
Anti-Freeze for Large and Complex Spreadsheets:
Asynchronous Formula Computation

Mangesh Bendre, Tana Wattanawaroon, Kelly Mack
Kevin Chang, Aditya Parameswaran

bendre1 | wattana2 | knmack2 | kcchang | adityagp@illinois.edu
University of Illinois (UIUC)

ABSTRACT
Spreadsheet systems enable users to store and analyze data in an
intuitive and flexible interface. Yet the scale of data being analyzed
often leads to spreadsheets hanging and freezing on small changes.
We propose a new asynchronous formula computation framework:
instead of freezing the interface we return control to users quickly
to ensure interactivity, while computing the formulae in the back-
ground. To ensure consistency, we indicate formulae being com-
puted in the background via visual cues on the spreadsheet. Our
asynchronous computation framework introduces two novel chal-
lenges: (a) How do we identify dependencies for a given change in
a bounded time? (b) How do we schedule computation to maximize
the number of spreadsheet cells available to the user over time? We
bound the dependency identification time by compressing the for-
mula dependency graph lossily, a problem we show to be NP-Hard.
A compressed dependency table enables us to quickly identify the
spreadsheet cells that need recomputation and indicate them as
such to users. Finding an optimal computation schedule to maxi-
mize cell availability is also NP-Hard, and even merely obtaining a
schedule can be expensive—we propose an on-the-fly scheduling
technique to address this. We have incorporated asynchronous com-
putation in DataSpread, a scalable spreadsheet system targeted at
operating on arbitrarily large datasets on a spreadsheet frontend.

ACM Reference Format:
Mangesh Bendre, Tana Wattanawaroon, Kelly Mack and Kevin
Chang, Aditya Parameswaran. 2019. Anti-Freeze for Large and
Complex Spreadsheets: Asynchronous Formula Computation . In
2019 International Conference on Management of Data (SIGMOD ’19),

June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3299869.3319876

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319876

1 INTRODUCTION
Spreadsheets are one of the most popular systems for ad-hoc
storage and analysis of data, with a user base of roughly 10%
of the world’s population [24]. From personal bookkeeping,
to complex financial reports, to scientific data analysis, the
ubiquity of spreadsheets as a computing system is unparal-
leled. Nardi and Miller [26] identify two reasons for their
success: an intuitive tabular presentation, and in-situ formula
computation. In particular, formula computation enables end-
users with minimal programming experience to be able to
interrogate their data and compute derived statistics.
However, the sheer volume of data available in a host of

domains exposes the limitations of traditional formula com-
putation. A recent study exploring forum posts on Reddit
describes several instances of Microsoft Excel becoming un-
responsive while computing formulae [22]. One user posted
that complex calculations on Excel can take as long as four
hours to finish, during which the interface is unresponsive:

“. . . approximately 90% of the time I spend with

the spreadsheet is waiting for it to recalculate . . . ”

Another user reported using spreadsheets to track their per-
sonal life (with a complex network of formulae), and peri-
odically cull data to keep the size manageable, but they still
had trouble with computation:

“. . . the spreadsheet locks up during basic calcula-

tions, the entire screen freezes . . . ”

The chief culprit for unresponsiveness is that, in traditional
spreadsheet systems, every change to values or formulae
triggers a sequence of computation of dependent formulae.
This sequence could take minutes to complete, depending
on the size of the data and complexity of the formulae. Since
these systems aim to present a “consistent” view after any
update, i.e., one with no stale values, they forbid users from
interacting with the spreadsheet while the computation is
being performed, limiting interactivity. They only return

control to the user after the computation is complete: the only
indication to the user is a bar at the bottom, as in Figure 1(c),
with no viewing, scrolling, or edits allowed. Recent studies
in data exploration have shown that even delays of 0.5s
can lead to fewer hypotheses explored [20], so synchronous

computation is not desirable. As is evident in the anecdotes

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1277

https://doi.org/10.1145/3299869.3319876
https://doi.org/10.1145/3299869.3319876

(a) (b)

(c)

Figure 1: (a) Our asynchronous approach maintains inter-
activity and consistency by showing computation status in-
stead of a stale value. (b) Manual computation achieves in-
teractivity but violates consistency. (c) Automatic calcula-
tion achieves consistency but keeps the user interface non-
responsive for the duration of the computation.

above, users get frustrated waiting for multiple seconds to
minutes to get back control of the spreadsheet.

One workaround that traditional spreadsheet systems pro-
vide is amanual computation approach, wherein computation
of dependent formulae is performed only when triggered
manually by users. This method breaks consistency, as stale
values are visible to the users, as in Figure 1(b), potentially
leading to users drawing incorrect conclusions.
Towards Interactivity and Consistency
We introduce an asynchronous computation approach that

preserves both interactivity and consistency. After updates, we
return control to the user almost immediately, “blur out” cells
that are not yet up-to-date or consistent and compute them
in the background, incrementally making them available
once computed. Users are able to continue working on the
rest of the spreadsheet. We show an example in Figure 1(a)
where the formula in B2 summing up one million values is
“blurred out”, with a progress bar indicating the computation
progress, while users can still interact with the rest of the
sheet. For example, a user can add a new formula to cell B3,
after which both B2 and B3 are computed in the background.

We can quantify the benefit of this approach using a new
metric we developed, called unavailability, i.e., the number
of cells that are not available for the user to operate on, at
any given time. Synchronous computation has the highest
unavailability, since all of the sheet is inaccessible while
computation is being performed. In contrast, asynchronous
computation allows users to interact with most of the sheet
while computation happens in the background, leading to
low unavailability, while still respecting consistency1.
While the asynchronous computation approach dramati-

cally minimizes the time during which users cannot interact
with the spreadsheet, it requires a fundamental redesign
of the formula computation engine, thanks to two primary
challenges: dependencies, and scheduling:

1Thus, asynchronous computation ensures that spreadsheets never hang,
make you give up, let you down, or desert you [1].

Dependencies: Challenges and Approach
Since we need to preserve both interactivity and consistency,
once a change is made, we need to quickly identify cells
dependent on that change and therefore must be “blurred
out”, or made unavailable, as in B2 in Figure 1(a). One sim-
ple approach is to traverse the formula dependency graph
to find all dependent cells, and then make them unavail-
able. However, during this period, the entire spreadsheet
is unavailable, so we aim to minimize the time to identify
dependent cells. Unfortunately, for computationally heavy
spreadsheets, a traditional dependency graph that captures
formula dependencies at the cell-level [34] can be large, so
identifying dependencies can take arbitrarily long.

To enable fast lookups of dependencies, we introduce com-

pression. Dependency graphs can tolerate false positives, i.e.,
identifying a cell as being impacted by an update, even when
it is not. However, false negatives are not permitted, since
they violate consistency. The goal of compression is to com-
pactly represent formula dependencies, minimizing false pos-
itives. The size of our representation impacts the dependency
lookup time, and the false positives impact the formula com-
putation time, both impacting unavailability. We show that
optimal graph compression to minimize unavailability is NP-
Hard. We propose approximate techniques for compressing
the dependency graph and its maintenance.
Scheduling: Challenges and Approach
Once we have identified the dependent cells (with possibly a
few false positives), we then need to compute them efficiently
to decrease unavailability as quickly as possible. In asynchro-
nous computation, we incrementally return the values of the
dependent cells as soon as they are computed. When adher-
ing to a schedule, or an order in which the cells are computed,
the time that a dependent cell is unavailable comprises the
time (i) waiting for prior cells in the schedule to complete,
and (ii) computing the cell itself. For example, if we compute
a cell that takes more time to compute early in the schedule,
all other cells pay the penalty of being unavailable during
this time. A computation schedule must also respect depen-
dencies: the computation of a cell must be scheduled only
after all the cells that it depends on are computed. In fact, not
only is finding an optimal schedule NP-Hard, merely obtain-
ing a schedule can be prohibitively expensive, as it requires
traversal of the entire dependency graph—this can negate the
benefits from incrementally returning the computed values
within the asynchronous computation model. We propose
an on-the-fly scheduling technique that reduces the up-front
scheduling time by performing local optimization. We fur-
ther extend our scheduling technique to a weighed version
that prioritizes cells that the user is likely to visit next.

2

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1278

Putting It All Together
We incorporate our asynchronous computation model into
a scalable spreadsheet system that we are building, Data-
Spread [8, 9], with the goal of holistically integrating spread-
sheets with databases to address the scalability limitations of
traditional spreadsheet systems. DataSpread achieves scala-
bility by utilizing a two-tiered memory model, wherein data
resides in an underlying relational database and is fetched
on-demand into main-memory. This introduces additional
challenges that go beyond those found in traditional main-
memory-resident spreadsheets. (Note, however, that our tech-
niques for decreasing unavailability apply equally well to
traditional spreadsheets as well as DataSpread.)
Contributions. The following list describes our contribu-
tions and also serves as the outline of the paper.
1. Asynchronous Computation. In Section 2, we intro-
duce the asynchronous computation model. We propose the
novel unavailability metric to evaluate our model.
2. Fast Dependency Identification. In Section 3, we pro-
pose the idea of lossily compressing the dependency graph
to identify dependencies in a bounded time. We show that
the problem is NP-Hard, and develop efficient techniques
for compression and maintenance of this graph.
3. Computation Scheduling. In Section 4, we discuss the
importance of finding an efficient formula computation sched-
ule. Since obtaining a schedule is expensive, we propose
on-the-fly scheduling. Our algorithm can be extended to a
weighted variation that prioritizes for the user’s viewport.
4. DataSpread Prototype. In Section 5, we describe Data-
Spread, a scalable spreadsheet system we built that incorpo-
rates the ideas discussed in this paper.
5. Evaluation. Throughout the paper, we provide illustra-
tive experiments to demonstrate individual ideas. In Sec-
tion 6, we discuss our experimental setup and provide a thor-
ough evaluation of asynchronous computation on spread-
sheet structures drawn from real-world spreadsheets, study-
ing the impact of the dependency structure and its size, the
back-end data store, algorithmic parameters, and building
blocks (whether scheduling or compression is used).

2 ASYNCHRONOUS COMPUTATION
We propose asynchronous computation to address the inter-
activity issues of traditional spreadsheet systems. We first
define key spreadsheet terminology. We then introduce two
principles that influence the design of our model, as well as
new concepts for our proposed model.
For simplicity, we explain the concepts and techniques

in the context of standard main-memory-based spreadsheet
systems, where, the cost of data retrieval is negligible com-
pared to the cost of formula evaluation. In Appendix C, we

A1

A2

A3

B1

B2

B3

B4

C1

C2

C4

D2 E2

Figure 2: A dependency graph that captures the dependen-
cies of Example 1 at the granularity of cells.

extend our techniques to two-tier memory systems wherein
data retrieval cost is significant. While the techniques dis-
cussed here extend to normal usage of spreadsheets where
multiple update events happen throughout the timeline, for
ease of exposition, we focus on changes resulting from a
single update to a cell u.

