
Page 1

CS194-3/CS16x
Introduction to Systems

Lecture 19

Software Flaws

October 31, 2007

Prof. Anthony D. Joseph

http://www.cs.berkeley.edu/~adj/cs16x

Lec 19.210/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Goals for Today

• Software distribution – access control, authorization, 
involuntary installation

• Enforcement

• Software security

– Can have perfect design, specification, algorithms, 
but still have implementation vulnerabilities!

• Examine common implementation flaws in C

• Implementation flaws can occur with improper use of 
language, libraries, OS, or app logic

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Slides courtesy of Kubiatowicz, AJ Shankar, George Necula, 
Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar, 
and David Wagner.

Lec 19.310/31/07 Joseph CS194-3/16x ©UCB Fall 2007

How fine-grained should access control be?

• Example of the problem:
– You buy a copy of a new game from “Joe‟s Game 
World”

– It runs with your userid and deletes all your files!!
• How can you prevent this?

– Create a games userid with no write privileges (like 
Unix „nobody‟)

– What if the game needs to write out a file 
recording scores?

» Give it write privileges to one file (or dir) to games
userid

– But what about non-game programs, such as 
Quicken?

» Create a quicken userid to prevent access to non-
quicken-related files

– But – how to get this right??? Pretty complex…

Lec 19.410/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Authorization Continued

• Principle of least privilege: programs, users, and 
systems should get only enough privileges to perform 
their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges 
is needed to run your programs?

– People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby 
dealing with the problem by means of authentication

– Fine for big, established firms such as Microsoft, since 
they can make their signing keys well known and people 
trust them

» Actually, not always fine: recently, one of Microsoft‟s 
signing keys was compromised, leading to malicious 
software that looked valid

– What about new startups?
» Who “validates” them?
» How easy is it to fool them?



Page 2

Lec 19.510/31/07 Joseph CS194-3/16x ©UCB Fall 2007

• Can I really trust software installed by computer 
maker?

• No! Most major computer manufacturers have 
shipped computers with viruses
– How? Forgot to update virus scanner on “gold” 
master PC

• Software companies, PR firms, and others 
routinely release software that contains viruses

Pre-Installed Software

Lec 19.610/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Involuntary Installation 

• What about software loaded without your consent?
– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential 
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine 

– Install software/Launch programs
• Sony Spyware (October 2005)

– About 50 recent CDs from Sony automatically install 
software when you played them on Windows machines

» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies 

and to prevent peer-to-peer sharing
– Side Effects:

» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for 

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft

Lec 19.710/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Enforcement

• Enforcer checks passwords, ACLs, etc
– Makes sure the only authorized actions take place
– Bugs in enforcerthings for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff 
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make 
private vs public?
– Hard to make sure that code is usable but only necessary 
modules are public

– Pick something in middle? Get bugs and weak protection!
Lec 19.810/31/07 Joseph CS194-3/16x ©UCB Fall 2007

State of the World

• State of the World in Security
– Authentication: Encryption

» But almost no one encrypts or has public key identity
– Authorization: Access Control 

» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole! 

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we‟re all in trouble/can‟t do anything
» What if sysop in charge of instructional resources went 

crazy and deleted everybody‟s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins 
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted 

userinstall .rhosts file granting you access



Page 3

Lec 19.910/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Some Security Problems 

• Virus:
– A piece of code that attaches itself to a program or file 
so it can spread from one computer to another, leaving 
infections as it travels

– Most attached to executable files, so don‟t get 
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport 
features

– Because it can replicate itself, your computer might send 
out  hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology 
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does 
damage once installed or run on your computer 

Lec 19.1010/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Buffer Overrun Vulnerabilities

• Most common class of implementation flaw

• C is basically a portable assembler

– Programmer exposed to bare machine

– No bounds-checking for array or pointer 
accesses

• Buffer overrun (or buffer overflow) 
vulnerabilities

– Out-of-bounds memory accesses used to 
corrupt program‟s intended behavior

Lec 19.1110/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Administrivia

• Project 2 code due Thursday 11/1

• Midterm 2 Exam: 
– Thursday 11/8 5:30-7pm, 405 Soda
– We‟ll provide pizza and drinks

Lec 19.1210/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Simple Example

• char buf[80];

void vulnerable() {

gets(buf);

}

• gets() reads all input bytes available on 
stdin, and stores them into buf[]

• What if input has more than 80 bytes?
– gets() writes past end of buf, overwriting 
some other part of memory

– This is a bug!

