describes our
experimental evaluation of bbr on a number of different real-
world applications. Finally, Section 5 surveys related work,
followed by conclusions in Section 6.

native runtime

Annotated
source code

bbr
inst.

library
bbr compiler

Instrumented
bytecode

bbr log

SMT
constraints

bbr parallel solver

Solved
inputs

mem model

fs / network
model

Constraint
splitter

Symbolic
executor

User Site Developer Site

external fn
models

bbr replayer

Assembler
Linker

Instrumented
assemblyNative app

bbr
debugger

1. Prepare source code for replay

2. Runtime monitoring and log
collection

3. Symbolic replay
to generate
constraints

4. Constraint solving
and debugging

Figure 1: bbr system overview, highlighting steps in
the replay process

2. OVERVIEW
bbr consists of five components: a bytecode compiler, a

library for the instrumentation routines, a bytecode replayer,
a parallel solver, and a debugger. Fig. 1 shows the steps
involved in using bbr for replay.

We illustrate the operation of these components through
a real-world bug in memcached. In version 1.2.6, a bug was
found in decrementing an existing value in the cache [1].
The (slightly abridged) code is as follows:

char *do_add_delta (item *it, const int64_t delta) {
2622 int64_t value = ITEM_data(it);

...
2631 if (incr) {

...
2634 } else {
2635 value -= delta;
2636 if(value < 0) {

value = 0;
}
MEMCACHED_COMMAND_DECR(ITEM_key(it), value);

The function first obtains the existing value for a key
from the cache at line 2622 before performing the decrement.
Then, if the resulting value is negative, the code simply sets
the new value to be 0. This is a bug since value is treated
as a signed entity, contrary to memcached’s specifications.
If the existing value is a large number with the most signif-
icant bit set, then decrementing it will result in 0. In the
following, we describe how a developer can use bbr to replay
and debug this problem.

2.1 Preparing for Replay
To use bbr, the developer first prepares the source code

by inserting the bbr checkpoint annotations. The annota-
tion can be inserted in two ways: at a program point for
which the developer would like to start replay from (e.g.,
at the point that processes each incoming requests), or con-
figured as a timing parameter (e.g., take a checkpoint every
five minutes). In our example, the developer can put the an-
notation at the program point that calls different functions
(e.g., do_add_delta) based on the incoming request type.

The developer then uses the bbr compiler to compile the
code into LLVM bytecode. The bbr compiler links the user
code with a modified version of the uClibc [2] library (which
we use because it can be easily compiled into LLVM byte-
code). During compilation, the compiler inserts instrumen-
tation routines to record two types of data. First, bbr
records the values of conditional branches, in the example
the branch conditions at lines 2631 and 2636. Next, bbr
records the values of non-constant indices into arrays (none
in this case). The instrumented code is then compiled to
native assembly and linked with the bbr instrumentation li-
brary to produce the final native memcached distribution.

2.2 Runtime Monitoring
The user starts using the instrumented memcached server

in her application. As the application issues operations
against the memcached server, the bbr library embedded
in the server intercepts the branch outcomes and array in-
dices from the running program and stores them in an in-
memory buffer, which is periodically flushed to disk when
it becomes full. When the checkpoint annotation is hit, the
library takes a lightweight snapshot of the running program.
It also discards any logs that are previously written to disk.
In our example, the user has been running her application
normally until one day she observes that memcached returns
0 for a decrement and causes her application to return an
incorrect result. Believing that it is a problem in the server,
she files a report to the memcached developer along with
the log generated by bbr.

2.3 Symbolic Replay
The developer would like to find out why 0 was returned in

the decrement operation, which is not obvious by just look-
ing at the code. With the collected log and the instrumented
bytecode, the developer uses the bbr replayer to replay. The
replayer symbolically executes the bytecode from the last
checkpoint. In our example, at line 2622, ITEM_data loads
the data from the heap pointed to by it, whose contents are
unknown since it was stored prior to the checkpoint. When
that happens, the replayer creates a fresh symbolic variable
v to represent the contents at the memory pointed to by
it and assign that to value. At the branch point in line
2631, the replayer reads the branch log and finds that the
branch was not taken, and jumps to line 2634. At line 2635,
value is assigned to be v − d, where the symbolic variable
d represents the value of the program variable delta. Fi-
nally, at line 2636, from the branch log the replayer learns
that the branch was taken, and because the branching condi-
tion involves symbolic variables, it generates the constraint
v − d < 0 and continues execution.

2.4 Solving and Debugging
The replayer saves the generated constraints to a file at

the end of the replay, which are then given to the bbr parallel
solver to solve. In our example, the solver solves for possible
values of v and d in order to produce a branch-deterministic
execution from the last checkpoint. Suppose the solver re-
turns 263 + 1 for v, and 1 for d. To map these results back
to the program, bbr comes with a debugger. The debugger
allows the developer to specify the values to be printed when
an instruction is reached during symbolic execution. A sam-
ple session is as follows (italic text represents user inputs):

bbr-db> print delta at 2622; print value at 2622;

bbr-db> run

at 2622: delta = 1

at 2622: value = 9223372036854775809 // 263 + 1

With the output above and by following the program logic,
the developer realizes the cause of the bug, and fixes her code
accordingly. Even though the solved values might not be ex-
actly the same as those that the user originally saw (in fact,
the insertion of the key into the cache could have happened
a long time ago with a different value in the original execu-
tion), the developer is still able to use bbr to diagnose the
problem by finding an execution that leads to the behavior
observed by the user.

The debugger also allows the developer to request a new
feasible variable assignment if she isn’t satisfied with a given
assignment by appending extra constraints. In the example
above, perhaps the developer knows that the value of delta
was not 1, and thus the solution does not represent a feasible
program state. In that case, she can tell the debugger that
delta does not equal to 1, and ask the debugger to generate
another set of values for delta and value.

In contrast, in order to use existing tools to replay the
bug, the developer would either have to rely on the user to
provide a detailed use case that illustrates the bug, or to
collect data logs that have recorded the values of all non-
deterministic data since memcached started (which could
have been a long time ago), or to write assertions and rely
on test generators to hit upon the bug, all of which are costly
and error-prone.

In the next section, we discuss the details of the design of
the bbr replayer.

3. BBR DESIGN
We begin by explaining the implementation of the record-

ing mechanism, followed by that of the replayer and parallel
constraint solver.

