
Can Machine Learning Be Secure?

Marco Barreno Blaine Nelson Russell Sears Anthony D. Joseph J. D. Tygar
Computer Science Division

University of California, Berkeley

{barreno,nelsonb,sears,adj,tygar}@cs.berkeley.edu

ABSTRACT
Machine learning systems offer unparalled flexibility in deal-
ing with evolving input in a variety of applications, such as
intrusion detection systems and spam e-mail filtering. How-
ever, machine learning algorithms themselves can be a target
of attack by a malicious adversary. This paper provides a
framework for answering the question, “Can machine learn-
ing be secure?” Novel contributions of this paper include
a taxonomy of different types of attacks on machine learn-
ing techniques and systems, a variety of defenses against
those attacks, a discussion of ideas that are important to
security for machine learning, an analytical model giving a
lower bound on attacker’s work function, and a list of open
problems.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses); I.5.1 [Models]: Statistical;
I.5.2 [Design Methodology]

General Terms
Security

Keywords
Adversarial Learning, Computer Networks, Computer Secu-
rity, Game Theory, Intrusion Detection, Machine Learning,
Security Metrics, Spam Filters, Statistical Learning

1. INTRODUCTION
Machine learning techniques are being applied to a growing
number of systems and networking problems, particularly
those problems where the intention is to detect anomalous
system behavior. For instance, network Intrusion Detection
Systems (IDS) monitor network traffic to detect abnormal
activities, such as attacks against hosts or servers. Machine
learning techniques offer the benefit that they can detect
novel differences in traffic (which presumably represent at-
tack traffic) by being trained on normal (known good) and
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attack (known bad) traffic. The traditional approach to de-
signing an IDS relied on an expert codifying rules defining
normal behavior and intrusions [26]. Because this approach
often fails to detect novel intrusions, a variety of researchers
have proposed incorporating machine learning techniques
into intrusion detection systems [1, 16, 18, 24, 38, 41]. On
the other hand, use of machine learning opens the possibility
of an adversary who maliciously “mis-trains” a learning sys-
tem in an IDS. A natural question arises: what techniques
(in their attacks) can an adversary use to confuse a learning
system?

This paper explores the larger question, as posed in the ti-
tle of this paper, can machine learning be secure? Specific
questions that we examine include:

• Can the adversary manipulate a learning system to
permit a specific attack? For example, can an attacker
leverage knowledge about the machine learning system
used by a spam e-mail filtering system to bypass the
filtering?

• Can an adversary degrade the performance of a learn-
ing system to the extent that system administrators
are forced to disable the IDS? For example, could the
attacker confuse the system and cause valid e-mail to
be rejected?

• What defenses exist against adversaries manipulating
(attacking) learning systems?

• More generally, what is the potential impact from a se-
curity standpoint of using machine learning on a sys-
tem? Can an attacker exploit properties of the ma-
chine learning technique to disrupt the system?

The issue of machine learning security goes beyond intru-
sion detection systems and spam e-mail filters. Machine
learning is a powerful technique and has been used in a va-
riety of applications, including web services, online agent
systems, virus detection, cluster monitoring, and a variety
of applications that must deal with dynamically changing
data patterns.

Novel contributions of this paper include a taxonomy of dif-
ferent types of attacks on machine learning techniques and
systems, a variety of defenses against those attacks, a dis-
cussion of ideas that are important to security for machine



learning, an analytical model giving a lower bound on at-
tacker’s work function, and a list of open problems.

The rest of this paper is organized as follows: Section 2 dis-
cusses machine learning and how it is typically used in a
system, Section 3 develops a taxonomy of attacks, Section 4
introduces potential defenses against attacks and explores
their potential costs, Section 5 identifies several of the ideas
that are important to security for machine learning, Sec-
tion 6 presents an analytical model that examines an attack
to manipulate a naive learning algorithm, Section 7 discusses
related work, potential research directions, and our conclu-
sions.

2. REVIEW
2.1 The Learning Problem
A machine learning system attempts to find a hypothesis
function f that maps events (which we call points below)
into different classes. For example, an intrusion detection
system would find a hypothesis function f that maps an
event point (an instance of network behavior) into one of
two results: normal or intrusion.

