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Building social networking apps 
using phone data 

•  Mobile phones now come with various 
sensors 
– Accelerometer 
– GPS 
– Proximity 

 

•  Data collected from sensors can be used 
to automatically generate events 
– Enables new social networking apps 
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LifeJoin: Automatic generation of 
interesting events 
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Event Ratings 

Learned model 

Inferred events 



Learning example 

•  Given labeled data: 

 
 
•  Possible classifier: 

(User = Joe) and  
(location = Office or location = Bar) and  
(time < 7 am or time > 10pm) 
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User Location Time Interested? 

Joe Office 10am N 

Bill Home 3pm N 

Joe Office 11pm Y 

Joe Bar 6am Y 



Applying machine learning to 
LifeJoin  

•  Does not create decomposable models 
 

•  Need to encode inputs into feature 
space representation 
– Create substantial time and space overhead 

•  Events are highly personalized  
– Hard to leverage labeled data from others 
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(User = Joe) and  
(location = Office or location = Bar) and    vs.    0.25x1 + 0.65x2 > 0   
(time < 7 am or time > 10pm) 
 



Intro to program synthesis 

10/30/2012 CIKM 2012 6 

Input-output spec 
 

f(5) = 12   f(10) = 22 

  Search space grammar 
 
f(x) { return expr(x); } 
expr(x)  ::=  n  

  |   x 
  |  expr(x) + expr(x) 

f(x) { return x + x + 2; } 

Forms hypothesis  

Test on spec 
Symbolic encoding of 

search space 

Program  
Synthesizer 



Applying synthesis to LifeJoin 
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                   Input-output spec 
Interest([Peter, jog, Charles, 5PM]) = Y  
Interest([Mary, office, 9AM]) =  N 
                                … 

    Search space grammar 
 
interest(e) { act(e) |  loc(e) |  

         act(e) & loc(e) | …} 
 
act(e)  ::=  e.user = u 

       |  e.activity = a 
       |  e.time = t 
       |  act(e) & act(e) 

               … 
 

interest(e)  
{ e.user = Peter and 
   e.activity = jog   
}  

Generalization 
guarantees 

Active learning 

Program  
Synthesizer 

interest(e)  
{ e.user ≠ Mary and 
   e.time > 4PM 
}  

Shortcomings: 



Our new hybrid approach 
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Labeled 
data 

Program  
Synthesizer 

user = Peter and  
activity = jog  

Interest 
grammar 

user ≠ Mary and  
time > 4PM 

Interest functions 



SVM features 

Our new hybrid approach 
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Labeled 
data 

Program  
Synthesizer 

user = Peter 

Interest 
grammar 

SVM 
Program  

Synthesizer 

SVM model 
 

SVs 

Interest 
grammar 

Symbolic 
encoding of 
search space 

Labeled 
data 

Generalization 
guarantees Decomposable 

model  

user = Peter 
and  

time > 4PM 

activity = jog 

user ≠ Mary  

time > 4PM 

Active learning 



Experimental results 

•  Implemented different feature selection algorithms 
and classifiers 
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Name Feature selection Classification  

Linear None Linear SVM 

Poly Unary features only Poly. kernel SVM 

L1 LASSO Linear SVM 

MI Mutual information Linear SVM 

Tree C4.5 on unary features Linear SVM 

Hybrid Features extracted from 
10 synthesized functions 

Linear SVM 
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Hybrid 
Decision tree 
Mutual info + SVM 
Lasso + SVM 
Poly kernel  

Experimental results:  
active learning 
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Hybrid approach has a 
much faster learning rate 



Learning user interests in LifeJoin 

•  Learning user interests from phone data 
poses new challenges 

•  Combine machine learning algorithms 
and programming synthesis techniques 
to solve the learning problem 

10/30/2012 CIKM 2012 12 

http://people.csail.mit.edu/akcheung 