2.1 Standard Spreadsheet Terminology
We now formally introduce spreadsheet terminology that
we use throughout the paper.
Spreadsheet Components. A spreadsheet consists of a col-
lection of cells, each referenced by its column and its row.
Columns are identified using letters A, . . ., Z, AA, . . ., in order,
while rows are identified using numbers 1, 2, . . ., in order. A
range is a collection of cells that form a contiguous rectan-
gular region, identified by the top-left and bottom-right cells
of the region. For instance, A1:C2 is the range containing the
six cells A1, A2, B1, B2, C1, C2.
A cell may contain content that is either a value or a for-

mula. A value is a constant belonging to some fixed type. For
example, in Figure 1(b), cell A1 (column A, row 1) contains
the value HW1. In contrast, a formula is a mathematical ex-
pression that contains values and/or cell/range references as
arguments to be manipulated by operators or functions. A
formula has an evaluated value, which is the result of evalu-
ating the corresponding expression. For the rest of the paper,
we shall use the term “value” to refer to either the value or
the evaluated value of a cell, depending on what the cell
contains. In addition to a value or a formula, a cell could also
additionally have formatting associated with it. We focus
only on computation in this paper.
Dependencies. In spreadsheets, cell contents may change,
and maintaining the correct evaluated values of formulae is
necessary for consistency. Consider the following example.

Example 1. A spreadsheet with the following formulae:

(i) B1=A1*C1, (ii) B2=A2*C1, (iii) B3=A3*C1, (iv) B4=SUM(B1:B3),
(v) C4=B3+B4, and (vi) E2=SUM(B2:D2).

Here, the cell B4 has a formula SUM(B1:B3), which indicates
that B4’s value depends on B1:B3’s values. Any time a cell is
updated, the spreadsheet system must check to see whether
other cells must have their values recalculated. For example,
if B2’s value is changed, B4’s value must be recalculated. We
formalize the notion of dependencies as follows.

3

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1279

Definition 1 (Direct Dependency). For two cells u and

v , u → v is a direct dependency if the formula in cell v
references cell u or a range containing cell u. Here, u is called a

direct precedent of v , and v is called a direct dependent of u.

Definition 2 (Dependency). For two cellsu andv ,u ⇒ v
is a dependency if there is a sequencew0,w1, . . . ,wn of cells

where w0 = u, wn = v , and for all i ∈ [n], wi−1 → wi is

a direct dependency. Here, u is a precedent of v , and v is a

dependent of u. We denote the set of dependents of u as ∆u .

One can construct a conventional dependency graph of di-
rect dependencies. Figure 2 depicts the graph for Example 1
at the granularity of cells. Each vertex corresponds to a single
cell, e.g., A1, while edges are direct dependencies. For exam-
ple, the edge from A1 to B1 indicates a direct dependency
due to formula A1*C1 in cell B1. The dependencies of a cell u
are the vertices that are reachable from u in the graph. For
example, cell B1 has B4 and C4 as dependents. Since cyclic
dependencies are forbidden in spreadsheets, the dependency
graph is acyclic. As this graph captures dependencies at the
granularity of cells, it grows quickly when the ranges men-
tioned in the formulae are large [34]. For example, a formula
SUM(A1:A1000) in cell F2 will require 1,001 vertices and 1,000
edges to capture the dependencies.

2.2 Design Principles
Spreadsheet systems must be consistent, i.e., they should not
display stale values. For example, if a cell B2 contains the for-
mula SUM(A1:A225500) and the user updates the value in cell
A1, the user should not see the stale value in B2 until the cor-
responding formula is recomputed. Along with consistency,
spreadsheet systems must ensure interactivity, meaning they
should react to user events, rapidly, and provide results as
soon as possible. Thus, we introduce two design principles
for our solution, followed by two computation models.

Principle 1 (Consistency). Never display an outdated or

incorrect value on the user interface.

Principle 2 (Interactivity). Return control to users within
a bounded time after any cell update user event.

Synchronous Computation Model. Traditional spread-
sheet systems adopt synchronous computation, where, on
updating u, the entire spreadsheet becomes unavailable dur-
ing the evaluation of cells that are dependent on u. The
spreadsheet system waits for the entire computation to com-
plete before providing updated values to the user—thereby
adhering to the consistency principle. However, when the
number of cells dependent on u is large, this model sacrifices
interactivity, with often minutes of unresponsiveness.
Asynchronous Computation Model. To provide interac-
tivity in addition to consistency, we propose asynchronous
computation. Here, on updating u, the cells dependent on

u are computed asynchronously in the background without
blocking the user interface. To satisfy consistency, we in-
stead provide users with the cells that the system can ensure
to have correct values in a short time, while notifying users
of cells that have stale values—see Figure 1(a), where on
updating A1 the computation of cell B2 is performed in the
background and the progress is depicted by a progress bar.
Our solution is to add a “dependency identification” step
before computation of any dependent formulae. The goal of
this step is to efficiently identify the cells that do not depend
on an updated cell, so that they can be quickly marked clean
and “control” of them can be returned to the user.

2.3 New Concepts
We now introduce new concepts that help us describe and
quantify the benefits of the asynchronous computationmodel.
Partial Results. For our asynchronous computation model,
we introduce the notion of partial results: providing users
with the cells that the system can ensure to have correct
(or consistent) values and notifying users of cells that have
stale values. Within these partial results, each cell on the
spreadsheet is determined by the computation model to be
in the “clean” or the “dirty” state, defined as follows.
Definition 3 (Clean Cell). A cell u is clean if and only

if (i) all of u’s precedents are clean and (ii) u’s evaluated value
has been computed based on its formula and the clean values

of its precedents.

Definition 4 (Dirty Cell). A cell u is dirty if and only if

(i) at least one of u’s precedents are dirty or (ii) u’s evaluated
value has not been computed based on its formula and the

clean values of its precedents.

Adhering to the consistency principle, (i) for clean cells, the
evaluated value is displayed on the user interface, and (ii) for
dirty cells, the cell displays a progress bar depicting the sta-
tus of its computation, preventing users from acting on stale
values. Note that a dirty cell is one that is determined by the
computation model to be dirty, and therefore requires recom-
putation. A dirty cell may in fact be a false positive, but we
will treat both false positives and true positives equivalently
since they will both be recomputed—and are therefore both
dirty from the perspective of the computation model.

Finally, a cell is said to be unavailable if it cannot be used
by the user for various reasons, defined as follows.

Definition 5 (Unavailable Cell). A cell c is unavailable
if and only if (i) c is determined to be dirty, (ii) the system has

not yet determined if c is in the clean or dirty state, or (iii) the

user interface is unresponsive.

Overall, we aim to provide users with cells as soon as they
are ready (moving them from the dirty to the clean state),
without waiting for all of the cells to be computed. Incre-
mentally computing and marking cells as clean allows the
number of unavailable cells to gradually decrease over time.

4

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1280

0 1,000 2,000 3,000 4,000 5,000 6,000
time (ms)

0

5,000

10,000

#
of

un
av
ai
la
bl
e
ce
lls

synchronous
asynchronous

tdep texec

|∆u |

Figure 3: Comparing the unavailability of synchronous and
asynchronous models. For the asynchronous model, tdep is
the dependency identification time, ∆u is the set of cells that
are determined to be dependent on u and thus need compu-
tation, and texec is the computation time for these cells.

Unavailable and Dirty Time. Quantifying the time a cell
is unavailable for the user to act on is an important factor
for quantifying the usability of the spreadsheet. Similarly,
the dirty time is the time a cell spends in the dirty state. We
formalize these notions below.

Definition 6 (Unavailable | Dirty Time). The unavail-
able [dirty] time of a cell c , denoted unavailable(c) [dirty(c)],
is the amount of time that c remains in the unavailable [dirty]

state after an update.

For the above definitions as well as subsequent ones, the
spreadsheet state is a hidden (implicit) parameter that we
omit to keep the notation simple.
Unavailability. To quantitatively evaluate different compu-
tation models, we introduce the unavailability metric, de-
fined as the area under the curve that, for a computation
model, plots the number of unavailable cells over time.
Definition 7 (Unavailability). The unavailabilityUM

for a computation model M is given by UM =
∫ t
0 D(t)dt =∑

c ∈S unavailable(c), where D(t) denotes the number of un-

available cells at time t and S is the set of all spreadsheet cells.

Simply put, unavailability measures the effectiveness of a
computation model by quantifying the number of cells that
a user cannot act on over time. For the synchronous compu-
tation model, for the entire time the user interface is unre-
sponsive, all of the cells are unavailable. On the other hand,
by incrementally returning results in the asynchronous com-
putation model, for a cell c , unavailable(c) = tdep + dirty(c),
where tdep is the time to determine if c is clean or dirty.
Illustrative Experiment 1: Asynchronous vs. Synchro-
nous Computation. The goal of this experiment is to com-
pare the unavailability of the asynchronous and synchronous
computation models. We use a synthetic spreadsheet that
follows the “Rate” dependency structure that we describe
in Section 6. The spreadsheet has a total of 10,000 cells, of
which 5,000 are formulae dependent on cell A1 via the for-
mula Ci=A1*Bi for i ∈ {1 . . . 5,000}. This dependency struc-
ture is inspired from real-world spreadsheets that have mul-
tiple formulae dependent on a single cell encoding some

common information, like interest rate. We adopt a conven-
tional dependency identification mechanism as described in
Section 2.1 and a naïve schedule for computing cells—we
develop better variants later. We update A1’s value and plot
the number of unavailable cells as a function of time for both
computation models in Figure 3. Synchronous computation
(in red) performs poorly under unavailability, since it keeps
the interface unresponsive for the entire duration of computa-
tion of all of the dependent cells. Asynchronous computation
(in green) performs better in terms of unavailability, since it
allows users to interact with most of the spreadsheet cells
while performing calculations asynchronously.

Upon updating A1 (at time = 0), the asynchronous model
first identifies the dependents of u, as is marked by tdep on
the graph. For both models, all 10,000 cells in the sheet are
unavailable for the first 890 ms, as the sheet is unresponsive.
After the asynchronous model has determined which cells
are clean and which cells are dirty, it returns the clean cells to
the user. Thus, the number of unavailable cells drops to 5,000
after 890ms. However, under the synchronousmodel, control
has not been returned to the user, and thus all cells are still
unavailable. Under the asynchronous model, at the 5,700 ms
mark, all of the cells have been computed and marked clean—
this is slightly after the synchronous model returns control
of all of the cells to the user (4,900ms). This time difference is
due to the fact that the asynchronous model takes some time
to identify dependent cells in a separate step from computing
them; the synchronous model does not perform this step.
Overall, the area under the green curve is less than that
under the red curve, and therefore the asynchronous model
performs better in terms of unavailability.