One kind of learning system called supervised learning works
by taking a training data set together with labels identifying
the class for every point in the training data set.

For example, a supervised learning algorithm for an IDS
would have a training set consisting of points correspond-
ing to normal behavior and points corresponding to intru-
sion behavior. The learning algorithm selects the hypothesis
function f that best predicts the classification of a point.
More complicated learning algorithms can deal with event
points that are both labeled and unlabeled and furthermore
can deal with continuous streams of unlabeled points so that
training is an ongoing process. In this paper, we call these
algorithms online learning systems.

This remainder of this subsection presents a concise overview
of concepts in statistical learning theory. The presentation
below is formal and can be skipped on a first reading. For
a fuller discussion with motivation, refer to [11, 31].

A predictive learning problem is defined over an input space
X , an output space Y, and a loss function ` : Y × Y → R.
The input to the problem is a training set S, specified as
{(xi, yi) ∈ X × Y}, and the output is a hypothesis function
f : X → Y. We choose f from a hypothesis space (or func-
tion class) F to minimize the prediction error given by the
loss function. In many cases, researchers assume stationar-
ity, that the distribution of data points encountered in the
future will be the same as the distribution of the training
set. Stationarity allows us to reduce the predictive learning
problem to a minimization of the sum of the loss over the
training set:

f∗ = argmin
f∈F

X
(xi,yi)∈S

`(f(xi), yi) (1)

Loss functions are typically defined to be non-negative over
all inputs and zero when f(xi) = yi. A commonly used loss
function is the squared-error loss `sq(f(xi), y) = (f(xi)−y)2.

The hypothesis space (or function class) F can be any repre-
sentation of functions from X to Y, such as linear functions,
polynomials, boolean functions, or neural networks. The
choice of F involves a tradeoff between expressiveness and
ability to generalize. If F is too expressive, it can overfit
the training data. The extreme case is a lookup table that
maps xi to yi for each instance of the training set but will
not generalize to new data. A linear function, on the other
hand, will generalize what it learns on the training set to
new points, though it may not be sufficiently expressive to
describe intricate data sets. We typically use simple func-
tion classes, such as linear functions, to avoid overfitting.

We can describe a more general learning problem by drop-
ping the requirement that the training examples include all
the labels yi. The case where all labels are present is referred
to as supervised learning, when no labels are present the
problem is unsupervised, and when some labels are present
the problem is semi-supervised. In all these cases we can
pose the learning problem as the minimization of some mea-
sure over the training set:

f∗ = argmin
f∈F

X
(xi)∈S

L(xi, f) (2)

2.2 Terminology and Running Example
To illustrate some of our contributions, we use a running ex-
ample throughout this paper: a network Intrusion Detection
System (IDS). This IDS receives network events x ∈ X and
classifies each event x as either f(x) = normal or f(x) =
intrusion. The literature describes a number of algorithms
for learning f over time, but we wish to consider the impact
of malicious input on the learning algorithm. This paper
poses the question: can a malicious party send events to the
IDS that will cause it to malfunction? Possible types of at-
tacks on the IDS include attacks on the learning algorithm,
causing the IDS to create an f that misclassifies events. As
we discuss in the next section, this is only one of a number
of types of attacks that an adversary can make on an IDS.

It is important to be careful about notation here. When we
speak of attacks, we mean an attack on the learning system
(e.g., the learner in an IDS). Attacks may try to make the
learner mis-learn, fail because of denial of service, report
information about its internal state, etc. “Attack” should be
distinguished from “intrusion.” An attack targets a learning
system; an intrusion targets a computer system (such as a
system protected by an IDS). While many researchers use
the word “attack” to include intrusions, in this paper we are
careful to use the word “attack” only to mean an attack on
a learner.

We do not want to restrict ourselves to particular learning
algorithms used by intrusion detection systems to choose
hypotheses. However, we allow adversaries that have deep
understanding of the learning algorithms.