3.1 Instrumentation for Recording
As discussed in Section 2, calls to the instrumentation

functions are added to the user code during compilation with
the bbr compiler to collect the necessary data for replay.
These functions are implemented in a separate library that
is linked with the instrumented assembly when producing
the native executable. Each conditional branch generates 1
bit of data, and other types of data (such as array indices)
are 4 bytes each. To reduce disk overhead, we use a double-
buffering mechanism where we log data in one buffer in mem-
ory. When the buffer fills (or the program terminates), we
flush it to disk in the background and start recording into
the other buffer. Section 4.1 reports the overhead of data
collection. When a checkpoint annotation is reached, bbr
records the current stack and the state of open files (see
Section 3.2.4 for details) so that replay can start at the ap-
propriate program point. The contents of registers and heap
memory are not saved, making the operation very fast.

3.2 Replayer Design
Once data logs are collected, the developer feeds them to

the replayer, which uses them to generate the constraints
used to solve for inputs and program state consistent with
the log. Using the branch log, the stream of bytecode in-
structions (Fig. 2) in the original execution is reconstructed,

PExpr (ep) ::= n | r | unop ep | ep1 binop ep2 | b ? ep1 : ep2

CExpr (ec) ::= ep | BitVector | (l, n)

Cond (b) ::= True | False | ¬b | ep1 comp ep2 | b1 ∧ b2 | b1 ∨ b2
Stmt (s) ::= r = malloc(n) | r = ep | ∗ r = ep | r = ∗ep | assert b

Program (p) ::= s; p

n ∈ N, r ∈ {program variables}
(l, n) ∈ {memory locations}, unop ∈ {−, !}
binop ∈ {+,−, ∗, /,mod, band, bor, xor, shl, lshr, ashr}
comp ∈ {=, >,<,≥,≤, 6=}

We denote a memory location as (l, n), where l represents an

allocation, and n is the offset from the base of allocation.

Figure 2: Language of bytecode instructions

and instructions are emulated to generate constraints. The
constraint generation process mirrors the symbolic execution
done in concolic analysis (e.g., [18]); the main difference is
that instead of getting our concrete data from the execution
itself, we get it from the log. This subtle difference requires
tradeoffs in terms of how much we can rely on symbolic vs.
concrete reasoning, and has implications for the design of
the symbolic state and constraint generation.

3.2.1 Modeling State
The most interesting aspect of the state maintained by the

replayer is memory representation. Traditionally, the easiest
way to model memory has been by using the theory of arrays,
modeling memory as a giant array that gets updated with
every write operation. This approach is very general, but
puts too much strain on the SMT solver [35]. At the other
extreme, if we know the concrete address of every load and
store, we can model the heap as a map that gets modified by
read and write operations [32, 18, 23, 34]. This is very effi-
cient because the solver doesn’t have to reason about alias-
ing, but it also requires a lot of concrete knowledge about
the execution. In our system, we know the addresses for all
memory accesses except those involving memory allocated
before the start of replay, and the key to our approach is
to leverage the concrete information we have rather than
relying on the theory of arrays to discover it.

The first important element of our representation is that
it models the heap as a collection of independent buffers
produced by malloc rather than as a flat array. In this view,
a pointer is a pair (l, n), where l is the base address of a
buffer assigned by malloc, and n is an offset into the buffer.
The benefit of this is that during runtime we only need to
record n and only when it is statically unknown in LLVM
array element access instructions.1 The main downside of
this approach is that we assume pointer arithmetic to be able
to change only n but not l, which prevents the system from
reproducing errors caused by unsafe memory operations. In
exchange for this, we are able to scale to large, long-running
programs and to reproduce real bugs that are often much
harder to discover than memory errors (see Section 4.2).

In addition to the heap h : (l, n)→ ec, the replayer main-
tains an environment σ : r → ec that maps variables to the
symbolic values currently assigned to them, as well as an
alias map a : l→ {l0, . . . , lk} that stores may-alias locations

1Field in records are accessed in the same way, however n is
always statically known in such cases.

[[r = malloc(n)]](σ, h, b, a) = (σ[r → (l, 0)], h, b, a[l→ {}])
where l is a fresh memory location

[[r = ep]](σ, h, b, a) = (σ[r → [[ep]]], h, b, a)

[[assert b1]](σ, h, b, a) = (σ, h, b ∧ b1, a)

Figure 3: Semantics for non-memory instructions

for a given allocation l. Finally, b represents the set of con-
straints accumulated so far in the execution. Together, the
four entities (σ, h, b, a) make up the state of the replayer.

3.2.2 Symbolic Execution of Memory Operations
Our treatment of non-memory operations is similar to

standard symbolic execution [32], as illustrated by Fig. 3.
However, memory operations present new challenges. First
of all, a read or a write to an address (l, n) is easy to handle
if we know the concrete values of l and n, since we can just
read or update the corresponding entry in our model of the
heap. The challenge comes when we lack information about
an address as a consequence of partial replay. The reason
partial replay makes this difficult is because when we read a
location that was written to before the start of the log, we
know nothing about its contents, and if it contains an ad-
dress, we have no information about either l or n, or about
its aliasing relationship with other addresses.

Because of this, our system does not know the invariants
the non-replayed execution enforced on memory contents.
For the replayed portion of the program, bbr ensures that for
every location (l, n), and all its potentially aliased locations
(li, n), the following invariant is maintained:

SolverValue(l, n) = SolverValue(li, n)⇒
SolverValue(h[(l, c)]) = SolverValue(h[(li, c)])

In other words, if the solver decides that li is actually aliased
to l, then the symbolic expression in h[(l, c)] should evaluate
to the same value as the symbolic expression in h[(li, c)].

In the following, we show this invariant is preserved in
memory operations, and describe how we handle memory
locations initialized before the start of partial replay.

Address Initialization: Consider reading from or writing
to memory whose address is stored in variable variable r. If
σ[r] maps to some location (l, n), then the operation pro-
ceeds as described below. Otherwise, r holds a value that
was written before the start of partial replay (i.e., σ[r] = ⊥).
When this happens, the system assigns a fresh symbolic vari-
able bv to represent r. Furthermore, it assigns bv a brand
new base address lr that is different from all the l’s currently
in use by the program, updates σ[r → (lr, 0)], and generates
the constraint bv = (lr, 0). To account for the possibility of
aliases, the system updates the alias map a to keep track of
all the other l’s that may be aliased with lr. Our current
implementation assumes that two memory locations can be
aliased to each other only if the program variables for which
they were originally allocated for have the same static type,
and that a memory location cannot be aliased to some off-
set within another location (e.g., array variables a and b can
be aliased to each other, but a cannot be aliased to the ad-
dresses of b[1], b[2], etc, and vice versa). Notice that this
is just one possible mechanism for computing alias informa-
tion, which we chose as it proved sufficient for replaying a

variety of programs. Users can supply more precise alias
information obtained elsewhere, e.g., from the output of an
alias algorithm, or by logging all memory addresses in load
and store instructions.