Takeaway: Asynchronous computation improves spreadsheet

usability without forgoing correctness, by (i) quickly returning

control and (ii) incrementally making cells available.

While this experiment shows that asynchronous computa-
tion already has a lower unavailability than the synchronous
one, it can be reduced even further; in the remainder of this
paper, we discuss approaches for doing so.

3 FAST DEPENDENCY IDENTIFICATION
We now propose our first technique for decreasing unavail-
ability: identifying dependencies in a bounded time. That is,
we aim to reduce tdep in Figure 3—the time during which
the interface is unresponsive for asynchronous computation.
Reducing tdep is particularly crucial when the update affects
a small number of cells relative to the size of the spreadsheet.

3.1 Motivation and Problem Statement
After a user updates a cell u, to minimize the number of
unavailable cells over time, we need to quickly identify the
cells that depend on u. Until we can determine that a cell c

5

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1281

is independent of u or not, we cannot designate c as clean
and return its control to the user. For example, within the
asynchronous computation model in Figure 3, we return
control to the user in 890 ms, which corresponds to the time
it takes dependency identification to finish.
A naïve approach to identify the cells that depend on u

is to individually check whether each cell is reachable from
u in the dependency graph. However, this strategy is time
consuming since all cells will remain in the unavailable state
for a long period of time. Our goal is to efficiently identify the
cells that do not depend on the updated cell, so that they can
be quickly marked clean and their control can be returned
to the user. Thus, we formalize our problem as follows:

Problem 1 (Dependency Identification). Design a data

structure that, upon updatingu, quickly (preferably in bounded
time) identifies u’s dependencies. Modifications to the data

structure, i.e., inserts and deletes, should be quick (again, prefer-

ably in bounded time).

One method of capturing dependencies is to maintain
a dependency graph. Rather than recording dependencies
between individual cells (Figure 2), we can capture dependen-
cies between regions, substantially reducing the size of the
graph. Figure 4 shows the dependency graph for Example 1.
A dependency graph has the following four components.
(i) A cell vertex corresponding to each cell, in gray, e.g., A1,
B1. (ii) A range vertex corresponding to each range that ap-
pears in at least one formula, in red, e.g., B1:B3. (iii)A formula

edge from u to v if u is an operand in the formula of cell v ,
e.g., the edge from A1 to B1. (iv) An inherent edge from u to
v if cell u is contained in range v , e.g., the edge from B1 to
B1:B3. In the dependency graph, the cells that depend on a
cell u are those represented by vertices reachable from the
vertex representing u. For example, the dependencies of the
cell C1 are B1, B2, B3, B4, C4, and E2.

A1

A2

A3

B1

B2

B3

B4

C1

C2

C4

D2 E2

B1:B3

B2:D2

=A1*C1

=A2*C1

=A3*C1

=SUM(B1:B3) =B3+B4

=SUM(B2:D2)

formula edge
inherent edge

Figure 4: Dependency graph capturing dependencies be-
tween regions thus reducing the graph size.

One naïve approach to represent this graph is to persist
the formula edges as adjacency lists. For example, we can
represent the formula A1*C1within cell B1 using two directed
edges: (i) from A1 to B1 and (ii) from C1 to B1. When storing
the inherent edges, rather than storing them explicitly, which
can be expensive, we can infer these edges from the cell
and ranges they represent. To enable efficient lookups for
inherent edges, we can use a spatial index, such as R-tree [15].

To find outgoing edges from a cell c , we can issue a query
to the R-tree to find all ranges containing c . For example, to
infer the outgoing edges from B2, we can search for all the
nodes that overlap with B2—for B2 we have B1:B3 and B2:D2.
Challenges With Dependency Traversal. The lookup of
dependencies by traversing a full dependency graph takes
time proportional to the number of dependencies, which is
inefficient. Consider Figure 5—looking up dependencies of A1
takes Ω(n) time, where n is the number of dependencies. For
example, the tdep of 890 ms in Figure 3 will increase linearly
with the number of dependencies. Therefore, to perform
the dependency identification in a bounded time, we cannot
traverse the dependency graph on-the-fly.

A1 A2 A3 · · · An
A1=0 A2=A1+1 A3=A2+1 An=A(n − 1)+1

Figure 5: Long Dependency Chain

3.2 Compressed Dependency Table (CDT)
To overcome this challenge, we propose an alternate man-
ner to capture dependencies. In addition to the dependency
graph, we maintain a “cache” of dependents for each cell, in
a dependency table—see Figure 7(a). The dependency table
stores key-value pairs of cells and their dependents, and thus
allows us to query a cellu and quickly identify all of the cells
that depend on u. We can construct the dependency table
from scratch by traversing the dependency graph multiple
times, starting from every vertex.

As discussed, the number of dependencies of a cell is Θ(n)
in the worst case, where n is the number of cells on the
spreadsheet, and thus even recording each dependency at a
cell level could take too long and be expensive to store. There-
fore, we propose compression to reduce both the dependency
identification time and the dependency output size.

Recall that to ensure consistency, we must recalculate all
the dependent cells on a cell update. If the dependency table
includes a “false positive”, i.e., a cell cFP that is not an actual
dependency of u, the system will trigger an unnecessary
recalculation of cFP. In other words, the dependency table is
false positive tolerant—false positives do not affect correct-
ness, but can cause unnecessary calculations. On the other
hand, a “false negative”, a cell cFN that is an actual depen-
dency of u but is missing from the table, is unacceptable,
because a update to u would not trigger a recalculation of
cFN, leading to a possibly incorrect value for cFN.

A compressed dependency table, or CDT for short, is a
variation of a dependency table that enables identifying de-
pendencies in O(1) time—see Figure 7(b). As ranges naturally
represent a group of cells, we express the dependents in a
compressed dependency table as ranges. For example, depen-
dents of C1 can be expressed as B1:B3, B4:C4, E2 with no false
positives, or as B1:C4, E2 with three false positives (C1, C2,

6

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1282

10 100 1,000 10,000
time (ms) on log scale

0

5,000

10,000

#
of

un
av
ai
la
bl
e
ce
lls

Kcomp = 20
Kcomp = 200
Kcomp = 2,000
dependency graph

Figure 6: Comparing unavailability for a system using de-
pendency graph vs dependency table with varying Kcomp.

C3). For a set of cells C to be expressed as a set of regions R,
we require that the regions in R can collectively “cover” the
set C . We formalize the notion of a cover as follows.
Definition 8 (Cover). For a set C of cells, a set R =
{R1, . . . ,Rm} of ranges is a cover of C if C ⊆ R∪, where R∪

denotes the set of cells that are in at least one of the ranges

R1, . . . ,Rm . The size of the cover R, denoted by size(R), is |R |.
The cost of the cover R, denoted by cost(R), is

��R∪��.
To ensure that dependents of a cell u can be retrieved in

constant time, we limit the size of the cover to a constant
Kcomp. In Figure 7(b), Kcomp is 2. Varying Kcomp can signifi-
cantly impact unavailability, due to the trade-off between
the time to perform dependency identification (tdep in Fig-
ure 3) and the number of cells that remain when dependency
identification is complete (∆u in Figure 3). The less time we
spend identifying dependencies, the smaller the Kcomp and
the more false positives we introduce. This increase in false
positives causes the cost of the cover, and therefore the total
number of dirty cells following dependency identification, to
increase. Ultimately, we need a value ofKcomp that minimizes
unavailability. Due to the flat nature of CDT, a query is a
simple non-recursive lookup, and thus cycles introduced by
compression do not impact querying for dependencies.
(a) cell dependents

A1 B1, B4, C4
A2 B2, B4, C4, E2
A3 B3, B4, C4
B3 B4, C4
C1 B1, B2, B3, B4, C4, E2
...

...

(b) cell dependents
A1 B1, B4:C4
A2 B2:C4, E2
A3 B3, B4:C4
B3 B4, C4
C1 B1:C4, E2
...

...
Figure 7: Compressing dependency table to bound the num-
ber of dependents: (a) original before compression (b) after
compression with Kcomp = 2.

Illustrative Experiment 2: Impact ofKcomp. In this exper-
iment, we demonstrate the benefit of using a CDT instead
of a traditional dependency graph, as well as the impact
of varying Kcomp. We use a synthetic spreadsheet targeted
at “stress-testing” our CDT approach; details can be found
in Section 6. Our spreadsheet is a “hard” modification of
the “Rate” dependency structure from Experiment 1. The
spreadsheet has 10,000 cells, out of which 5,000 cells con-
tain formulae. Out of the 5,000 formulae cells, 50% of the

cells follow the “Rate” structure and are dependent on A1
(once again indicating a common rate parameter, as in Exper-
iment 1), that we intersperse with cells that are independent
of A1, where each cell performs a summation using the SUM
function of 50 non-formula cells. The reason for interleaving
formulae this way is because more compression will lead to
more false positives (i.e., the cells not dependent on A1), and
there is a penalty for having to compute them.

We update A1’s value and plot the number of unavailable
cells with respect to time for asynchronous computation—see
Figure 6. Due to a large number of dependencies, dependency
identification using the dependency graph (in black) takes a
significant time of 1.4 seconds. The three remaining curves
show the benefit of using a dependency table—here, we vary
Kcomp and observe its impact on the time for identifying de-
pendencies. At one extreme, we have the dark blue curve
where Kcomp is 2,000—the dependency identification takes
around 60 ms. On the other hand, the light blue curve, when
Kcomp is 20, remains in the dependency identification step
for very little time (20 ms). However, to compress all of the
dependents of a cell into 20 regions, the number of false
positives grow to 2,400 cells. These are the heavy non-A1-
dependent cells, requiring a lot of computation each. There-
fore, even though the Kcomp = 20 curve returns control to
the user in a few milliseconds, it takes more time to clean
all the dirty cells. In this “hard” example, Kcomp = 2,000 (in
dark blue) performs the best, as its curve encloses the least
area. Note that real-world spreadsheets typically do not have
such problematic dependency structures, and therefore even
heavy compression does not lead to a large number of false
positives, as we will see in Section 6.

Takeaway: Dependency table with lossy compression of depen-

dencies bounds the time for which user interface is unresponsive.

3.3 Construction of the CDT
When constructing the CDT, our goal is to group depen-
dents of each cell into Kcomp groups while allowing for the
fewest false positives and no false negatives. We formalize
the problem as follows:

Problem 2 (Dependents Compression). Given a set C of

cells and a size parameter k , find the cover ofC whose size does

not exceed k with the smallest cost.

Grouping the dependents of a cellu intoKcomp regions amounts
to solving Problem 2 with a set ∆u of cells and a size param-
eter Kcomp, where ∆u is the set of cells dependent on u. For
a cover R, the number of false positives is |R∪ | − |∆u |. Thus,
minimizing the number of false positives is equivalent to
minimizing the cost of the cover. It turns out that the afore-
mentioned problem is NP-Hard—see Theorem 1. The proof
of the theorem is given in Appendix A.