Similarly, we do not discuss mechanisms for translating net-
work level events into a form relevant to the learner. We call
each unit of data seen by the learner a data point, or simply
a point. In the context of the IDS, our discussion encom-
passes continuous, discrete, or mixed data. We assume that
X is a metric space, allowing us to freely discuss distances



Integrity Availability

Causative: Targeted Permit a specific intrusion
Create sufficient errors to make sys-
tem unusable for one person or ser-
vice

Indiscriminate Permit at least one intrusion
Create sufficient errors to make
learner unusable

Exploratory : Targeted
Find a permitted intrusion from a
small set of possibilities

Find a set of points misclassified by
the learner

Indiscriminate Find a permitted intrusion

Table 1: The attack model.

between points. Furthermore, we assume the set of points
classified as normal by the IDS forms multiple contiguous
subsets in X . The border of this set is called the decision
boundary.

Below, we consider a variety of scenarios and assumptions.

3. ATTACKS
3.1 Attack Model
We give relevant properties for analyzing attacks on machine
learning systems.

Influence

Causative - Causative attacks alter the training pro-
cess through influence over the training data.

Exploratory - Exploratory attacks do not alter the
training process but use other techniques, such as
probing the learner or offline analysis, to discover
information.

Specificity

Targeted - The specificity of an attack is a continu-
ous spectrum. At the targeted end, the focus of
the attack is on a particular point or a small set
of points.

Indiscriminate - At the indiscriminate end, the ad-
versary has a more flexible goal that involves a
very general class of points, such as “any false
negative.”

Security violation

Integrity - An integrity attack results in intrusion
points being classified as normal (false negatives).

Availability - An availability attack is a broader class
of attack than an integrity attack. An availabil-
ity attack results in so many classification errors,
both false negatives and false positives, that the
system becomes effectively unusable.

These three axes define a space of attacks; Table 1 provides
a concise summary.

In causative attacks, the adversary has some measure of con-
trol over the training of the learner. An attack that causes
the learner to misclassify intrusion points, for example an

attack that fools an IDS into not flagging a known exploit
as an intrusion, is a causative integrity attack. The distinc-
tion between targeted and indiscriminate causative integrity
attacks is the difference between choosing one particular ex-
ploit or just finding any exploit. A causative availability
attack causes the learner’s performance to degrade. For ex-
ample, an adversary might cause an IDS to reject many le-
gitimate HTTP connections. A causative availability attack
may be used to force the system administrator to disable
the IDS. A targeted attack focuses on a particular service,
while an indiscriminate attack has a wider scope.

Exploratory attacks do not attempt to influence learning;
they instead attempt to discover information about the state
of the learner. Exploratory integrity attacks seek to find
intrusions that are not recognized by the learner.

3.2 Online Learning
A learner can have an explicit training phase or can be
continuously trained (online learner). Online learning al-
lows the learner to adapt to changing conditions; the as-
sumption of stationarity is weakened to accommodate long-
term changes in the distribution of data seen by the learner.
Online learning is more flexible, but potentially simplifies
causative attacks. By definition, an online learner changes
its prediction function over time, so an adversary has the op-
portunity to shape this change. Gradual causative attacks
may be difficult to detect.

4. DEFENSES
In this section we discuss potential defenses against attacks.
This section describes speculative work, and the efficacy of
these techniques in practice is a topic for future research.

4.1 Robustness
To increase robustness against causative attacks we con-
strain the class of functions (hypotheses) that the learner
considers. The constraint we consider is the statistical tech-
nique of regularization. Regularization extends the basic
learning optimization in Equation (1) by adding a term J(f)
that penalizes complex hypotheses:

f∗ = argmin
f∈F

8<: X
(xi,yi)∈S

`(f(xi), yi) + λJ(f)

9=; (3)

Here λ adjusts the trade-off. The penalty term J(f) can
be as simple as the sum of squares of the parameters of f .
Regularization is used in statistics to restrict or bias the
choice of hypothesis when the problem suffers from lack of



Integrity Availability

Causative: Targeted
• Regularization

• Randomization

• Regularization

• Randomization

Indiscriminate • Regularization • Regularization

Exploratory : Targeted
• Information hiding

• Randomization
• Information hiding

Indiscriminate • Information hiding

Table 2: Defenses against the attacks in Table 1.

data or noisy data. It can also be interpreted as encoding a
prior distribution on the parameters, penalizing parameter
choices that are less likely a priori. Regularization and prior
distributions can both be viewed as penalty functions in
Equation (3) [42].