Memory Writes: Memory writes are processed according
to the following rule:

h′ = h[((lj , c)→ (li) = (lj) ? ec : h[(lj , c)]) ∧
((li, c)→ bi ? ec : h[(li, c)])]

{(lj)} = a[(li)] {(li, c, bi)} = GetLoc(σ[r])

〈∗r = ec, (σ, h, b, a)〉 → (σ, h′, b, a)

This rule conditionally updates every address that is poten-
tially aliased with the address stored in r. The rule uses the
function GetLoc to account for the fact that the address in r
might itself have been the result of some conditional updates,
so instead of a single address, GetLoc returns a guarded list
of the possible addresses stored in σ[r]. If σ[r] is a sim-
ple address (lr, c), GetLoc(σ[r]) returns (lr, c,True), but in
general, σ[r] can be a complicated expression evaluating to
different (li, ci) under different conditions bi. However, since
we logged the value of the offsets, the rule can assume that
those are fixed for all choices. For each memory location
(li, c) that is returned by GetLoc, we store a conditional ex-
pression that evaluates to ec only if ∗r does indeed evaluate
to (li, c); i.e., if bi is true. For each memory location lj that
is aliased with each li, we update h[(lj , c)] to a conditional
that reduces to ec if lj is indeed aliased to li.

An important assumption in the rule above is that since
we always know the offsets for memory accesses, we only
have to track aliases among the base addresses. In the spe-
cial case that an address is allocated with a call to malloc
after the start of replay, there is no ambiguity as to what
address is contained in a memory location, GetLoc simply re-
turns one possible location for ∗r, and that location has no
aliases, so the rule simply reduces to standard heap update:

{(li, ci,True)} = GetLoc(σ[r]) h′ = h[(li, ci)→ ec]

〈∗r = ec, (σ, h, b, a)〉 → (σ, h′, b, a)

Memory Reads: Loading from memory presents similar
complications and is processed using the following rule:

{(li, ci, bi)} = GetLoc(ec) h[(li, ci)] 6= ⊥
σ′ = σ[r → ∀ibi ⇒ h[(li, ci)]]

〈r = ∗ec, (σ, h, b, a)〉 → (σ′, h, b, a)

The notation ∀ibi ⇒ ei above should be read as a switch
statement that produces ei if bi is true. Note that we do
not load from any of the may-alias locations of ∗ec since the
store rule above ensures that their values will be equivalent
if the alias turns out to be real.

In summary, in the case where we have the log from the
start of execution, our strategy for memory operations re-
duces to the very efficient modeling of memory as a map.
Conversely, when we have no information about aliasing and
all our locations are unknown, our strategy is just an in-
efficient implementation of the theory of arrays. For our
purposes, however, this is ideal because it exploits all the
concrete information available with the system, and allows
us to deal with aliasing uncertainty while still exploiting any
aliasing information that we can provide.

3.2.3 External Function Calls
A common issue in the symbolic execution of real-world

programs is handling external functions such as libc and
system calls. The typical solution, and the one we follow,
is to provide a model of those functions. bbr follows the
approach used in Klee [18] by linking a modified version of
the uClibc library with the target program, which greatly
reduces the number of libc functions that we need to model.
We model a subset of system calls using bit vector values.
For instance, we use a 4 byte bit vector to model the user
ID of the calling process. Thus calls to getuid will return
that bit vector. We currently model over 100 Linux system
calls but do not model the state of devices or the kernel.

3.2.4 File Descriptors and Network Sockets
bbr implements a simple symbolic file system where each

file is modeled as follows:
• An array of symbolic expressions, where each entry in

the array represents one byte in the file.
• A 4 byte integer for the current file offset.
• A 4 byte integer representing the file flags (read / write

/ both, and append / overwrite mode).
• A 4 byte integer representing the file permissions.
• A 4 byte integer representing the file size.

The file descriptor itself is modeled as a 4 byte bit vector
variable, and the file system is a map from the file descriptors
to the structure listed above. bbr currently supports typical
file system calls, and network sockets are modeled similarly,
except that they are append-only and do not support seek.

Because the file metadata are modeled as real integers
(rather than bit vectors), bbr records values from file sys-
tem operations (as mentioned in Section2) in order to main-
tain each file’s internal state during symbolic execution. For
instance, the return values from read calls are recorded so
that the current file offset can be correctly updated.

We experimented with using bit vectors and the theory of
arrays to represent the file contents, but this did not scale,
while the approach above did. This is because the programs
we experimented with operate on large files, but do not nec-
essarily process each byte within those files (e.g., databases
may only read a few tuples from a loaded page). Modeling
these files with the theory of arrays caused a large num-
ber of bit vector variables to be created for indices that are
not referenced. Our approach, which records additional in-
formation during runtime (4 bytes per each invocation of
read, write, lseek, etc), allows us to implement our own
file model that generates less complicated constraints, which
saves a substantial amount of constraint solving time while
adding relatively little additional recording state.

3.3 Soundness and Completeness
For partial replay, we define soundness as the fact that all

program executions (i.e., the starting heap state and execu-
tion path) solved by the replayer are indeed feasible traces
of the target program although not necessarily the same as
the original execution, and completeness as the ability to
solve for program executions given the input logs, provided
that the inputs were from an actual execution.

bbr is unsound since the initial state of the heap gener-
ated at the beginning of the partial trace might not corre-
spond to a feasible heap from the original program. This
is because the system might miss some of the invariants
that the non-recorded portion of the program enforces on

the heap, so it might generate a heap that violates these
unstated invariants. On the other hand, bbr is incomplete
since we might not be able to replay executions that vi-
olate our assumptions, namely the independent allocation
and non-overlapping assumption, the memory alias assump-
tions, and the fact that we do not model the hardware or
the kernel state. In practice, that means we cannot deter-
mine the memory locations that are overwritten in a buffer
overflow attack (although we can still detect writing out of
allocated boundaries errors), or replay an execution that is
caused by malfunctioning hardware.

3.4 Parallel Constraint Solver
Symbolic execution produces a set of constraints. The bit

vector variables in the constraints correspond to heap con-
tents before the start of replay, the non-deterministic inputs
that were read, as well as return values any external function
invocations during the execution. The constraints need to
be solved in order to re-create the values that would cause
the execution to take the same control flow path as in the
original run. A straight-forward implementation would send
all the generated constraints to a constraint solver to solve
in one bundle. We found, however, that this is quite slow as
the constraint sets can be very large.