Theorem 1. The decision version of Dependents Compres-

sion is NP-Hard.
7

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1283

Greedy Heuristic. Since efficiently finding the best graph
compression is hard, we propose a greedy algorithm: while
the number of ranges representing dependents of a cell ex-
ceedsKcomp, two of those ranges are selected and replaced by
the smallest range enclosing them; repeat until the number
of ranges reduce to Kcomp. We can use various heuristics for
selecting the two ranges to combine. One such simple heuris-
tic is to select two ranges such that replacing them with their
enclosing range introduces the fewest false positives, which,
as we will see, does well in practice. Note that due to the
incremental nature of our compression algorithm, we can
use it for the maintenance of the dependency table when we
add a new dependency, as we will see next. The pseudocode
for compression is given in Algorithm 1.

Input: a set of rectangular regions R, and an integer k
Output: a cover R′ of R, where |R′ | ≤ k
R′ ← R;
while |R′ | > k do

Let r1 and r2 be two rectangular regions in R′ where the
bounding box of r1 ∪ r2 introduces the smallest false
positives out of all such combinations;

Let r be the smallest of such a bounding box;
R′ ← (R′ \ {r1, r2}) ∪ r

end
return R′

Algorithm 1: Incremental Greedy Compression

3.4 Maintenance of the CDT
We now discuss how to update the CDT when formulae
are changed—leading to edge deletions or additions in the
dependency graph—as quickly as possible. At a high level,
deletions of edges are handled lazily, since such a deletion
method can only lead to false positives but no false negatives.
Additions require more care, since the addition of a single
edge in the dependency graph can, in the worst case, cause
O(n) dependencies to be added to O(n) entries in the CDT,
by connecting two disconnected graph components. Rather
than eagerly expanding the dependencies induced by new
connections in the CDT, we handle such new connections by
annotating them with a “must-expand” flag, traversing them
when the need arises, populating the dependencies lazily
in the background. In this manner, by having the flag, we
ensure no false negatives. See Appendix B for details.

4 COMPUTATION SCHEDULING
We now propose our second technique for decreasing un-
availability: computation scheduling. After updating a cell u,
we need to find an efficient schedule for computing the cells
that depend on u. We explain the significance of schedul-
ing, discuss how obtaining a complete scheduling up front
can be prohibitively expensive, and provide a solution, on-
the-fly scheduling. We then extend this solution to prioritize
computation based on what users are currently seeing.

Recall that, for asynchronous computation, we incremen-
tally provide users with cell values as soon as they are com-
puted, without waiting for the formula engine to compute
the remaining dirty cells. We motivate scheduling by experi-
mentally demonstrating its impact on unavailability.

0 10,000 20,000 30,000 40,000 50,000
time (ms)

0

2

4

6

#
of

un
av
ai
la
bl
e
ce
lls

schedule 1
schedule 2
best schedule

Figure 8: Unavailability on varying the computation sched-
ule (dependency identification time of 20ms is shown but is
dominated by computation)

Illustrative Experiment 3: Computation Schedule. The
goal of this experiment is to demonstrate the importance of
scheduling. Here, we consider a synthetic spreadsheet that
adopts a variation of the “RunTotalSlow” dependency struc-
ture (described in Section 6), where there are precisely six
formula cells that perform summations using the SUM func-
tion of increasing sized ranges, namely A1:A2000, A1:A4000, ...,
A1:A12000, simulating varying complexities. This structure is
meant to capture computation over increasing sizes of data,
such as a running total over transactions (e.g., sum of sales
for month 1, month 1 and 2, month 1, 2, and 3, and so on.) We
selected this configuration because the workload required
for each computation varies per cell, and therefore the choice
of schedule of computations can significantly impact the un-
availability metric for the sheet. For this simple spreadsheet,
we update A1’s value and plot the number of unavailable cells
on the y-axis over time—see Figure 8. Even though the total
time required to complete cleaning all the cells is the same
across all possible schedules (around 40,000 ms), the time
spent by each cell in the dirty state varies, which impacts
unavailability. Schedule 1 and 2 adopt a random schedule,
and thus differ in terms of unavailability. The best schedule
computes the cells in the increasing order of complexity,
thereby minimizing unavailability.

Takeaway: Computation scheduling significantly impacts the

number of cells that are available to users over time.

4.1 Motivation and Problem Statement
The computation scheduling problem naturally arises from
the idea of partial results (Section 2.3): if we are displaying the
computed cell values to the user as we finish computing them,
in what order should we compute cells? We define cost(c) to
quantify the time taken for computing a cell c . For now, we
assume a simple independent computation model where we
ignore the impact of caching cells, thus computation cost is

8

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1284

independent of schedule; we will discuss its impact later and
relax this assumption.
Definition 9 (Cost). The cost of a cell c , cost(c), is the

amount of time needed to compute the evaluated value of c ,
assuming the values of its precedents are already computed.

Note that for synchronous computation, computation sched-
uling is unimportant. The total evaluation time for all cells
dependent on u is

∑
c ∈∆u cost(c), where ∆u is the set of

cells dependent on u. Therefore, in the synchronous model,
since all cells remain unavailable until all of the computa-
tion is completed, the unavailable time for every cell in the
spreadsheet is equal to tdep +

∑
c ∈∆u cost(c), where tdep is the

dependency identification time, and thus unavailability is
Usync = |S | ·

(
tdep +

∑
c ∈∆u cost(c)

)
, where S is the set of cells

in the spreadsheet, regardless of the order in which the cells
in ∆u are computed.

However, when we incrementally return cells in the asyn-
chronous model, dirty(c) is not the same across all cells be-
cause a cell becomes clean as soon it is evaluated. Therefore,
choosing the order in which cells are computed is crucial.
For example, one simple intuition is to avoid calculating cells
with a high cost early in the schedule, since all other cells
must incur this cost in their unavailable time. We will now
formally define the computation scheduling problem.
Computation Scheduling Problem. On updating u, our
goal is to decide the order of evaluation of dependents of
u, i.e., ∆u , such that the order minimizes unavailability. The
primary constraint for scheduling the computation of a cell c
is that the cells that are precedents of c , if they are dirty, need
to become clean before c itself can be evaluated. Otherwise,
the computation would rely on outdated values resulting in
incorrect results. Note that because cyclic dependencies are
forbidden in spreadsheet systems, there is always at least one
order that follows the dependency constraint of the prob-
lem: a topological order. Formally, we define the dependency
constraint as follows.
Definition 10 (Dependency Constraint). A computa-

tion order c1, . . . , cn of cells is valid only if the following holds:

if i < j, then ci is not a dependent of c j .

Recall that the dirty time of a cell c is the amount of time until
its value is computed, which includes the time waiting for
the earlier elements in the scheduled order to be computed
as well as the cost of computing c itself, as follows.
Definition 11 (Dirty Time with respect to a Sched-

ule). In a computation order c1, . . . , cn , the dirty time for the

cell ci is dirty(ci) =
∑i

j=1 cost(c j) = dirty(ci−1) + cost(ci).
We formalize our scheduling problem as follows, which is
shown as NP-Hard by Lawler [18].
Problem 3 (Computation Scheduling). Given a set of

dirty cells (∆) along with the dependencies among them, de-

termine a computation order c1, . . . , cn of all the cells in ∆

that minimizes unavailability, i.e.,

∑
ci ∈∆ dirty(ci), under the

dependency constraint.

4.2 On-the-fly Scheduling
In addition to the fact that Computation Scheduling is
NP-Hard, on updating u, merely obtaining a schedule can
be expensive. The dirty time (Definition 11) only takes into
account computation time, but not the time to perform the
scheduling itself. If there are n dirty cells in ∆u , then the
time to obtain any complete schedule satisfying the depen-
dency constraints is Ω(n), as each of the n cells must be
examined at least once. If the scheduling algorithm takes
time ts , then performing scheduling up front increases the
dirty time of each cell in ∆u by ts , and no progress towards
their computation is made during that time. Such an effect
potentially negates any gains from incrementally computing
and showing results to the users.
To overcome this issue, upon updating u, we do not de-

termine the complete order of all dependents of u up front—
instead, we utilize the heuristic of performing scheduling
“on-the-fly” by prioritizing a small sample of cells at a time
based on their costs. A cell’s exact computation cost can be
difficult to determine exactly; the number of direct prece-
dents provides a good approximation. We can determine the
number of precedents by looking at a cell’s formula.

Definition 12 (Cost Approximation). The approximate

cost of a cell u, denoted by cost∗(u), is |Pu |, where Pu is the set

of u’s direct precedents.
Other alternatives, such as the number of dependents or

precedents up to k hops away, could also be employed, trad-
ing off the accuracy of cost∗, with the time it takes to estimate
cost∗. We opt for the number of direct precedents here for
simplicity, leaving a thorough evaluation of these variants for
future work. On updating u, we perform on-the-fly schedul-
ing as follows. We draw k cells from ∆u into a pool P . In each
step, we choosem cells from P , wherem ≪ k , whose costs
are the smallest among those in the pool. The system sched-
ules computation for the chosenm cells. Then, we replenish
P by drawing cells from ∆u that still require computation
until P has k cells again (or until no cells remain). We repeat
the steps until all cells in ∆u are computed.
To schedule the chosenm cells for computation obeying

the dependency constraint, dirty precedents of each of them
must be computed before the cell itself can be computed. To
discover dirty precedents of a cell c , one can use a typical
(reverse) graph traversal algorithm to find cells that can reach
c . If a precedent p of c is found to be clean, there is no need
to traverse further to precedents of p, because they must
also be clean (by Definition 3). The dirty precedents, once
discovered, must then be computed in a topological order.

The on-the-fly scheduling heuristic attempts to postpone
computing high cost cells for as long as possible, because

9

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1285

computing low cost cells first allows for more results to be
quickly computed and shown to the user. In fact, without
dependency requirements, scheduling computation in in-
creasing order of cost yields the optimal schedule [13]. Our
heuristic is based on the same principle, but adapted to obey
the dependency constraint and to make decisions without
looking at the entire workload, instead looking at collections
of cells at a time. Algorithm 2 summarizes the on-the-fly
scheduling pseudocode.

Input: a set of dirty cells ∆u , and two integers k andm
Output: a computation schedule of the cells in ∆u
D ← ∆u ; P ← ∅;
Let S be an empty schedule;
while |D | > 0 do

P ′ ← subset of k − |P | cells drawn from D;
D ← D − P ′; P ← P ∪ P ′;
Compute cost of each element in P .;
M ← them elements of P with lowest cost; P ← P −M ;
M ′ ← union of the dirty precedents of c,∀c ∈ M ;
AppendM ∪M ′, in topological order, to S ;

end
return S

Algorithm 2: On-the-fly Scheduling algorithm

4.3 Weighted Computation Scheduling
Due to limited screen real estate, users do not see all the cells
of a spreadsheet at the same time. We define the rectangular
range of cells that a user can interact with at any given time
as the viewport. The user can change the viewport either by
scrolling or jumping to the desired part of the spreadsheet.