The constraint added to the learning problem by the penalty
term may help our defenses in two ways. First, it has the ef-
fect of smoothing the solution, removing complexity that an
adversary might exploit in attacks. Second, prior distribu-
tions can be a useful way to encode expert knowledge about
a domain or use domain structure learned from a preprocess-
ing step. In the simplest case, we might have a reasonable
guess for the parameters (such as the mean) that we wish
to refine; in a more complex situation, we could perform an
analysis of a related dataset giving correlation information
which informs a multivariate Gaussian prior on the param-
eters [28]. When the learner has more prior information (or
constraints) on which to base the learning, there is less de-
pendence on exact data fitting, so there is less opportunity
for the adversary to exert influence over the learning process.

4.2 Detecting Attacks
The learner can benefit from the ability to detect attacks
even if they are not prevented. Detecting attacks can be dif-
ficult even when the adversary is not attempting to conceal
them. However, we may be able to detect causative attacks
by using a special test set. This test set could include sev-
eral known intrusions and intrusion variants, as well as some
random points that are similar to the intrusions. After the
learner has been trained, misclassifying a disproportionately
high number of intrusions could indicate compromises.

To detect naive exploratory attacks, a separate clustering
algorithm could be run against data classified by the learner.
The sudden appearance of a large cluster near the decision
boundary could indicate systematic probing. This type of
defense is akin to port scan detection, which has become an
arms race between port scanners and IDS [26].

Detecting an attack gives the learner information about the
adversary’s capabilities. This information may be used to
reformulate defense strategies.

As the adversary’s control over the data increases, the best

strategy for the learner is to ignore potentially tainted data.
Otherwise, the adversary can exploit misplaced trust. These
ideas have been formalized within the context of deception
games [14, 32], which typically assume all players know the
extent to which other players may manipulate data. How-
ever, if the parties estimate each other’s abilities, more so-
phisticated strategies emerge.

4.3 Disinformation
In some circumstances, the learner may be able to alter the
data seen by the adversary. This strategy of disinformation
has the goal of confusing the adversary’s estimate of the
learner’s state. In the simplest case, the adversary would
then be faced with a situation not unlike a learner under
an indiscriminate causative availability attack. The goal of
the learner is to prevent the adversary from learning the
decision boundary. Please note how the roles of adversary
and learner have been reversed.

A more sophisticated learner could trick the adversary into
believing that a particular intrusion was not included in the
training set. This apparently permitted “intrusion” would
act as a honeypot [27], causing the adversary to reveal itself.
An increase in the incidence of that particular attack would
be detected, revealing the existence of an adversary. In this
case again, roles would reverse, and the adversary would face
a situation analogous to a learner subjected to a targeted
causative integrity attack.

4.4 Randomization for Targeted Attacks
Targeted attacks hinge on the classification of one point or a
small set of points. They are more sensitive to variations in
the decision boundary than indiscriminate attacks because
boundary movement is more likely to change the classifica-
tion of the relevant points.

This suggests randomization as a potential tool against tar-
geted causative attacks. In such an attack, the adversary
has to do a particular amount of work to move the decision
boundary past the targeted point. If there is some random-
ization in the placement of the boundary and the adversary
has imperfect feedback from the learner, more work is re-
quired.



4.5 Cost of Countermeasures
The more we know about the distribution of training data,
the less room there is for an adversary to manipulate the
learner. The disadvantage, however, is that the legitimate
data has less influence in the learning process. A tension
exists between expressivity and constraint: as the learner
includes more prior information, it loses flexibility to adapt
to the data, but as it incorporates more information from
the data, it becomes more vulnerable to attack.

Equation (3) makes this tradeoff explicit with λ. In the ad-
versarial scenario, this tradeoff becomes more relevant be-
cause the adversary may have influence over the data.

Randomization increases the adversary’s work, but it also
will increase the learner’s base error rate. Determining the
right amount of randomization is an open problem.

4.6 Summary of Defenses
Table 2 shows how our defenses discussed here relate to at-
tack classes presented in Table 1. (Information hiding is an
additional technique discussed in Section 5 below.)