Instead, we subdivide the constraints into independent
portions that can be solved separately. Specifically, we found
that although there are a large number of symbolic variables,
it is frequently the case that each variable is only related to
a handful of other variables. For instance, in replaying a
web server, each byte that is read from the incoming socket
is modeled as a bit vector variable as mentioned in Sec-
tion 3.2.4. While it is likely that there will be constraints
that bind the variables generated from reading the same
socket (e.g., a constraint that the first three bytes read from
the socket must be the characters ‘GET’), it is unlikely that
there will be constraints that bind variables from one socket
read to those from reads from different sockets, where each
socket corresponds to a unique HTTP request.

Thus, bbr includes a constraints analyzer that separates
the constraints into independent groups. Formally, the con-
straints form a graph G(V,E), where each vertex v ∈ V
represents a bit vector variable, and each edge e ∈ E be-
tween two vertices v1 and v2 represents a constraint binding
the variables represented by v1 and v2. Given G, the con-
straint analyzer processes E and splits G into its indepen-
dent components. At the end of the analysis, each of the
independent components are written to a file. The parallel
solver in bbr then solves the components individually. Be-
cause most solvers are single-threaded, this also allows us to
parallelize solving by running each component in a separate
instance of the solver with a separate thread.

In addition to reducing solving time, splitting constraints
into independent components can help identify components
that may not need to be solved. For example, the con-
straints generated from replaying the thttpd web server (see
Section 4) separate nicely into independent components as
expected, with each component corresponding to an HTTP
request. Most components take a relatively short time to
solve, but one component takes substantially longer. Exam-
ining constraints involved in that component reveals that
they involve not the bytes that are read from the request
sockets, but instead bind the return values from multiple in-
vocations of gettimeofday together. Looking at the code for

the server, we found that it implements a number of timers
for house-keeping tasks such as clearing lingering connec-
tions. The timer structure maintains a field time that stores
the next time that the timer should be fired. After process-
ing each incoming connection, the server iterates through
all timers to check if any of them should be run by passing
in the current time (by calling gettimeofday). The check
routine then compares the current time with the time field
in the timers and either fires the timer or reschedules, creat-
ing dependencies between each invocation of the check (and
thereby gettimeofday) routine. This routine runs many
times per minute, and the solver is quite slow at solving it.

In this case, however, these constraints represent a small
portion of the program which is unlikely to contain bugs,
and not solving them reduces solving time substantially. In
general, it is possible to use the outputs of any subset of the
constraints to attempt to reconstruct a bug, thanks to our
parallel solver. If one portion of the constraints is taking a
long time to solve, the programmer can run the program on
the values from the constraints that have been solved so far
with the debugger to see if the bug is reproduced. In the
case of the gettimeofday constraints described above, they
don’t impact the results of interest (namely the contents of
the incoming HTTP requests), so we do not need to wait for
the solver to finish solving them.

3.5 Using the output of the solver
The output of the solver is an assignment to each variable

involved in the constraints. bbr provides a debugger that
takes in the instrumented bytecode and the solved outputs.
Similar to the replayer, the debugger performs symbolic ex-
ecution from the replay starting point. When an instruc-
tion that generates symbolic data is encountered, instead of
creating symbolic variables, the debugger substitutes values
from the solved outputs. Like gdb, the user can specify a list
of values to be printed on the screen when they are executed.

For files and sockets that were used during execution, bbr
further provides a utility that assembles the contents that
were read from the solved output. bbr is able to do that due
to the naming conventions of symbolic variables when they
are created. Thus, if the developer is interested in viewing
what values were read from a specific socket, she can first
use the bbr debugger to identify the file descriptor number
that the socket was assigned during replay, and then use the
utility to assemble all the contents that were read from that
descriptor number, rather than printing out the values of
the descriptor number and the contents of the read buffer
after each recv call.

As discussed in Section 2, if the user is not satisfied with
the solved outputs, say because she has extra information
about the original program state, she can provide that to
the debugger in terms of extra constraints (e.g., some vari-
able must have a certain value). The debugger then appends
those constraints with the existing ones, and solves for an-
other plausible program state if one exists.

4. EXPERIMENTS
In this section, we describe our evaluation of the three

central claims of this paper:
• First, we compare the runtime overhead of bbr to other

replay schemes. We measure both the overhead in
terms of slowdown to the running program and the
size of the logs generated.

sqlite We ran 20k TPC-C [4] transactions on top of
a 10G database representing 10 warehouses and
measured the time to complete all transactions.
Checkpoints are taken every 5 transactions.

memcached We inserted or updated 10k keys into the cache,
with values of size 800k each, and measured the
time to complete all operations. Checkpoints are
taken every 10 operations on the server.

tcpdump We asked tcpdump to print the details from a
packet dump of 1G in size, and measured the time
to process all the packets. Checkpoints are taken
every 5 packets that are processed.

betaftpd We fetched 50 files from the server, each of size
1G, and measured the time to complete all oper-
ations. Checkpoints are taken every 5 fetches.

thttpd (same as betaftpd)
ghttpd (same as betaftpd)

Figure 4: Description of benchmarks

• Next, we chose different types of bugs from real-world
applications and examine bbr’s ability to replay them.
• Finally, we measure the effectiveness of the alias-aware

memory model and constraint partitioning in bbr in
replaying programs.

bbr is implemented with 11k LOC of C++ using LLVM
version 2.6. We experimented with several different SMT
solver implementations, but we only report numbers from
those using Z3 [3] as that was the solver that we found to
scale the best. For these experiments, replay was run on a
32-bit Ubuntu machine with 2GB of RAM, while the con-
straint solving was done on a 64-bit 4-core machine running
Z3 version 2.14 on Windows Server 2003 with 24GB of RAM.

4.1 Overhead Experiments
In the first experiment, we measured the time and space

overhead that different programs incur while collecting logs
with periodic checkpoints. The programs we replayed are
listed in Fig. 4. Fig. 5 shows the results of the time over-
head experiment, in terms of slowdown relative to an unin-
strumented binary, while Fig. 6 and Fig. 7 show the log sizes
that were generated by the different recording schemes.2 All
data collections were done using the bbr instrumentation
library. We report the results from running five different
versions of each application, namely:
• [Native]: Native uninstrumented version.
• [bbr]: bbr instrumented version with periodic check-

points at frequencies shown in Fig. 4.
• [non-det]: Instrumented version that collects all non-

deterministic data from the beginning of program exe-
cution. This models the overhead of a whole-program,
fully deterministic replayer.
• [snapshot]: Same as non-det, except that every time

a checkpoint annotation is reached, we fork a process
to create a core dump, and all previously collected data
are deleted. This models the overhead of a partial re-
player that takes periodic snapshots of memory and
logs non-deterministic inputs that were received be-
tween snapshots.
• [loads]: Instrumented version that records the values

of all memory loads. To reduce the amount of logging,

2The checkpoints were placed at sensible program points, such as
where the web server starts to process a new HTTP request. We
tried placing the annotation at different but semantically similar
locations and did not notice much difference in replay and solving
times.

we use the technique from iDNA [17] where we only
record loads whose values are not predictable at run-
time (i.e., the store to a location was not an explicit
instruction in the application but rather a side-effect
of a system call, such as storing to the buffer in read).