0 1,000 2,000 3,000 4,000 5,000 6,000
time (ms)

0

20,000

40,000

60,000

#
of

un
av
ai
la
bl
e
ce
lls

synchronous
asynchronous with a random schedule
asynchronous prioritized for viewport

Figure 9: Weighted unavailability comparing synchronous
computationmodels and asynchronous computationmodel
with and without viewport prioritization.

Since users can only view the cells within the viewport,
it is desirable to prioritize the computation of cells that the
user is currently viewing—for this purpose we introduce a
weighted variation of unavailability. Here, each cell c is given
aweight, denotedweight(c). The more important a cell is, the
higher its weight. For example, we can prioritize computation
of cells in the viewport by assigning a high weight,w ≫ 1,
to cells within the viewport and a low weight, 1, to other
cells. It may also be desirable to assign a medium weight to

cells just outside the viewport, as scrolling to these cells is
likely. The following formalization ofweighted unavailability
modifies our previous Definition 7 such that if a high-weight
cell is left unavailable for an extended period, the metric’s
value is much higher.

Definition 13 (WeightedUnavailability). Theweighted
unavailabilityWM for a computation modelM over a spread-

sheet S is WM =
∑
c ∈S (weight(c) · unavailable(c)), where

weight(c) is the weight of c , unavailable(c) is the unavailable
time for c , and S is the set of all cells within the spreadsheet.

We now formalize a weighted variation of our computa-
tion scheduling problem.

Problem 4 (WeightedComputation Scheduling). Given
a set of dirty cells (∆) along with their weights and the de-

pendencies among them, determine an order c1, . . . , cn of all

the cells in ∆ that adheres to the dependencies and minimizes

weighted unavailability, i.e.,

∑
ci ∈∆ (weight(ci) · dirty(ci)), where

dirty(ci) =
∑i

j=1 cost∗(c j) = dirty(ci−1)+cost∗(ci) andweight(c)
is the weight of c , under the Dependency constraint.

Weighted Computation Scheduling is trivially NP-Hard,
since it is a generalization of Computation Scheduling
discussed in Section 4.1, which is NP-Hard.

Illustrative Experiment 4: Weighted Scheduling. This
experiment demonstrates a weighted variation of Experi-
ment 1, with Figure 9 showing a weighted variation of Fig-
ure 3. The spreadsheet is the same as Experiment 1, except
that, here, we assign a weight of 1,000 for the 30 formula
cells within the user’s viewport and 1 for the remaining.
We plot time on the x-axis and weighted unavailability (the
product of the number of unavailable cells and their weights)
on the y-axis. Past the 890 ms mark, the red curve, which
represents the synchronous model, maintains the same level
of weighted unavailability until all of the cells have been
computed and marked clean at around 5,000 ms. For the
asynchronous model that prioritizes cells in the viewport
(green dashed) when scheduling, the weighted unavailabil-
ity drops off very quickly between 890 ms and 1,000 ms,
and then slowly decreases to 0 afterwards. This sharp de-
cline represents the time when the system is computing the
highly-weighted cells within the viewport. The remaining,
lower-weighted cells outside the viewport are computed af-
terwards. On the other hand, the asynchronous computation
model that uses random scheduling slowly decreases over
time, as high-weighted cells are left in the dirty state due
to randomized scheduling. As can be clearly seen in Fig-
ure 9, the model which prioritizes cells in the viewport when
scheduling performs the best under weighed unavailability.

Takeaway: Weighted computation scheduling enables prioritiza-

tion of important cells such as those visible on the user interface.

10

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1286

On-the-fly Weighted Scheduling. For weighted compu-
tation scheduling, we adapt the on-the-fly scheduling algo-
rithm discussed in Section 4.2 by updating the cost calcula-
tion to additionally consider the weight of the cell. Intuitively,
we would like to prioritize cells that have a higher weight but
a lower cost. Thus, we modify Algorithm 2 to prioritize the
cells by cost∗(c)/weight(c). Additionally, we dynamically update
the cell weights when the user changes their viewport by
scrolling. Furthermore we can also modify Algorithm 2 to
first pick up the cells that are within the viewport.

5 THE DATASPREAD SYSTEM
DataSpread is our spreadsheet system that utilizes the tech-
niques in this paper [8–10]. So far, we have focused on main-
memory resident systems. DataSpread not only takes the
available main-memory into account, but also uses disk stor-
age to handle spreadsheets at scale. In Appendix C, we dis-
cuss how the solutions discussed change when we consider
the two-tiered memory model employed by DataSpread.
At a high level, DataSpread is designed to unify the

capabilities of spreadsheets and databases to provide an in-

tuitive direct-manipulation [31] interface for managing big

data. DataSpread is scalable—the current prototype sup-
ports interactive browsing of billion cell spreadsheets on stan-
dard desktop hardware. Support for datasets of this size is
only possible by going beyond main-memory limitations,
using the back-end database as a paging solution: data is
fetched on-demand when triggered by a user action (like
scrolling), or a system action (like formula computation).
Specifically, DataSpread’s back-end utilizes a PostgreSQL
database, React framework [4] for the front-end, and ZK
Spreadsheet [6] for the formula engine. The system archi-
tecture is described further in Appendix D. The prototype,
along with its source code, documentation, and user guide,
can be found at http://dataspread.github.io.

6 ADDITIONAL EXPERIMENTS
In this section, we describe our setup for all the experiments
in this paper and provide additional experiments to quantify
the benefit of (i) asynchronous computation, and (ii) individ-
ual techniques: dependency identification and computation
scheduling, for spreadsheets with different structures.

6.1 Experimental Setup
We now describe the experimental setup, specifically, (i) the
test cases, (ii) the configurations, and (iii) the environment
used for running the experiments.
Test Cases. To generate our spreadsheet test cases, we first
conducted a survey in a university asking users to send us
their largest, most complex spreadsheets. We combined the
tens of spreadsheets we received with hundreds from the

publicly available Enron dataset [16], and then manually
examined sheets that are formula-dense in this collection.
We identified three common usage patterns capturing three
different dependency structures, each parametrized by n:
• Rate: This dependency structure captures the use case of
a column derived from another based on a rate value, such
as conversion or interest rate, or grading weight. When
the rate changes, the derived column must be recomputed.
This case has many cells dependent on the changed rate
(big fan-out), but short dependency chains.
• RunTotalFast: This dependency structure captures the
use case of overlapping partial calculations, such as a run-
ning total (e.g., sum of sales from day 1 . . . i). It uses an
efficient implementation that avoids redundant computa-
tion. Each formula cell depends on the previous formula
cell and one new value. Thus, a long chain of dependen-
cies is introduced to the dependency graph, and there is
only one order in which the cells can computed.
• RunTotalSlow: This dependency structure serves the
same use cases as RunTotalFast, but uses a naïve imple-
mentation, invoking overlapping calls to SUM. When a
value changes, all the relevant totals must be recomputed.
This case features a large computation workload (O(n2)),
and dependent cells with a large skew in their computa-
tion workload ranging from O(1) to O(n).

These test cases and the associated dependency graphs are
depicted in Figure 10. Characteristics of the structures are
summarized in Table 1. In all the cases, we change the value
of a single cell (A1), which triggers recomputation.
Model Configurations.We compare variants of our asyn-
chronous computation model against a synchronous com-
putation baseline. Different choices of individual techniques
can be used for asynchronous computation (see Table 2):
• Compression: use graph compression from Section 3
with Kcomp = 20 (“on”) or skip compression (“off”). We
study the impact of varying Kcomp later on.
• Scheduler: use the proposed on-the-fly scheduling algo-
rithm from Section 4.2 (“on”) or use an algorithm that
schedules computation in an arbitrary fashion while still
obeying dependencies (“off”).
Besides the choice of computation model and its configura-

tion, the rest of the framework, i.e., the code used to evaluate
individual formulae, is identical across experiments.
Environment. We implemented asynchronous computa-
tion along with graph compression and computation sched-
uling in Java within DataSpread. We ran all of our experi-
ments on a workstation running Windows 10 on an AMD
Phenom II X6 2.7 GHz CPU with 32 GB RAM. To elimi-
nate the impact of communication between front-end and
back-end, we designed our test scripts as single threaded

11

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1287

Rate

O(n) vertices
O(n) edges

...
...

A B C

1 ? ? =A1*B1

2 ? =A1*B2

3 ? =A1*B3

n ? =A1*Bn

A1 B1

B2

B3

Bn

C1

C2

C3

Cn

...
...

RunTotalFast

O(n) vertices
O(n) edges

...
...

A B

1 ? =A1

2 ? =A2+B1

3 ? =A3+B2

n ? =An+B(n − 1)

A1

A2

A3

An

B1

B2

B3

Bn

...
...

RunTotalSlow

O(n) vertices
O(n2) edges

...
...

A B

1 ? =SUM(A1:A1)

2 ? =SUM(A1:A2)

3 ? =SUM(A1:A3)

n ? =SUM(A1:An)

A1

A2

A3

An

B1

B2

B3

Bn

...
...

Figure 10: Popular dependency structures found in real-wold spreadsheets, along with their dependency graphs.

independent applications that directly utilize DataSpread’s
back-end. There are two data store configurations: (i) “main-
memory”, where cell values are all stored main-memory, and
(ii) “two-tier-memory”, which uses PostgreSQL 10.5 as a back-
end data store—see Section 5 and Appendix C. While the
previous experiments used the “two-tier-memory” setting,
the experiments in this section will use the main-memory set-
ting, allowing us to scale experiments. We study the impact
of the data store later on. For all the experiments discussed
in this section, we ran 10 trials and then took the median.

Rate RunTotalFast RunTotalSlow
max direct precedents O(1) O(n) O(n)
max direct dependents O(n) O(1) O(n)
dependency chain size O(1) O(n) O(1)

Table 1: Properties of the test cases.
name model compression scheduler
Sync sync off off
Async async off off
AsyncComp20 async on off
AsyncComp20Sch async on on

Table 2: Different configurations used for evaluation.

6.2 Experimental Results
We now discuss four experiments, focusing on different as-
pects: (i) the dependency structure, (ii) the spreadsheet size,
(iii) the main-memory and external-memory setups, and
(iv) the compression factor.
Illustrative Experiment 5: Dependency Structure Vari-
ation. This experiment demonstrates the extent of the ben-
efit of asynchronous computation and the individual tech-
niques on different dependency structures.