5. DISCUSSION
5.1 Secrets and Computational Complexity
A number of defenses and attacks upon machine learning
algorithms hinge upon the types of information available to
the adversary. Some of these involve information about the
decision boundary. Below we consider factors that influence
the security and secrecy of the decision boundary.

5.2 Scale of Training
Some machine learning systems are trained by the end user,
while others are trained using data from many users or or-
ganizations. The choice between these two models is some-
times cast as a tradeoff between the amount of training data
and the secrecy of the resulting classifier [3]. This issue also
applies to an IDS; if an IDS is trained each time it is de-
ployed then it will have comparatively little data regarding
normal network traffic. It will also have no chance to learn
about novel intrusions before seeing them in the wild.

Conversely, an IDS that uses a global set of rules would
be able to adapt to novel intrusion attempts more quickly.
Unfortunately, any adversary with access to a public IDS
classification function can test to ensure that its intrusion
points will be accepted by deployments of the same classifi-
cation function.

These issues are instances of a more general problem. In
some cases, it seems reasonable to assume the adversary has
little access to information available to the learner. How-
ever, unless the adversary has no prior knowledge about the
learning problem at hand, we cannot assume all of the in-
formation provided in the training set is secret. Therefore,
it is unclear how much is gained by attempting to keep the
training set, and therefore the state of the classifier, secret.

Many systems already attempt to achieve a balance between
global and local retraining [3]. Systems that take this ap-
proach have the potential to outperform systems that per-
form training at a single level. However, the relationships

between multilevel training, the adversary’s domain knowl-
edge, and secrecy are not yet well understood.

5.2.1 Adversary Observations
Even without prior knowledge regarding a particular sys-
tem, an adversary still may deduce the state of the learn-
ing algorithm. For example, if the learning system provides
feedback to the adversary (e.g., “Request denied”), then a
probing attack could be used to map the space of acceptable
inputs.

If the adversary has no information regarding the type of
decision boundary used by the learner, this process could
require a number of probes proportional to the size of the
space. On the other hand, if the adversary knows which
learning algorithm is being used, a few well-chosen probes
could give the adversary sufficient knowledge of the learner’s
state. As a standard security practice, we assume the learn-
ing algorithm itself to be common knowledge.

Instead of expecting the learning algorithm to be a secret,
some systems attempt to prevent the adversary from discov-
ering the set of features the learning algorithm uses. This
may be realistic in systems with a small number of deploy-
ments.

Ideally, we could produce an information theoretic bound
on the amount of information an adversary could gain by
observing the behavior of a particular algorithm on a par-
ticular point. Using these bounds, we could reason about
the algorithm’s robustness against probing attacks. In this
setting, it may also be interesting to distinguish between in-
formation gained from normal points drawn from the data’s
underlying distribution, intrusion points from a third party,
and (normal or intrusion) attack points of the adversary’s
choosing.

An adversary with sufficient information regarding training
data, classifications of data points, or the internal state of a
learner would be able to deduce the learner’s decision bound-
ary. This knowledge could simplify other types of attacks.

For instance, the adversary could avoid detection by choos-
ing intrusion points that will be misclassified by the learner,
or launch an availability attack by manipulating normal
points in a way that leads to misclassification. In either
case, by increasing the number of points that are in the re-
gion that the defender incorrectly classifies, the adversary
could increase the error rate.

Some algorithms classify points by translating them into an
abstract space and performing the actual classification in
that space. The mapping between raw data and the abstract
space is often difficult to reason about. Therefore, it may be
computationally difficult for an adversary to use knowledge
of a classifier’s decision boundary to generate “interesting”
attack points that will be misclassified.

One can imagine classes of decision boundaries that are
meaningful, yet provably provide an adversary with no in-
formation regarding unclassified points. Even with complete
knowledge of the state of a learner that uses such a decision
boundary, it would be computationally intractable to find



one of a few “interesting” points in a sufficiently large search
space.

In some cases, the decision boundary itself may contain sen-
sitive information. For example, knowledge of the bound-
ary may allow an adversary to infer confidential information
about the training set. Alternatively, the way the decision
boundary was constructed might be a secret.