 1

 1.5

 2

 2.5

 3

 3.5

 4

sqlite
(5m34s)

memcached
(12m)

tcpdump
(7m)

betaftpd
(77m)

thttpd
(86m)

ghttpd
(77m)

O
v
e

rh
e

a
d

 n
o

rm
a

liz
e

d
 t

o
 n

a
ti
v
e

 e
x
e

c
u

ti
o

n

bbr

1.07

1.33

1.13
1.05 1.01 1.04

non-det

3.95

1.5

1.23

1.38
1.29

1.56

snapshot

2.69

2.5

2.86

1.29

1.51
1.62

loads

1.17

1.34

1.57

1.12
1.05

1.38

Figure 5: Normalized execution time (relative to
uninstrumented binary=1) for different applica-
tions, with uninstrumented times shown at bottom.

Benchmark bbr non-det snapshot loads

sqlite 7k 20G 1G 250M
memcached 16k 8G 600M 569M

tcpdump 3k 2.6G 150M 200M
betaftpd 72M 50G 5.1G 550M
thttpd 100M 50G 5.1G 300M
ghttpd 99M 50G 5.2G 2.2G

Figure 6: Log size experiment results

The timing overhead experiment shows that bbr incurs
the least overhead as compared to the other replay modes,
varying from 1% for thttpd to 33% for memcached, with an
overall average of 10%, which is significantly faster than the
other schemes. This is due to the smaller amount of data
that bbr needs to write as compared to the data-logging
schemes. The more computationally intensive applications
(e.g., sqlite) incur more overhead since they are more likely
to hit branch instructions during their executions.

In terms of log sizes, bbr outperforms the other schemes
by a significant amount. This is expected because for appli-
cations such as betaftpd, the majority of non-deterministic
data comes from the contents of the files that are read and
sent back to the user. So in the case of non-det, the size of
the log is roughly equal to the size of files that were read.
The core dump snapshots help somewhat, since all previ-
ously recorded non-deterministic data are discarded when a
snapshot is taken. As the size of the core dump is directly
proportional to the amount of memory that is currently be-
ing used by the program, for a computationally-intensive
application such as sqlite, the log in the snapshot case is
dominated by the size of the core dump, whereas in data-
intensive applications such as web servers, the log size is
dominated by the non-deterministic data log. Finally, loads
reduces log sizes by only recording the load values that are
affected by system calls and subsequently read by the ap-
plication. However, the log sizes are still larger than those

Benchmark bbr non-det snapshot loads

sqlite 1.4k/op 1M/op 0.2G/op 12.5k/op
memcached 1.6k/op 0.8M/op 60M/op 56.9k/op

tcpdump 0.6k/op 0.3M/op 30M/op 20k/op
betaftpd 14.4M/op 1G/op 1G/op 55M/op
thttpd 20M/op 1G/op 1G/op 6M/op
ghttpd 19.8M/op 1G/op 1G/op 44M/op

Figure 7: Log growth rates in overhead experiment

Requests bbr non-det snapshot loads

10 46M 10G 5.1G 47M
30 46M 30G 5.3G 150M
50 46M 50G 5.6G 300M

Figure 8: Log sizes with varying # of requests
from bbr, since for some applications (such as sqlite and tcp-
dump), most of the values that are affected by system calls
are indeed loaded by the application afterwards, for instance
the read buffers in read and recv calls.

Since the number of operations stored in the various logs
are not the same (e.g., bbr takes periodic checkpoints to
reduce log sizes whereas non-det keeps the entire log from
the beginning of execution), Fig. 7 presents the same results
by showing the log growth rates instead. The results show
that the bbr logs grow much slower as compared to others.
Thus, even if the user decides to keep around all the bbr
log files rather than having the system truncate them at
each checkpoint (perhaps due to uncertainty as to which
checkpoint the replay should start), bbr will still have the
smallest log file sizes as compared to other schemes.

Next, we reran the experiment for betaftpd, varying the
number of requests issued in order to characterize the size of
the data logs as the running time of the application increases
(the results show that the execution overhead is relatively
insensitive to the number of requests). The results are shown
in Fig. 8. Observe that the log sizes for the non-det and
loads schemes grow proportionally with execution time due
to the lack of log truncation. And while the log sizes are
roughly the same for bbr and snapshot, bbr incurs much
less runtime overhead because it writes less data to disk, as
shown in Fig. 5.

To understand how these numbers compare to other re-
play tools, we compared our time overheads to those re-
ported for other replay tools on similar data-intensive pro-
grams. PRES [31] reports an overhead of 43% when record-
ing all basic blocks while running MySQL, and 1977% when
recording PBZip2. R2 [24] reports an overhead of 200%
when logging all data from win32 system calls while run-
ning MySQL. iTarget [37] reports a slowdown of 58% when
performing whole program replay on BerkeleyDB. ODR [15]
reports a slowdown of nearly 400% on MySQL. Other tools
designed to collect data during normal execution on different
benchmarks report similar or larger overheads. For example,
program shepherding [28] reports up to 760% and iDNA [17]
reports an average of 1189%. In summary, the overheads of
bbr are generally low enough (with an average of 10%) to be
deployed as an online tool during normal program execution.

4.2 Reproducing Bugs
In our next experiment, we used bbr to replay different

types of bugs from real-world programs. Fig. 9 shows the
list of bugs that we tried to replay. We describe a few rep-
resentative bugs in detail in Section 4.2.1 below.