Figure 11 plots the number of unavailable cells along the
y-axis with respect to time along the x-axis, one line for
each of the configurations in Table 2. We compare the plots
between test cases, each with a fixed size n = 300,000, except
for RunTotalSlow, with n = 10,000, because of its larger
O(n2) computation workload.
We begin by describing the Rate structure. Here, 300,000

cells out of 600,000 cells depend on cell A1, which is up-
dated. Consider the time 1,500 ms. All 600,000 cells remain
unavailable for Sync, while about 200,000 cells and 150,000
cells remain unavailable for Async and AsyncComp20 re-
spectively. This represents a huge reduction in unavailable
cells of 67% and 75% respectively, relative to Sync, demon-
strating the benefits of asynchronous computation. Further-
more, AsyncComp20 performs much better than Async, with

dependency identification complete at about 1ms for the for-
mer, and about 750ms for the latter, highlighting the benefits
of the CDT. For the Rate structure, the order of computation
scheduling does not matter since all of the formulae require
the same amount of computation workload, leading to a lin-
ear decrease once dependency identification is complete for
all Async variants. The identical computation workload also
explains why AsyncComp20Sch takes slightly longer than
AsynchComp20: the scheduler does not provide a benefit
and introduces a bit of overhead.
For the RunTotalFast structure, once again we find sub-

stantial benefits for the Async variants relative to Sync; all
the Async variants have their unavailability drop by 50% as
soon as dependency identification is complete. Here, unlike
Rate, the order of scheduling does matter: if a cell in the mid-
dle of the chain is computed first, the computation engine
needs to follow the dependency chain to ensure that the cell’s
precedents are computed in a proper order, during which
time no cells are returned to the user. As a result, we do
not observe a steady decrease for Async and AsyncComp20.
AsyncComp20Sch doesn’t do much better—this is because
the scheduler assigns the same cost to all formula cells (i.e.,
the number of direct precedents, a constant). As a result, the
scheduler chooses an arbitrary cell for computation at each
step. A schedule that utilizes a cell’s position in the chain in
its cost may be able to return cells more gradually.

Finally, for RunTotalSlow, there are 10,000 cells requiring
recomputation—they each have different complexities and do
not depend on each other. Here, we see the benefits of sched-
uling, with AsyncComp20Sch performing better than Async-
Comp20. For example, at the 10s mark, AsyncComp20Sch
has about half the unavailable cells of AsyncComp20. All
configurations finish computation much later than in Rate or
RunTotalFast (about 20s) because the computation is much
more intensive (O(n2) as opposed to O(n)). For this reason,
the drop in unavailable cells from 20,000 cells to 10,000 cells
due to dependency identification is barely visible.

Takeaway: For asynchronous computation, different dependency

structures impact the rate at which cells are computed and re-

turned to the user. CDT ensures interactivity by reducing the

response time across all structures. On-the-fly scheduling helps

when the dependent cells vary in terms of their workload.

Illustrative Experiment 6: Dependency Size Variation.
This experiment demonstrates the extent of the benefit of

12

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1288

0 1,000 2,000 3,000
time (ms)

0

200,000

400,000

600,000

#
of

un
av
ai
la
bl
e
ce
lls

Rate (n = 300,000)

0 1,000 2,000 3,000
time (ms)

0

200,000

400,000

600,000

#
of

un
av
ai
la
bl
e
ce
lls

RunTotalFast (n = 300,000)

0 5,000 10,000 15,000 20,000
time (ms)

0

5,000

10,000

15,000

20,000

#
of

un
av
ai
la
bl
e
ce
lls

RunTotalSlow (n = 10,000)

Sync
Async
AsyncComp20
AsyncComp20Sch

Figure 11: Comparing the plot of the number of unavailable cells over time under different model configurations on multiple
test cases. The rate at which the number of unavailable cells decrease depends on the dependency structure.

asynchronous computation and the individual techniques
while the sizes of the dependency structures vary. Figure 12
plots unavailability (the area under the curve of unavailable
cells over time) as a percentage of Sync, as a function of the
test case size n for various configurations. For example, con-
sider Rate with n = 100,000. These four points correspond
to the four curves for Rate in Figure 11, comparing unavail-
ability, the area under the curve. While Sync is always at
100%, the area under Async (green) and AsyncComp20 (solid
blue) is 51% and 22%, respectively, compared to that of Sync
(red). Overall, for Rate, across a range of n, Async reduces un-
availability to 51%–68%, and AsyncComp20 further reduces
unavailability to 22%–43%. In an ideal situation, dependency
identification is instantaneous, and incremental computa-
tion occurs at a constant rate, finishing at the same time
as Sync. For this situation, unavailability would be 25% of
Sync. AsyncComp20 approaches this ideal case asn increases
and dependency identification occupies a smaller fraction
of the overall time. For a similar reason, AsyncComp20Sch
is worse for small n since scheduling introduces overhead;
it approaches the performance of AsyncComp20 for large n.
(Recall that scheduling doesn’t help for Rate.) The behavior
for RunTotalFast is similar; however, the percentages are
slightly higher, because the long dependency chain leads to
the extra work of precedence traversal, as discussed previ-
ously. Finally, for RunTotalSlow, Async reduces unavailabil-
ity to 26%–28% compared to Sync, with or without graph
compression. Scheduling reduces unavailability further to
17%–18%. The benefit of graph compression remains, but it
is small compared to the much larger computation work-
load here. Here, scheduling helps because of the skew in
the computation cost of the dependent cells. The decreasing
trend does not appear in this case, because the overhead as
discussed previously is overshadowed by the computation.

Takeaway: The benefit of asynchronous computation measured

using unavailability increases with the size of the sheet.

Illustrative Experiment 7: Data Store Configurations.
This experiment compares the benefit of asynchrony be-
tween the main-memory and the two-tier-memory settings.
Figure 13 plots the number of unavailable cells as a function
of time, similar to Figure 11. Both graphs here use the Rate

test case with size n = 5,000, but the results are similar for
other test cases. Comparing the two graphs, the trends of the
lines for both systems are almost identical: Async has a large
drop off once dependency identification is done and contin-
ues to decrease almost linearly, reaching zero unavailable
cells slightly after Sync does. The only major difference is in
the x axis scale, due to the latency of fetching cells from disk;
for instance, the two-tiered system completes in 5,695 ms,
whereas main-memory completes in 27 ms for Async.

Takeaway: Both main-memory and two-tiered settings show

similar trends for number of unavailable cells over time.

Illustrative Experiment 8: CompressionConstant.This
experiment demonstrates the impact of the constant Kcomp
for structured dependency graphs. The dependency struc-
tures in all three test cases are highly compressible into
rectangular regions, in contrast to Illustrative Experiment 2,
which varies Kcomp (Figure 6). Compression, overall, leads to
few, if any, false positives, regardless of Kcomp. To see this,
Figure 14(a) plots the unavailability of AsyncCompKcompSch
on RunTotalSlow for values of Kcomp = 2, 20, 200 as a per-
centage of Sync along the y-axis with n along the x-axis,
similar to the graphs in Figure 12. The dependents of cell A1
are B1, . . . ,Bn, a contiguous block in column B. The greedy
dependency compression algorithm can combine dependent
cells into Kcomp contiguous blocks without false positives.
Figure 14(b) shows an example of how greedy compression
may group the cells in column B so that they in total form
2, 20, and 200 regions respectively. As no false positives are
added, the value of Kcomp does not impact performance, as
is seen in Figure 14(a).

Takeaway: The effects of Kcomp are not significantly different

on spreadsheets with structured dependency graphs, but can

make a large impact on unavailability for spreadsheets with

unstructured dependencies (see Figure 6).

7 RELATEDWORK
The asynchronous formula computation model presented
in this paper is an alternative to the synchronous model
adopted by traditional spreadsheet systems. Problems similar
to graph compression and scheduling have been studied in
various contexts with different goals. There is also related

13

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1289

3,000 10,000 30,000 100,000 300,000
n on log scale

0

25

50

75

100

un
av
ai
la
bi
lit
y
(%

of
sy
nc
)

Rate

3,000 10,000 30,000 100,000 300,000
n on log scale

0

25

50

75

100

un
av
ai
la
bi
lit
y
(%

of
sy
nc
)

RunTotalFast

1,000 3,000 10,000
n on log scale

0

25

50

75

100

un
av
ai
la
bi
lit
y
(%

of
sy
nc
)

RunTotalSlow

Sync
Async
AsyncComp20
AsyncComp20Sch

Figure 12: Unavailable cells over time, as a percentage of the Sync configuration, on multiple test cases of various sizes.

0 10 20 30
time (ms)

0

5,000

10,000

#
of

un
av
ai
la
bl
e
ce
lls

in-memory
synchronous
asynchronous

0 2,000 4,000 6,000
time (ms)

0

5,000

10,000

#
of

un
av
ai
la
bl
e
ce
lls

two-tier-memory
synchronous
asynchronous

Figure 13: These two graphs plot the number of unavailable
cells with respect to time for main-memory and two-tier-
memory systems for the Rate test case with n = 5,000. The
two graphs display the same trend.

(a)

1,000 3,000 10,000
n on log scale

14

16

18

20

22

un
av
ai
la
bi
lit
y
(%

of
sy
nc
)

RunTotalSlow
Kcomp = 2
Kcomp = 20
Kcomp = 200

(b) B1
B2
B3

Bn

...

B1
B2
B3

Bn

...

B1
B2
B3

Bn

...

Figure 14: (a) The plot of unavailable cells over time, as a per-
centage of the Sync configuration, on RunTotalSlow, with
various Kcomp values. (b) Dependencies of cell A1 in RunTo-
talSlow can be compressedwithout false positives regardless
of the compression constants Kcomp.

work that handles spreadsheets at scale. We now discuss
each of these categories of related work in more detail.
Computation Models. Asynchrony has been used in oper-
ations with delayed actors, such as in crowdsourcing [23, 28]
and web search [11] but never for spreadsheets. The syn-
chronous model of traditional spreadsheets uses dependency
graphs [25, 30, 34] to avoid unnecessary computations, but
it does not avoid the performance degradation due to a large
and complex network of dependencies [33]. Our proposed
asynchronous computation model along with the CDT alle-
viate such issues, as discussed in Section 3.
Graph Compression. Alternate representations of graph-
structured data have been introduced for numerous appli-
cations, including for web and social graphs. While some
papers focus on a high-level understanding of the network
via clustering [12], those that obtain a concise representation
of graphs to improve query performance are more related.
Graph compression methods, surveyed by Liu et al. [19],

have different goals, such as compactness with bounded
errors [27], optimizing pattern matching queries [21], and
supporting dynamism [32]. Our setting is different because
of (i) our goal of quickly obtaining a representation of the
dependents of a cell, (ii) the one-sided (false positive only)
tolerance, and (iii) the spatial nature of cell ranges.
Scheduling. Scheduling under precedence constraints is
a thoroughly studied problem, especially in operations re-
search, with various settings and metrics, including ones
similar to the unavailability metric [18]. Similar scheduling
problems arise in this paper, and some hardness results are
drawn from previous work. However, as discussed in Sec-
tion 4, in prior work, schedules are built up front, whereas
obtaining a complete schedule up front is prohibitive in our
setting. For this reason, we introduce on-the-fly scheduling.
Handling Scale. Previous work on supporting spreadsheets
at scale has been done by 1010data [2], ABC [29], Airtable [3],
DataSpread [8, 9], and Oracle [35, 36]. While these systems
address scale, interactivity for formula computation is not
their focus. Ourwork is distinguished from these papers in its
ability to provide partial results with consistency guarantees.