5.2.2 Security Properties
The performance of different algorithms will likely degrade
differently as the adversary controls larger fractions of the
training set. A measurement of an algorithm’s ability to
deal with malicious training errors could help system de-
signers reason about and decide between different learners.
A simple approach would be to characterize an algorithm’s
performance when subjected to a particular type of attack,
but this would lead to an arms race as adversaries devise
classes of attacks not well represented during the evaluation
of the algorithm.

Depending on the exact nature of the classification prob-
lem, it may be possible to make statements regarding the
strength of predictions. For example, after making a classi-
fication a learning algorithm could examine the training set
for that classification. It could measure the effect of small
changes to that training set; if small changes generate large
effects, the training set is more vulnerable to manipulation.

6. THEORETICAL RESULTS
In this section we present an analytic model that examines
a causative attack to manipulate a naive learning algorithm.
The model’s simplicity yields an optimal policy for the ad-
versary and a bound on the effort required to achieve the
adversary’s objective. We interpret the resulting bound and
discuss possible extensions to this model to capture more
realistic settings.

We discuss an outlier detection technique. Outlier detection
is the task of identifying anomalous data and is a widely used
paradigm in fault detection [40], intrusion detection [23],
and virus detection [33, 34]. We find the smallest region
that contains some fixed percentage of the observed data,
which is called the support of the data’s distribution. The
outlier detector classifies points inside the support as normal
and those outside as anomalous. Outlier detection is often
used in scenarios where anomalous data is scarce or novel
anomalies could arise.

6.1 A Simple Model
One simple approach to outlier detection is to estimate the
support of the normal data by a multi-dimensional hyper-
sphere. As depicted in Figure 1(a) every point in the hyper-
sphere is classified as normal and those outside the hyper-
sphere are classified as outliers. The training algorithm fixes
the radius of the hypersphere and centers it at the mean of
the training data. The hypersphere can be fit into the learn-
ing framework presented above by a squared loss function,

`sphere(X̄, xi) =
`
xi − X̄

´2
, where X̄ is the centroid of the

data {xi}. It is easy to show that the parameter that mini-
mizes Equation (1) is the mean of the training data.

To make the hypersphere adaptive, the hypersphere is re-
trained on new data allowing for a repeated attack. To
prevent arbitrary data from being introduced, we employ a
conservative retraining strategy that only admits new points
to the training set if they are classified as normal; we say
the classifier bootstraps itself. This learning framework is
not meant to represent the state of the art in learning tech-
niques; instead, it is a illustrative technique that allows for
an exact analysis.

6.2 Attack Strategy
The attack we analyze involves an adversary determined to
alter our detector to include a specific point G by construct-
ing data to shift the hypersphere toward the target as the
hypersphere is retrained. We assume the goal G is initially
correctly classified as an anomaly by our algorithm. For in-
stance, in the IDS domain, the adversary has an intrusion
packet that our detector currently classifies as anomalous.
The adversary wants to change the state of our detector to
misclassify the packet as normal. This scenario is a causative
targeted integrity attack. Before the attack, the hypersphere
is centered at X̄0 and it has a fixed radius R. The attack is
iterated over the course of T > 1 training iterations. At the
i-th iteration the mean of the hypersphere is denoted by X̄i.

We give the adversary complete control: the adversary knows
the algorithm, its feature set, and its current state, and all
points are attack points. At each iteration, the bootstrap-
ping policy retrains on all points that were classified as nor-
mal in a previous iteration. Under this policy, the adver-
sary’s optimal strategy is straightforward — as depicted in
Figure 1(b) the adversary places points at the location where
the line between the mean and G intersects with the bound-
ary. This reduces the attack to a single dimension along
this line. Suppose that in the i-th iteration, the adversary
strategically places αi points at the i-th optimal location
achieving optimal displacement of the mean toward the ad-
versary’s goal, G. The effort of the adversary is measured
by M defined as

PT
i=1 αi.

Placing all attack points in the first iteration is not optimal.
It achieves a finite shift while optimal strategies achieve un-
bounded gains. As we discuss below, the attack strategy
must be balanced. The more points placed during an iter-
ation, the further the hypersphere is displaced on that iter-
ation. However, the points placed early in the attack effec-
tively weigh down the hypersphere making it more difficult
to move. The adversary must balance current gain against
future gain. Another tradeoff is the number of rounds of
iteration versus the total effort.