We set up the applications in a similar way as in the over-
head experiment, except that we input a request that would
expose or trigger the bug. We then terminated the appli-

cation (if it had not already terminated due to errors), and
collected the logs. Given the log, we asked bbr to reproduce
a plausible execution of the program from the last check-
point. Fig. 10 shows some statistics about the bbr execu-
tions, specifically:
• [LOC]: Number of LLVM instructions emulated.
• [# br]: Number of conditional branch values recorded.
• [Replay]: Time taken for bbr’s symbolic execution.
• [Split]: Time taken to split the generated constraints

into independent components.
• [# constr]: Total number of SMT constraints gener-

ated. Note that constraints that reduce to True are
not included, thus the number of constraints can be
smaller than number of conditional branches.
• [# groups]: Number of independent groups created.
• [# vars]: # of bit vector variables in the constraints.
• [Solve]: Time taken for parallel solving.
• [Debug?]: Whether the solved inputs can be used to

identify the original bug.
These experiments show that bbr is able to symbolically

execute a wide-range of real-world data-intensive applica-
tions and generate constraints that can be solved within a
reasonable amount of time. Most of the replay time was
spent in symbolic execution. Note that the number of con-
ditional branch values recorded is typically much fewer than
the number of constraints generated. That is because of
peephole optimizations on the constraint expressions that
bbr performs to eliminate constraints that reduces to True,
and also because some of the conditional branches are not
based on non-deterministic values in the program, so no con-
straints were generated.

4.2.1 Bug Walkthrough
Here we discuss a few bugs in detail. As discussed in Sec-

tion 2, the decrement bug in memcached was caused by the
incorrect treatment of the stored values as signed entities.
Using bbr, we were able to solve for inputs and state of the
value store that would trigger the problem. Notice that even
though bbr did not record the contents of the request from
the user, it was nonetheless able to reconstruct it given the
branching decisions recorded during parsing of the request.

For the sqlite bugs, rather than a complete database file,
the output of the solver is a combination of heap values
and a partial database file that was read while processing
the transactions since the last checkpoint. As described in
Section 3.5, these outputs cannot be used directly to run
sqlite and reproduce the bug, since the solved input file is
incomplete. However, these solved values can still help de-
velopers debug. For instance, the collation bug was caused
by an error in the implementation of the comparison oper-
ator between two expression trees, causing it to return the
wrong cached value rather than performing the actual com-
parison. Using the solved values from the partial replay and
the branch log, we were able to observe the error by tracking
the solved values that were used as inputs to the comparison
function, thanks to the bbr debugger. When invoked with
those values, the function returns the incorrect value that
triggers the bug.

For the bugs in tcpdump, bbr solved for the contents of
the incoming packets that cause the infinite loops. While
the contents were not exactly identical to the original ones,
we have verified that they cause the same problems when
fed into tcpdump.

sqlite cast Error in the processing of queries with multiple selection predicates when one of the predicates involves a cast.
The code mistakenly reuses the results from the predicate without the cast for those with the cast [5].

sqlite join Error in processing natural self-joins. Mistake in identifying the table to join leads to returning extra rows [6].
sqlite collate In the processing of aggregates, the code mistakenly treats aggregates with collation and without collation as

equivalent. As a result, instead of executing each aggregate the cached results are returned [7].
memcached decr Error in treating unsigned entities as signed leads to the wrong value being returned as a result of decrement [1].
memcache CAS When a part of an existing value is updated, the code forgets to updates its CAS (a unique identifier for the

value), leading to the same CAS being returned both before and after the update, violating the specification [8].
tcpdump BGP The code for displaying BGP packets contains an error in the checking of the loop condition that always returns

true. As a result, the loop never terminates [9].
tcpdump ISIS In printing ISIS packets, the code does not update how many bytes have been processed. Because of that, the

printing code goes into an infinite loop. This is a different bug than the one above [10].
tcpdump RSVP The code for displaying RSVP packets does not check if the end of packet has been reached. As a result, the

printing code goes into an infinite loop. This is a different bug than those above [11].
betaftpd char Betaftpd does not properly handle non-Latin characters (such as ‘á’). As a result, it returns not found when a

user requests a file with such characters as filename, even though the file exists.
thttpd defang When returning an error message to a http request, the code expands ‘>’ and ‘<’ characters into their HTML

equivalents. However, it forgets to check if it has already reached the end of the buffer allocated to hold the
escaped error message, thus leading to a write out of bounds error [12].

ghttpd CGI When generating the pathname for a CGI, the code simply concats the names of the CGI directory and the CGI
executable together, without checking whether the length of the result exceeds the preallocated buffer [13].

ghttpd log The request logging code in ghttpd does not check the length of the filename in the GET request. As a result, it
can write into memory that is beyond the size of the buffer preallocated to hold the log message [14].

Figure 9: Description of bugs replayed

Bug LOC # br Replay Split # constr # groups # vars Solve Debug?

sqlite cast 2420548 83883 1225s 2s 86245 2140 11320 5hr Y
sqlite join 1705078 149762 1011s 4s 71596 2891 11127 4hr Y

sqlite collate 2546778 132084 820s 2s 67890 1272 9750 3hr Y
memcached decr 8708 1744 286s 0.67s 811 158 1342 13s Y
memcached CAS 24837 2249 1955s 3.74s 1705 265 2483 158s Y
tcpdump BGP 2947998 247161 31s 0.08s 13476 147 362 1s Y
tcpdump ISIS 61769562 4634390 370s 0.65s 235081 86 228 5s Y

tcpdump RSVP 1108294 83341 93.8s 0.03s 11541 233 233 1s Y
betaftpd char 122036 9869 7s 0.01s 950 106 358 1s N
thttpd defang 514879 55521 542s 1.06s 21003 2153 6105 2s Y
ghttpd CGI 352710 31297 40s 0.01s 8553 728 784 2s Y
ghttpd log 344662 45054 40s 0.01s 8570 698 753 1s Y

Figure 10: Replay experiment results

In general, for all of the bugs that bbr was able to replay,
even though the solved instances of the database contents
/ network packets / http requests / etc are not necessar-
ily the exact same one as in the original input, they still
exhibit the errors. This illustrates the power of our ap-
proach – recording branches and a few extra pieces of data
is enough for developers to debug the problem in hand. Also,
observe that without using bbr’s partial replay ability, in or-
der to replay these bugs it would be necessary to record all
non-deterministic data from the beginning, or take periodic
snapshots of the heap, which would be very costly as demon-
strated. In both cases, there is a a huge overhead in both
time and data log sizes. Furthermore, as our experiment
shows, the longer the program runs, the worse the problem
becomes.

bbr failed to replay the betaftpd non-Latin character bug.
This is because the bug was caused by the lack of checking
the characters that are read from the incoming socket be-
fore passing them to open. The constraints generated from
symbolic execution simply bound the length of the file re-
quested (since the code checks for ‘\0’), but not the contents
that were read (this is precisely the reason why the bug ex-
ists). As a result, the solver returned a random filename that
does not trigger the bug when re-executed. While the devel-
oper can use the bbr debugger to request another plausible
value for the filename, it is unlikely that she will be able to
hit upon one that causes the problem within a reasonable
amount of time given the unconstrained nature of the bug.
This illustrates a limitation of bbr – the ability to recon-

struct a trace that leads to the problem relies on the fact
that the buggy execution is sufficiently bound by the bbr
logs. Otherwise, the solver might return a trace that does
not trigger the error, even though it is branch-deterministic.