• Results?

– Program crash/core-dump?

– Much worse consequences possible…



Page 4

Lec 19.1310/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Modified Example

• char buf[80];

int authenticated = 0; 

void vulnerable() {

gets(buf);

}

• A login routine sets authenticated flag only 
if user proves knowledge of password

• What‟s the risk?
–authenticated stored immediately after buf

– Attacker “writes” data after end of buf

• Attacker supplies 81 bytes (81st set non-zero)
– Makes authenticated flag true!

– Attacker gains access: security breach!
Lec 19.1410/31/07 Joseph CS194-3/16x ©UCB Fall 2007

More Serious Exploit Example

• char buf[80];

int (*fnptr)();

...

• Function pointer fnptr invoked elsewhere

• What can attacker do?
– Can overwrite fnptr with any address, 
redirecting program execution! 

• Crafty attacker:

– Input contains malicious machine instructions, 
followed by pointer to overwrite fnptr

– When fnptr is next invoked, flow of control 
re-directed to malicious code

• This is a malicious code injection attack

Lec 19.1510/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Buffer Overrun Exploits

• Demonstrate how adversaries might be able 
to use a buffer overrun bug to seize control

– This is very bad!

• Consider: web server receives requests from 
clients and processes them

– With a buffer overrun in the code, malicious 
client could seize control of server process

– If server is running as root, attacker gains 
root access and can leave a backdoor

»System has been “0wned”

• Buffer overrun vulnerabilities and malicious 
code injection attacks are primary/favorite 
method used by worm writers 

Lec 19.1610/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Buffer Exploit History

• How likely are the conditions required to exploit 
buffer overruns? Actually fairly rare…

• But, first Internet worm (Morris worm) spread using 
several attacks

– One used buffer overrun to overwrite authenticated 
flag in in.fingerd

• Technique now exploited by many network attacks
– Anytime input comes from network request and is not 
checked for size

– Code executes with same privileges as running pgm
• How to prevent?

– Don‟t code this way!  (ok, wishful thinking)
– New mode bits in Intel, AMD, and Sun processors

» Put in page table; says “don‟t execute code in this page”

• Attackers have discovered much more effective 
methods of malicious code injection…



Page 5

Lec 19.1710/31/07 Joseph CS194-3/16x ©UCB Fall 2007

C Program Memory Layout

• Text region (program‟s executable code)

• Heap, (dynamically allocated data)

– Grows/shrinks as objects allocated/freed

• Stack (local variable storage)

– Grows/shrinks with function calls/returns

• Function call pushes new stack frame on stack

– Frame includes space for function‟s local vars

– Intel (x86) machines stack grows “down”

– Stack pointer (SP) reg points to current frame

– Stack extends from SP to the end of memory

text region heap    …     stack

0x00…0 0xFF…F

Lec 19.1810/31/07 Joseph CS194-3/16x ©UCB Fall 2007

C Program Execution

• Instruction pointer (IP) reg points to next 
machine instruction to execute

• Procedure call instruction:

– Pushes current IP onto stack (return addr)

– Jumps to beginning of function being called

• Compiler inserts prologue into each function

– Pushes current SP value of SP onto stack

– Allocates stack space for local variables by 
decrementing SP by appropriate amount

• Function return:
– Old SP and return address retrieved from 
stack, and stack frame popped from stack

– Execution continues from return address

Lec 19.1910/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Stack Smashing Attack

• void vulnerable() {

char buf[80];

gets(buf);

}

• When vulnerable() is called, stack 
frame is pushed onto stack

• Given “too-long” input, saved SP and 
return addr will be overwritten

• This is the stack smashing attack!