8 CONCLUSION
Our proposed asynchronous computation model improves
the interactivity of spreadsheets without violating consis-
tency while working with large datasets. To do so, we intro-
duced the notion of partial results, wherein formulae that
are being computed in the background are blurred out. We
ensured interactivity by proposing the CDT to support the
identification of dependent cells after an update in a bounded
amount of time. We further developed an on-the-fly sched-
uling technique to minimize the number of cells that are
pending computation. We have implemented the aforemen-
tioned ideas in DataSpread and demonstrated substantial
improvements in interactivity and usability compared to
traditional spreadsheet systems through an extensive set of
experiments on spreadsheets, while varying multiple dimen-
sions. Our new computation model’s improved interactivity

and usability enables the use of spreadsheet systems in data

analysis situations where it was once inconceivable.

14

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1290

REFERENCES
[1] http://adityagp.net/dataspread-formulae.html.
[2] 1010 Data. https://www.1010data.com/.
[3] Airtable. https://www.airtable.com/.
[4] React:A JavaScript library for building user interfaces. https://reactjs.

org.
[5] Spring Framework. https://spring.io/.
[6] ZK Spreadsheet. https://www.zkoss.org/product/zkspreadsheet.
[7] Memory usage in Excel 2013 & 2016. https:

//support.microsoft.com/en-us/help/3066990/
memory-usage-in-the-32-bit-edition-of-excel-2013-and-2016,
2017.

[8] M. Bendre et al. Dataspread: Unifying databases and spreadsheets. In
VLDB, 2015.

[9] M. Bendre et al. Towards a holistic integration of spreadsheets with
databases: A scalable storage engine for presentational data manage-
ment. In ICDE, 2018.

[10] M. Bendre et al. Faster, higher, stronger: Redesigning spreadsheets for
scale. In ICDE, 2019.

[11] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Computer networks, 30(1-7):107–117, 1998.

[12] R. Cilibrasi and P. Vitanyi. Clustering by compression. IEEE Transac-

tions on Information Theory, 51(4):1523–1545, 2005.
[13] R. W. Conway et al. Theory of scheduling. Courier Corporation, 2003.
[14] J. Culberson and R. Reckhow. Covering polygons is hard. Journal of

Algorithms, 17(1):2–44, 1994.
[15] A. Guttman. R-trees: A dynamic index structure for spatial searching.

In SIGMOD, 1984.
[16] B. Klimt and Y. Yang. Introducing the enron corpus. In CEAS, 2004.
[17] A. V. Kononov, B. M. Lin, and K.-T. Fang. Single-machine scheduling

with supporting tasks. Discrete Optimization, 17:69–79, 2015.
[18] E. L. Lawler. Sequencing jobs to minimize total weighted comple-

tion time subject to precedence constraints. In Annals of Discrete

Mathematics, volume 2, pages 75–90. Elsevier, 1978.
[19] Y. Liu et al. Graph summarization methods and applications: A survey.

ACM Computing Surveys (CSUR), 51(3):62, 2018.
[20] Z. Liu and J. Heer. The effects of interactive latency on exploratory

visual analysis. TVCG, 2014.
[21] A. Maccioni and D. J. Abadi. Scalable pattern matching over com-

pressed graphs via dedensification. In KDD, 2016.
[22] K. Mack et al. Characterizing scalability issues in spreadsheet software

using online forums. In SIGCHI, 2018.
[23] A. Marcus et al. Crowdsourced databases: Query processing with

people. In CIDR, 2011.
[24] Microsoft UK Enterprise Team. How finance leaders can drive

performance. https://enterprise.microsoft.com/en-gb/articles/roles/
finance-leader/how-finance-leaders-can-drive-performance/, 2015.

[25] D. Models. Excel’s smart recalculation engine, 2014.
[26] B. A. Nardi and J. R. Miller. The spreadsheet interface: A basis for end

user programming. Hewlett-Packard Laboratories, 1990.
[27] S. Navlakha et al. Graph summarization with bounded error. In

SIGMOD, 2008.
[28] A. G. Parameswaran et al. Deco: declarative crowdsourcing. In CIKM,

2012.
[29] V. Raman et al. Scalable spreadsheets for interactive data analysis. In

DMKD, 1999.
[30] P. Sestoft. Spreadsheet Implementation Technology: Basics and Exten-

sions. The MIT Press, 2014.
[31] B. Shneiderman. Direct manipulation: A step beyond programming

languages. IEEE Computer, 16(8):57–69, 1983.

[32] N. Tang et al. Graph stream summarization: From big bang to big
crunch. In SIGMOD, 2016.

[33] C. Williams et al. Speeding up calculations and reducing obstruc-
tions. https://docs.microsoft.com/en-us/office/vba/excel/concepts/
excel-performance/excel-improving-calcuation-performance.

[34] C. Williams et al. Excel performance: Improving calculation perfor-
mance. https://docs.microsoft.com/en-us/office/vba/excel/concepts/
excel-performance/excel-improving-calcuation-performance, 2017.

[35] A. Witkowski et al. Advanced SQL modeling in RDBMS. TODS,
30(1):83–121, 2005.

[36] A. Witkowski et al. Query by excel. In VLDB, 2005.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
We acknowledge support from grants IIS-1513407, IIS-1633755, IIS-
1652750, and IIS-1733878 awarded by the National Science Foun-
dation, grant W911NF-18-1-0335 awarded by the Army, and funds
from Adobe, Toyota Research Institute, and Google.

APPENDIX
The appendix includes the following: (i) the proofs for the
NP-Hardness claims, (ii) techniques for adding and deleting
entries from the CDT, (iii) the two-tier memory model used
in DataSpread, and (iv) the architecture of DataSpread.

A PROOFS
This section provides proofs for NP-Hardness claims.
Proof of Theorem 1.We prove Theorem 1 by providing a
reduction from the Polygon Exact Cover problem, a known
NP-Hard problem, defined as follows [14].

Problem 5 (Polygon Exact Cover). Given a simple and

holeless orthogonal polygon P and an integer k , is there a set
of at most k axis-aligned rectangles whose union is exactly P?

Proof of Theorem 1. (Sketch) Given a simple and hole-
less orthogonal polygon P and an integer k in a Polygon
Exact Cover instance, we can perform a rank-space reduc-
tion on the coordinates of P ; that is, we change the actual
coordinates into values in {1, . . . ,n}, where n is the size
(number of vertices) in P , such that the coordinates are in
the same order. We then translate the polygon in the new
coordinates into a set C of cells. (Note that the representa-
tion size goes up quadratically.) There is a set of at most k
axis-aligned rectangles whose union is precisely P if and
only if C has a cover whose size does not exceed k and cost
is at most |C | (has no false positives), following the natural
coordinate mapping between rectangles and ranges. □

Proof of Theorem 2. Problem 7 is a generalization of the
Scheduling With Supporting Tasks problem [17], which
is NP-Hard, defined as follows.
Problem 6 (Scheduling With Supporting Tasks). Let

A = {a1, . . . ,am} and B = {b1, . . . ,bn} be sets of tasks, and
R ⊆ A× B be a relation. All tasks take a unit time to complete.

15

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1291

http://adityagp.net/dataspread-formulae.html
https://www.1010data.com/
https://www.airtable.com/
https://reactjs.org
https://reactjs.org
https://spring.io/
https://www.zkoss.org/product/zkspreadsheet
https://support.microsoft.com/en-us/help/3066990/memory-usage-in-the-32-bit-edition-of-excel-2013-and-2016
https://support.microsoft.com/en-us/help/3066990/memory-usage-in-the-32-bit-edition-of-excel-2013-and-2016
https://support.microsoft.com/en-us/help/3066990/memory-usage-in-the-32-bit-edition-of-excel-2013-and-2016
https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
https://docs.microsoft.com/en-us/office/vba/excel/concepts/excel-performance/excel-improving-calcuation-performance
https://docs.microsoft.com/en-us/office/vba/excel/concepts/excel-performance/excel-improving-calcuation-performance
https://docs.microsoft.com/en-us/office/vba/excel/concepts/excel-performance/excel-improving-calcuation-performance
https://docs.microsoft.com/en-us/office/vba/excel/concepts/excel-performance/excel-improving-calcuation-performance

The tasks in A and B are to be scheduled on a single machine

that can perform one task at a time, such that if (ai ,bj) ∈ R,
then task ai must be completed before task bj . Tasks in A are

supporting tasks and are not required to be completed (unless

required by other tasks in B). Let cost(bj) denote the time until

task bj is completed in a schedule. Given c , determine whether

there is a schedule to complete all tasks in B within the stated

restrictions such that the total cost

∑
cost(bj) is at most c .

Proof of Theorem 2. (Sketch) We provide a polynomial-
time reduction from Scheduling With Supporting Tasks.
For each task t inA∪B, we create a corresponding cell cell(t).
For each (ai ,bj) ∈ R, we make cell(bj) dependent on cell(ai);
in other words, if ai1 , . . . ,aiℓ are the elements of {a | (a,bj) ∈
R}, we create a formula cell(bj) = cell(ai1) + · · · + cell(aiℓ).
We then mark all cells corresponding to B dirty; that is, let
D = {cell(bi) | bj ∈ B} and P be their precedents. It follows
that a valid schedule in one problem is also valid on the other
(given proper translations between tasks and cells), and the
cost metrics of the two problems are identical. □

B MAINTENANCE OF THE CDT
In this section, we introduce techniques for inserting into
and deleting from elements from the CDT.
Deleting dependencies. Deleting a dependent from the
CDT can potentially introduce false negatives. Consider the
example in Figures 4 and 7. Here, C4 is a dependent of B3.
Suppose the formula in C4 is changed to =B4+3, and thus
the direct dependency B3 → C4 is deleted. However, we
cannot remove C4 from the dependent list of B3, because
C4 remains a dependent of B3, albeit no longer a direct one,
i.e., the dependency between C4 and B3 is due to more than
one formula. Another issue is deleting a single dependent
cell from a range, which is difficult to do efficiently without
leading to a highly fragmented, inefficient R-tree.
A simple way to circumvent deletion issues is to make

no changes to the CDT on direct dependency deletion. If d
is a dependent that is supposed to be deleted but is instead
ignored and kept, then d becomes a false positive, which, as
previously discussed, does not affect correctness but adds
to computation time. Over time, however, false positives re-
sulting from deletion accumulate. We combat this issue by
periodically reconstructing the CDT from scratch, particu-
larly during spreadsheet idle time. Such a method is also
beneficial because the dependents of a cell can change dras-
tically over the lifetime of a spreadsheet, and an entirely
new grouping of cells into ranges may lead to a significant
decrease in the number of false positives.
A1 A2 A3 B1 B2 B3
A1=0 A2=A1+1 A3=A2+1 B1=0

B1=A3+1
B2=B1+1 B3=B2+1

Figure 15: Adding a new direct dependency.