Finally, we note that for a few of these bugs (e.g., those
from ghttpd), it is possible to replay them by just recording
the incoming requests after the last checkpoint, since they
do not involve the internal state of the program. However,
it would be very difficult for a developer to know a priori
whether the bugs that her program exhibits will involve the
internal state of the application or not, unless the applica-
tion keeps no internal state whatsoever, which is highly un-
likely. For instance, the sqlite and memcached bugs are re-
lated to the internal state of the program (in particular, the
cached values in memory). Thus, it would not be possible
to replay such bugs simply by recording incoming requests.

4.3 Constraint Splitting
Next, we look at the effectiveness of splitting constraints

into independent groups, using ghttpd and betaftpd as ex-
amples. We replayed different number of requests coming
into the two servers and measured the solving time. We
chose these two applications since they have relatively simple
internal states, and each incoming request should be inde-
pendent from each other in terms of the constraints that are
generated. We compared the time taken to solve the gener-
ated constraints all at once from a single file (Single), and the
total time needed to solve the split constraints, using 1000
threads for the parallel solver on a 4 core machine (Split).

reqs # const. # vars # groups single split

ghttpd web server
5 8547 750 698 8s 1s
10 20383 1923 823 20s 5s
50 60384 5330 2314 32m 6m

betaftpd ftp server
5 960 358 106 2s 1s
10 1534 533 210 40s 10s
50 13223 1903 530 40m 13m

Figure 11: Constraint splitting experiment results

The results are of the experiment are shown in Fig. 11.
The results show a huge difference between parallel and

single-threaded solving. We believe that one possible rea-
son for the substantial slowdown in the single-threaded case
is because of cache misses when the input problem size be-
comes large. We have also noticed that the solver frequently
suffers from memory thrashing in the single-threaded case
(on a machine with 24GB of physical RAM), which further
contributes to the slowdown. While one might argue that
this is a relatively obvious way to speed up solving, we have
compared our results with different solver implementations
(Z3, yices, stp), and none of them seem to have this feature
in place, possibly because constraint solvers are traditionally
targeted to solving instances where most variables are re-
lated, but not instances with a large number of independent
components. Given that the time needed to do constraint
splitting is relatively small as compared to the replay time
(as shown in Fig. 10), it appears worthwhile to use parallel
solving for replay.

4.4 Memory Model Implementation
Lastly, we looked at the performance differences between

different memory models in our replay engine. As discussed
in Section 3.2, bbr models memory as a conceptual map-
ping from program variables to constraint expressions. In-
ternally, this is implemented using two maps, one that maps
program variables to memory locations, and one that maps
memory locations to contents in memory. There are differ-
ent ways to implement the second map. We experimented
with several different implementations for a 32-bit memory
(i.e., addresses are 32-bit each) and compared the time it
took to symbolically execute three different small programs:

1. [wc]: word count on an empty file (37k LLVM LOC).
2. [db connect]: a simple application that connects to a

sqlite database (66k LLVM LOC).
3. [db query]: application that connects and issues a

select query to a sqlite database (341k LLVM LOC).
Debug printouts were turned on so they took longer to

run. The different memory model implementations include:
1. A single Z3 bit vector array [Z3 bit vector(8)→ Z3 bit

vector(8)]. This is the most general representation based
on the theory of arrays.

2. For an allocation site of n bytes, create a Z3 bit vector
of length 8n, with the entire memory modeled as a std::map

[uint → Z3 bit vector(8n)].
3. A single std::map [uint → Z3 bit vector(8)].
4. A Z3 bit vector array for each allocation site, with the

entire memory modeled as a single std::map [uint → Z3
bit vector array].

5. For an allocation site of n bytes, create a std::vector

of size n, with each entry being an 8-bit Z3 bit vector to
model a byte, and the entire memory is modeled as a single
std::map [uint → std::vector of Z3 bit vector(8)].

Impl. # wc db connect db query

1 13m 52m >1hr
2 >1hr crashed crashed
3 8m 15m >1hr
4 15m 35m >1hr
5 47s 1.9m 17m
6 10s 42s 2m

Figure 12: Memory modeling experiment results

6. We built our own data structure to represent a bit vec-
tor and implemented a number of peephole optimizations.
A single std::map [custom bit vector(8) → custom bit vec-
tor(8)] is then used to model memory. This is the implemen-
tation we used for the operations described in Section 3.2.2.

Fig. 12 reports different memory model implementations
and their replay times. “crashed” means the experiment ex-
hausted the address space on a 32-bit machine and crashed.
As the experiment shows, using the Z3 theory of arrays in-
curs a substantial replay overhead in real programs, since
each read / write to the array potentially creates a new ar-
ray data structure. Using Z3 bit vectors still incurs some
overhead in the solver, possibly due to housekeeping rou-
tines such as structural hashing. Note that the programs
above were replayed from the entry point and no memory
aliases were involved. We anticipate that the performance
of the first 5 implementations to perform much worse in
partial replay with memory aliases, and thus built our own
representation of expressions at the end.

5. RELATED WORK
A number of bug replay tools based on symbolic execution

have been proposed recently. However, to our knowledge,
no tools support partial symbolic replay for long running
programs, which fundamentally distinguishes our approach.
In [19], the authors proposed to record input traces during
execution, and perform symbolic execution to generate bug
cases for the developer. However, they used a trace logger
with high overhead [17], and it is not clear if their approach
is scalable to long-running programs. ESD [40] uses a path
searching approach similar to model checking to reproduce
bugs. It has no runtime overhead, but requires a coredump,
makes no guarantee regarding how long it would take to
regenerate the bug, and is tricky to use for replaying non-
crash or hang bugs. ODR [15] targets multicore bugs and
collects data traces during normal execution. They report a
substantial runtime overhead because of data collection and
also a long solving time. PRES [31] is similar to ODR but
reproduces bugs iteratively with significant slowdowns.

Replaying executions deterministically from data logs has
been a topic in systems research for many years, with the
emphasis on using different mechanisms to reduce the run-
time overhead and log sizes [30, 33, 22, 17, 25] and recording
at the operating systems level rather than application level
[27]. Recent tools such as R2 [24] and iTarget [37] allow
users to decide what data to be logged in order to reduce
recording overhead, but at the expense of not being able to
reproduce all executions. These tools generally have higher
runtime overheads for data-intensive programs than bbr.