buf     saved SP     ret addr caller‟s stack frame … 

Lec 19.2010/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Stack Smashing Attack

• First, attacker stashes malicious code 
sequence somewhere in program‟s address 
space (use previous techniques)

• Next, attacker provides carefully-chosen 
88-byte sequence

– Last four bytes chosen to hold code‟s 
address overwrite saved return address

• When vulnerable() returns, CPU loads 
attacker‟s return addr – handing control 
over to attacker's malicious code

• Stack smashing exploit reference:

– “Smashing the Stack for Fun and Profit,” 
written by Aleph One in November 1996



Page 6

Lec 19.2110/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Buffer Overrun Summary

• Techniques for when:

– Malicious code gets stored at unknown location

– Buffer stored on the heap instead of on stack

– Can only overflow buffer by one byte
– Characters written to buffer are limited (e.g., 
only uppercase characters)

– …

• Exploiting buffer overruns appears mysterious, 
complex, or incredibly hard to exploit 

– Reality – it is none of the above!

• Worms exploit these bugs all the time

– Code Red II compromised 250K machines by 
exploiting IIS buffer overrun

Lec 19.2210/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Buffer Overrun Summary

• Historically, many security researchers 
have underestimated opportunities for 
obscure and sophisticated attacks

– Very easy mistake to make…

• Lesson learned:

– If your program has a buffer overrun bug, 
assume that the bug is exploitable and an 
attacker can take control of program

• Buffer overruns are bad stuff – you don‟t 
want them in your programs!

– Some automated solutions – dynamic 
memory layout

Lec 19.2310/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Format String Vulnerabilities

• void vulnerable() {

char buf[80];

if (fgets(buf, sizeof buf, stdin) == NULL)

return;

printf(buf);

}

• Do you see the bug?

• Last line should be printf("%s", buf)

– If buf contains “%” chars, printf() will look 
for non-existent args, and may crash or core-
dump trying to chase missing pointers

• Reality is worse…

Lec 19.2410/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Attack Examples

• Attacker can learn about function‟s stack frame 
contents if they can see what‟s printed
– Use string “%x:%x” to see the first two words of 
stack memory

• What does this string (“%x:%x:%s”) do?
– Prints first two words of stack memory
– Treats next stack memory word as memory addr 
and prints everything until first '\0'

• Where does that last word of stack memory 
come from?
– Somewhere in printf()‟s stack frame or, given 
enough %x specifiers to walk past end of 
printf()‟s stack frame, comes from somewhere 
in vulnerable()'s stack frame



Page 7

Lec 19.2510/31/07 Joseph CS194-3/16x ©UCB Fall 2007

A Further Refinement

• buf is stored in vulnerable()‟s stack frame

– Attacker controls buf‟s contents and, thus, 
part of vulnerable()‟s stack frame 

– Where %s specifier gets its memory addr!

• Attacker stores addr in buf, then when %s
reads a word from stack to get an addr, it 
receives the addr they put there for it…

– Exploit: "\x04\x03\x02\x01:%x:%x:%x:%x:%s"

– Attacker arranges right number of %x‟s, so 
addr is read from first word of buf (contains 
0x01020304) 

– Attacker can read any memory in victim‟s 
address space – crypto keys, passwords…

BREAK

Lec 19.2710/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Yet More Troubles…

• Even worse attacks possible!

– If the victim has a format string bug

• Use obscure format specifier (%n) to 
write any value to any address in the 
victim‟s memory

• Enables attackers to mount malicious code 
injection attacks

– Introduce code anywhere into victim‟s 
memory

– Use format string bug to overwrite return 
address on stack (or a function pointer) 
with pointer to malicious code

Lec 19.2810/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Format String Bug Summary

• Any program that contains a format string 
bug can be exploited by an attacker

– Gains control of victim‟s program and all 
privileges it has on the target system

• Format string bugs, like buffer overruns, 
are nasty business



Page 8

Lec 19.2910/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Another Vulnerability

• char buf[80]; 

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large, nice try!");

return;

}

memcpy(buf, p, len);

}

• What's wrong with this code?