6.3 Optimal Attack Displacement
We calculate the displacement caused by a sequence {αi} of
attack points. For T iterations and M total attack points,
the function DR,T ({αi}) denotes the relative displacement
caused by the attack sequence. The relative displacement is
the total displacement over the radius of the hypersphere,
X̄T−X̄0

R
. Let Mi be defined as

Pi
j=1 αj , the cumulative

mass. Using these terms, the relative distance is

DR,T ({Mi}) = T −
TX

i=2

Mi−1

Mi
(4)



(a) Hypersphere Outlier Detection (b) Attack on a Hypersphere Outlier Detector

Figure 1: Depictions of the concept of hypersphere outlier detection and the vulnerability of naive approaches.
In Figure 1(a) a bounding hypersphere centered at X̄ of fixed radius R is used to estimate the empirical support
of a distribution excluding outliers. Samples from the “normal” distribution being modeled are indicated by
? with three outliers indicated by ⊗. Meanwhile, Figure 1(b) depicts how an adversary with knowledge of
the state of the outlier detector could shift the outlier detector toward a first goal G. It could take several
iterations of attacks to shift the hypersphere further to include the second goal G′.

where we constrain M1 = 1 and MT = M [25].

By finding an upper bound to Equation (4), we can bound
the minimal effort M∗ of the adversary. For a particular
M , we desire an optimal sequence {M∗

i } that achieves the
maximum relative displacement, DR,T (M). If the adversary
has no time constraint, the solution is M∗

i = i, which corre-
sponds to placing a single point at each iteration. However,
if the adversary expedites the attack to T < M iterations,

the optimal strategy is given by M∗
i = M

i−1
T−1 . This value

is not always an integer, so we have:

DR,T (M) ≤ T − (T − 1) ·M
−1

T−1 ≤ T (5)

6.4 Bounding the Adversary’s Effort
From these results we find a bound on the adversary’s effort
M . Since M ≥ 1 and T > 1, Equation (5) is monotonically
increasing in M . If the desired relative displacement to the
goal is DR, the bound in Equation (5) can be inverted to
bound the minimal effort M∗ required to achieve the goal.
Since DR < T , this bound is given by:

M∗ ≥
„

T − 1

T −DR

«T−1

(6)

The bound in Equation (6) gives us a worst-case bound on
the adversary’s capability when the adversary has complete
control of the learner’s training. For large relative displace-
ments DR > 1, the bound decreases exponentially as the
number of iterations is increased. The bound has a limiting
value of M∗ ≥ eDR−1. The adversary must tradeoff between
using a large number of attack points or extending the at-

tack over many iterations. A tightly-fit hypersphere with
small radius will be more robust since our displacement is
relative to its radius.

An apparent deficiency of this analysis is the weak bound of
M∗ ≥ ε where 0 < ε ≤ 1 that occurs when DR ≤ 1. This
an important range since the adversary’s goal may be near
the boundary. The deficiency comes directly from our as-
sumption of complete adversarial control. The lack of initial
non-adversarial data allows our adversary to ensure a first
step of one radius regardless of M . Therefore, the adversary
can reach the objective of DR ≤ 1 with any M ≥ 1 in a
single iteration.

A more complex model could allow for initial data. By con-
sidering an initial N training points that support the hyper-
sphere before the attack, we can obtain a stronger bound:

M∗ ≥ N
h
eDR − 1

i
(7)

This stronger bound ensures that even for small DR, the
adversary’s effort is a multiple of N that increases exponen-
tially in the desired displacement [25].

We could extend the model by adding non-adversarial data
at every training iteration, for this corresponds to scenarios
where the adversary only controls part of the data.

7. CONCLUSIONS
7.1 Related Work
The earliest theoretical work we know of that approaches
learning in the presence of an adversary was done by Kearns



and Li [15]. They worked in the context of Valiant’s Prob-
ably Approximately Correct (PAC) learning framework [35,
36], extending it to prove bounds for maliciously chosen er-
rors in the training data. Specifically, they proved that if
the learner is to perform correctly, in general the fraction
of training points controlled by the adversary must be less
than ε/(1+ ε), where ε is the desired bound on classification
errors by the learner [4, 6, 30].