At the other end are techniques that automatically find
bugs without any inputs. These range from static analysis
tools [16, 21, 29] to dynamic tools such as model checkers
[36, 38]. Advances in SMT solvers and symbolic execution
have enabled new test generation tools such as concolic test-
ing [32, 34] and other test generators based on symbolic ex-

ecution [23, 18]. These tools focus on finding all sorts of
bugs, rather than reproducing a specific bug in hand.

Our memory model is inspired by the work done in test
generation for languages that include pointer operations.
In [35], the authors proposed a memory model that main-
tains heaps for different types of objects and introduces con-
straints to enforce the disjointness among the different ob-
ject heaps. bbr imposes similar assumptions on object types
and their alias properties. In [20], the authors proposed a
region-based approach, with each address represented by a
memory location object similar to that in bbr, and each lo-
cation can point to different concrete addresses depending
on alias resolution. In [39], a hybrid memory model was
proposed with a concrete store and a symbolic store im-
plemented using theory of arrays, which led to our initial
memory model implementation. There is similar work in
languages without explicit pointer constructs such as [26].

6. CONCLUSIONS
We presented bbr, a branch-deterministic replayer that

performs low-overhead replay by logging only a small amount
of data at runtime. We also proposed the notion of par-
tial replay, which allows users to replay long running data-
intensive programs with bounded log sizes. To make our
approach scale, we introduced several new techniques, in-
cluding a new memory model for handling aliased addresses,
and a partitioning approach for parallel solving. We showed
that these techniques allow bbr to efficiently replay a num-
ber of data-intensive programs, and can reproduce real bugs
in long-running programs, including sqlite and several web
servers.

7. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable feed-

back. We also thank Lidong Zhou, Vijay Ganesh, and Niko-
laj Bjørner for their helpful discussions.

References
[1] http://code.google.com/p/memcached/issues/detail?id=21.
[2] http://www.uclibc.org.
[3] http://research.microsoft.com/en-

us/um/redmond/projects/z3/.
[4] http://www.tpcc.org.
[5] http://www.sqlite.org/src/info/eb5548a849.
[6] http://www.sqlite.org/src/info/b73fb0bd64.
[7] http://www.sqlite.org/src/info/360c6073e197.
[8] http://code.google.com/p/memcached/issues/detail?id=15.
[9] CVE-2005-1279.

[10] CVE-2005-1278.
[11] CVE-2005-1280.
[12] CVE-2003-0899.
[13] CVE-2001-0820.
[14] CVE-2002-1904.
[15] G. Altekar and I. Stoica. Odr: output-deterministic replay

for multicore debugging. In SOSP, pages 193–206, 2009.
[16] T. Ball, R. Majumdar, T. D. Millstein, and S. K.

Rajamani. Automatic predicate abstraction of c programs.
In PLDI, pages 203–213, 2001.

[17] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,
R. Murray, M. Drinić, D. Mihočka, and J. Chau.
Framework for instruction-level tracing and analysis of
program executions. In Proceedings of the 2nd
international conference on Virtual execution
environments, VEE ’06, pages 154–163, 2006.

[18] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In OSDI, pages 209–224, 2008.

[19] M. Castro, M. Costa, and J.-P. Martin. Better bug
reporting with better privacy. In ASPLOS, pages 319–328,
2008.

[20] B. Elkarablieh, P. Godefroid, and M. Y. Levin. Precise
pointer reasoning for dynamic test generation. In ISSTA,
pages 129–140, 2009.

[21] D. R. Engler and K. Ashcraft. Racerx: effective, static
detection of race conditions and deadlocks. In SOSP, pages
237–252, 2003.

[22] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In USENIX Annual
Technical Conference, pages 289–300, 2006.

[23] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated
whitebox fuzz testing. In NDSS, 2008.

[24] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An application-level kernel
for record and replay. In OSDI, pages 193–208, 2008.

[25] J. Huang, P. Liu, and C. Zhang. Leap: lightweight
deterministic multi-processor replay of concurrent java
programs. In SIGSOFT FSE, pages 207–216, 2010.

[26] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In
TACAS, pages 553–568, 2003.

[27] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
USENIX Annual Technical Conference, pages 1–15, 2005.

[28] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. In USENIX Security
Symposium, pages 191–206, 2002.

[29] R. Manevich, M. Sridharan, S. Adams, M. Das, and
Z. Yang. Pse: explaining program failures via postmortem
static analysis. In SIGSOFT FSE, pages 63–72, 2004.

[30] R. H. B. Netzer and M. H. Weaver. Optimal tracing and
incremental reexecution for debugging long-running
programs. In PLDI, pages 313–325, 1994.

[31] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu. Pres: probabilistic replay with execution
sketching on multiprocessors. In SOSP, pages 177–192,
2009.

[32] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In ESEC/SIGSOFT FSE, pages
263–272, 2005.

[33] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and
deterministic replay for software debugging. In USENIX
Annual Technical Conference, pages 29–44, 2004.

[34] N. Tillmann and J. de Halleux. Pex-white box test
generation for .net. In TAP, pages 134–153, 2008.

[35] D. Vanoverberghe, N. Tillmann, and F. Piessens. Test
input generation for programs with pointers. In TACAS,
pages 277–291, 2009.

[36] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with java pathfinder. In ISSTA, pages 97–107,
2004.

[37] M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo,
H. Guo, L. Zhou, and Z. Zhang. Language-based replay via
data flow cut. In FSE-18, 2010.

[38] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,
F. Long, L. Zhang, and L. Zhou. Modist: Transparent
model checking of unmodified distributed systems. In
NSDI, pages 213–228, 2009.

[39] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. R. Engler.
Automatically generating malicious disks using symbolic
execution. In IEEE Symposium on Security and Privacy,
pages 243–257, 2006.

[40] C. Zamfir and G. Candea. Execution synthesis: a technique
for automated software debugging. In EuroSys, pages
321–334, 2010.

	Introduction
	Overview
	Preparing for Replay
	Runtime Monitoring
	Symbolic Replay
	Solving and Debugging

	bbr Design
	Instrumentation for Recording
	Replayer Design
	Modeling State
	Symbolic Execution of Memory Operations
	External Function Calls
	File Descriptors and Network Sockets

	Soundness and Completeness
	Parallel Constraint Solver
	Using the output of the solver

	Experiments
	Overhead Experiments
	Reproducing Bugs
	Bug Walkthrough

	Constraint Splitting
	Memory Model Implementation

	Related Work
	Conclusions
	Acknowledgements