• Hint – memcpy() prototype:
– void *memcpy(void *dest, const void *src, size_t n);

• Definition of size_t: typedef unsigned int size_t;

• Do you see it now?
Lec 19.3010/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Implicit Casting Bug

• Attacker provides a negative value for len

–if won‟t notice anything wrong

– Execute memcpy() with negative third arg

– Third arg is implicitly cast to an unsigned 
int, and becomes a very large positive int

–memcpy() copies huge amount of memory into 
buf, yielding a buffer overrun!

• A signed/unsigned or an implicit casting bug

– Very nasty – hard to spot

• C compiler doesn‟t warn about type mismatch 
between signed int and unsigned int

– Silently inserts an implicit cast

Lec 19.3110/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Another Example

• size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

...

• What‟s wrong with this code?
– No buffer overrun problems (5 spare bytes)

– No sign problems (all ints are unsigned) 

• But, len+5 can overflow if len is too large

– If len = 0xFFFFFFFF, then len+5 is 4

– Allocate 4-byte buffer then read a lot more 
than 4 bytes into it: classic buffer overrun!

• You have to know programming language‟s 
semantics very well to avoid all the pitfalls

Lec 19.3210/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Many More Vulnerabilities…

• We‟ve only scratched the surface!

– These are the most prevalent examples

• If it makes you just a bit more cautious 
about how you write code, good!

• Many real-world examples…



Page 9

Lec 19.3310/31/07 Joseph CS194-3/16x ©UCB Fall 2007

The Morris Internet Worm

• Internet worm (Self-reproducing)
– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to 
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs 
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 19.3410/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Some other Attacks

• Trojan Horse Example: Fake Login
– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then 
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to 
be really hard to change, so you “know” that you are 
getting official login program

• Is SONY XCP a Trojan horse?
• Salami attack: Slicing things a little at a time

– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them!  Hacker re-programmed system so that 
partial pennies would go into his account.

» Doesn‟t seem like much, but if you are large bank can be 
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc 
– Lesson: never use unencrypted communication!

Lec 19.3510/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Ken Thompson‟s self-replicating program

• Bury Trojan horse in binaries, so no evidence in source
– Replicates itself to every UNIX system in the world and 
even to new UNIX‟s on new platforms.  No visible sign.

– Gave Ken Thompson ability to log into any UNIX system
• Two steps: Make it possible (easy); Hide it (tricky)
• Step 1: Modify login.c

A: if (name == “ken”)
don’t check password
log in as root

– Easy to do but pretty blatant!  Anyone looking will see.
• Step 2: Modify C compiler

– Instead of putting code in login.c, put in compiler:
B: if see trigger1

insert A into input stream

– Whenever compiler sees trigger1 (say /*gobbledygook*/), 
puts A into input stream of compiler

– Now, don‟t need A in login.c, just need trigger1

Lec 19.3610/31/07 Joseph CS194-3/16x ©UCB Fall 2007

Self Replicating Program Continued

• Step 3: Modify compiler source code:
C: if see trigger2

insert B+C into input stream

– Now compile this new C compiler to produce binary
• Step 4: Self-replicating code!

– Simply remove statement C  in compiler source code and 
place “trigger2” into source instead

» As long as existing C compiler is used to recompile the C 
compiler, the code will stay into the C compiler and will 
compile back door into login.c

» But no one can see this from source code!

• When porting to new machine/architecture, use 
existing C compiler to generate cross-compiler
– Code will migrate to new architecture!

• Lesson: never underestimate the cleverness of 
computer hackers for hiding things!



Page 10

Lec 19.3710/31/07 Joseph CS194-3/16x ©UCB Fall 2007

• Attackers will exploit any and all flaws!
– Buffer overruns, format string usage errors, implicit 
casting, TOCTTOU, …

• Buffer overrun attack: exploit bug to execute code

• Format string attack: exploit bug in printf, fprintf, 
sprintf

• Implicit casting attack: exploit missing cast 
statement

• Self-modifying code can be used for nearly 
undetectable attacks

Conclusion