Results from game theory may be relevant to adversarial
learning systems. In particular, deception games involve
players that have partial information and influence the infor-
mation seen by other players. Some of these games involve
continuous variables generated by various probability distri-
butions [5, 9, 17, 29, 32], while others apply to scenarios
with discrete states [14]. This work and adversarial learning
both ask many of the same questions, and they both address
the same underlying issues. Integration of game theoretic
concepts is a promising direction for work in this area.

Dalvi et al. examine the learn-adapt-relearn cycle from a
game-theoretic point of view [8]. In their model, the learner
has a cost for measuring each feature of the data and the
adversary has a cost for changing each feature in attack
points. If the adversary and learner have complete infor-
mation about each other and we accept some other assump-
tions, they find an optimal strategy for the learner to defend
against the adversary’s adaptations.

Research has also begun to examine the vulnerability of
learners to reverse engineering. Lowd and Meek introduce a
novel learning problem for adversarial classifier reverse engi-
neering in which an adversary conducts an attack that min-
imizes a cost function [21]. Under their framework, Lowd
and Meek construct algorithms for reverse engineering lin-
ear classifiers. Moreover, they build an attack to reverse
engineer spam filters [22].

Although they are not machine learning systems, publicly
verifiable digital watermarks also must deal with sensitiv-
ity (probing) attacks. An information theoretic analysis of
the sensitivity attack quantifies the amount of information
revealed per probe. Randomization of thresholds within
the watermark verification algorithm increase the number
of probes necessary to remove a digital watermark [19].

An interesting junction of learning and game theory has
dealt with combining advice from a set of experts to predict
a sequence with the goal of doing at least as well as the best
expert in all possible sequences [7, 13, 37]. In this domain,
adaptive weighting schemes are used to combine the ex-
perts, each accessed by how well it performs compared to the
best expert for an adversarially chosen sequence. Amongst
these schemes are the Aggregating Algorithm [37] and the
Weighted Majority Algorithm [20].

There has also been work on attacking statistical spam fil-
ters. Wittel and Wu [39] discuss the possibility of crafting
attacks designed to take advantage of the statistical nature
of such spam filters, and they implement a simple attack.
John Graham-Cumming describes implementing an attack
he calls “Bayes vs. Bayes,” in which the adversary trains
a second statistical spam filter based on feedback from the

filter under attack and then uses the second filter to find
words that make spam messages undetectable by the origi-
nal filter [10].

Methods exist to perform exact learning of a concept using
answers to a series of queries. These queries return a coun-
terexample when a “no” response is generated. In many
scenarios, it has been shown that learning is possible even
in the worst case [2].

Control theory has been proposed as an alternative to game
theory and search oriented expert-systems for military com-
mand and control systems [12]. The motivation behind this
proposal is the difficulty associated with modeling (or even
predicting) the goals of a military adversary.

7.2 Research Directions
Can machine learning be secure? Does adding machine
learning to a system introduce vulnerability? This paper
proposes a framework for understanding these questions.
We present a model for describing attacks against learn-
ing algorithms, and we analyze a simple attack in detail.
We discuss potential defenses against attacks and speculate
about their effectiveness.

Here we lay out the directions for research that we see as
most promising. To evaluate and ensure the security of ma-
chine learning, these are among the most important areas
that must be addressed:

Information

How crucial is it to keep information secret from an
adversary? If an adversary has full knowledge of the
system, are all the exploratory attacks trivial? If the
adversary has no knowledge about the system, which
attacks are still possible?

Arms race

Can we avoid arms races in online learning systems?
Arms races have occurred in spam filters. Can game
theory suggest a strategy for secure re-training?

Quantitative measurement

Can we measure the effects of attacks? Such infor-
mation would allow comparison of the security per-
formance of learning algorithms. We could calculate
risk based on probability and damage assessments of
attacks.

Security proofs

Can we bound the amount of information leaked by the
learner? If so, we can bound the accuracy of the ad-
versary’s approximation of the learner’s current state.

Detecting adversaries

Attacks introduce potentially detectable side effects
such as drift, unusual patterns in the data observed by
the learner, etc. These attacks are more pronounced
in online learning. When do these side effects reveal
the adversary’s attack?
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