Adding dependencies. Adding a direct dependency can
be quite time-consuming in the worst case. Consider the
example in Figure 15, where the formula of B1 is changed
from =0 to =A3+1, and thus a new direct dependency A3→ B1
is added. Because of this change, A3 and its precedents must
have their entries changed in the CDT by adding B1, B2, B3
as their dependents, which is quite time consuming.
To get around this issue, we introduce lazy dependency

propagation. The idea is to only add the direct dependency
(A3 → B1) to the CDT. Such direct dependencies have a
must-expand status (indicated as a single bit), indicating that
the dependency is recently added and not fully processed.
Also, the CDT is put into a special unstable state (another bit),
indicating that at least one dependency has the must-expand

status, because we can no longer perform the dependency
lookup in the CDT in the same manner. We propagate the
must-expand dependencies in the background during idle
time. Specifically, for a must-expand dependency u → v ,
dependents of v are added as dependents of u and all its
precedents (in the example above, adding B1, B2, and B3 as
dependents to cells A1, A2 and A3). The CDT leaves the unsta-
ble state once all must-expand dependencies are propagated.
Algorithm 3 provides an outline of the process to lazily

propagate dependencies of cells that have a must expand
flag. We denote the resulting set of cells from looking a cell
c up in the CDT as CDT(c).

Input: a cell c marked with a must-expand flag
Q ← {c}; S ← CDT(c);
while |Q | > 0 do

c ′← element of Q ; Q ← Q − {c ′};
for each d ∈ CDT(c ′) with must-expand flag do

Q ← Q ∪ {d}; S ← S ∪ CDT(d);
end

end
for each key k ∈ CDT do

if CDT(k) ∩ {c} , ∅ then
CDT(k) ← CDT(k) ∪ S ;

end
end

Algorithm 3: Lazy Dependency Propagation algorithm
To identify dependents of u in an unstable CDT, one must

look up dependents recursively, similar to traversing a de-
pendency graph. However, a lookup requires no further steps
if none of its dependents have a must-expand dependent.
For example, instead of updating all entries as in Fig-

ure 16(a), B1 is added as a must-expand dependent of A3, as in
Figure 16(b). At this unstable state, to identify dependents of
A1, it is insufficient to just report A2, A3 as dependents, even
if neither of the cells are must-expand dependents. Since A3

16

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1292

(a) cell dependents
A1 A2, A3, B1, B2, B3
A2 A3, B1, B2, B3
A3 B1, B2, B3
B1 B2, B3
B2 B3
B3

(b) cell dependents
A1 A2, A3
A2 A3
A3* B1*
B1 B2, B3
B2 B3
B3

Figure 16: Adding dependencies to CDT: (a) naïve method
(b) lazy dependency propagation (must-expand dependen-
cies are marked by asterisks)

has a must-expand dependent B1, the recursive lookup con-
tinues, to include B2 and B3. Since neither of the dependents
of B1 (which are B2 and B3) has a must-expand dependent,
recursion can stop there. Eventually, the must-expand de-
pendent is resolved by a background thread and the CDT
becomes similar to that shown in Figure 16(a).
A downside of this approach is that dependency identi-

fication does not have a constant time guarantee until all
must-expand dependencies are propagated and the table
leaves the unstable state. However, this approach quickly
returns control to the user and allows users to perform other
operations while we update the CDT, potentially at the ex-
pense of speed of subsequent operations, if they come in
rapid succession.

Note that adding dependents to a cell can push the number
of dependents beyond the Kcomp limit. To ensure constant
lookup time when the CDT leaves the unstable state, we
reduce the number of ranges representing the dependents
down to Kcomp using the method of repeated merging of
ranges described in Section 3.3.

C HANDLING SCALE
Unfortunately, current main-memory-based spreadsheet sys-
tems do not scale to large datasets [7]. Here, we adapt the
techniques described earlier to a two-tier memory model that
does not have similar scalability limitations. Unlike main-
memory-based systems, where computation time is the dom-
inant concern, here, data retrieval from storage is also im-
portant. Taking these fetching costs into account can lead to
even more improvements than what is gained by the original
techniques alone.
The Two-Tiered Memory Model. The two-tier memory

model contains two tiers of memory: (a) the main-memory,
which is limited in size, but allows fast data access—the appli-
cation interfaces with this tier; and (b) the persistent storage,
which is large, but data access is slow—and the application
does not directly interact with this tier.

Under this model, spreadsheet data is persisted in the stor-
age tier; thus, any changes must be eventually reflected there.
We assume that the storage tier is not accessed directly by the
spreadsheet application but rather via the main-memory in
a read/write-through manner, meaning (i) if the application

requires data not present in the main-memory, then the data
is fetched from the storage tier, stored in the main-memory,
and returned to the application; and (ii)when the application
updates data, it is first updated in main-memory, and the
control is returned to the application only when the update
is also reflected in storage. In particular, for DataSpread,
we use a relational database for the storage tier.

Unfortunately, data transfer between the two tiers is time
consuming; we incur a fetching cost each time we bring a
cell from the storage tier into the main-memory tier. Often,
these costs dominate the computation cost. Next, we explore
how graph compression and scheduling changes when the
main cost is the fetching cost.
Fast Dependency Identification. The dependency graph
can be as large as the spreadsheet size, and therefore is per-
sisted in the storage tier. Identifying dependencies naively by
traversing the graph is inefficient in main-memory systems,
and can be even worse in two-tier systems; each step of the
traversal requires a query to the storage layer. Even if the
query is done in a breadth-first search fashion, such that
each step (of the same distance from the origin) is done in
a batch, the number of steps required is equal to the length
of the longest chain in the graph. The result of fetching for
each step in the chain can be far too costly for our purposes.
The CDT, as presented for main-memory systems, can

also be used in the two-tier setting. The CDT can be stored
as a relation in the storage layer. A query for dependents of a
cellu is often a straightforward lookup in this table, avoiding
the aforementioned issues with graph traversal.
Computation Scheduling. Here we introduce a new ver-
sion of the scheduling problem, which we adapt to include
the cost of fetching the direct precedents of dirty cells from
storage, as those values are required for computation.
Problem 7 (Computation Scheduling with Fetching

Costs). Given a set of dirty cells (∆), their direct precedents
P = {p | the direct dependency p → c exists for some c ∈ ∆},
along with the dependencies among the cells in ∆+ = ∆ ∪ P ,
determine an order c1, . . . , cn of all the cells in ∆+ that min-

imizes the unavailability metric, i.e.,

∑
ci ∈∆ dirty(ci), where

dirty(ci) =
∑i

j=1 cost∗(c j) = dirty(ci−1) + cost∗(ci), under the
dependency constraint.

Since both the dirty cells and their precedents need to
be fetched from storage, all cells in ∆+ are relevant in the
fetching order. However, the unavailability metric only con-
cerns the dirty cells ∆. We can show that the Computation
Scheduling with Fetching Costs problem is NP-Hard.
Theorem 2. Computation Scheduling with Fetching

Costs is NP-Hard.
Scheduling for two-tiers can be done in a similar fashion

as on-the-fly weighted scheduling for main-memory sys-
tems. However, the cost function cost∗(c) for a cell c must be

17

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1293

Session Manager

Formula
Parser

Computation
Scheduler

Formula
Evaluator

Dependency
Table

Dependency
Graph

Graph
Compressor

Application
Layer

Storage
Layer

(Database)

User Interface
(Web browser)

Dirty
Manager

LRU cell
cache

Spreadsheet
Data

Computation Status Manager

cache cache cache

Figure 17: DataSpread Architecture

adjusted, since fetching costs dominates computation costs
in the two-tier context. In addition, “locality” becomes im-
portant. Systems often perform data fetching in blocks, and
therefore scheduling computation of formulae in the same
block together can be beneficial. Working on formulae whose
operands are already fetched into the cache is less costly;
switching to completely unrelated formulae may result in
cells being evicted from the limited-size cache, requiring
re-fetching. This can be factored into the cost function. It
may require dynamic updates as the cache changes in the
same way weights are updated when the viewport moves.

D ARCHITECTURE
Here, we describe the architecture of DataSpread, depicted
in Figure 17. We explain how the components that utilize the
techniques presented in the paper work together to obtain
an interactive and consistent spreadsheet system.

At a high level, DataSpread’s architecture can be divided
into three main layers, (i) user interface, (ii) application layer,
and (iii) storage layer. The user interface consists of a cus-
tom developed spreadsheet component based on the React
framework, which runs in the web browser and presents a
spreadsheet to the user and handles interactions on it. The ap-
plication layer consists of components responsible for main
operations of the spreadsheet system, including formula eval-
uation. These components are developed in Java and reside
on an application server. The storage layer consists of a rela-
tional database and is responsible for persisting spreadsheet
data and metadata, including dependency information.
The front-end back-end communication designed using

the Spring [5] framework uses (i) RESTful APIs for non-
latency critical communication, e.g., getting a list of spread-
sheets, and (ii) web-sockets for latency critical communica-
tion, e.g., updating cells on the user interface after an event.
Partial Result Presentation Components. As discussed
in Section 2, the ability to present partial results is the main
advantage of asynchronous computation. To determinewhich
values are available to the user, the dirty manager is respon-
sible for maintaining a collection of regions that are dirty
and thus need computation.

The session manager keeps track of the user’s current
viewport and the collection of cells that are cached in the
browser—thus upon a scroll event on the user interface, the
application layer can determine whether the browser already
has the required cells or if new cells need to be pushed. Its
viewport information is also useful for viewport prioritiza-
tion, as discussed in Section 4.3.
The session manager communicates with the dirty man-

ager to determine which cells are shown to the user, and
make appropriate changes to the front-endwhen cells change
their availability. It also communicates with the computa-

tion status manager, which periodically checks the progress
of the computations and informs the front-end about the
progress—the front-end updates the progress bars to reflect
the progress.
Formula Evaluation Components. The dependency graph
maintains dependencies between cells and regions. The com-

pressed dependency table, maintained by the dependency table
compressor, allows the system to support fast dependency
identification, as discussed in Section 3.

Formula evaluation is triggered by updates to cells on the
user interface. On a cell update, fast dependency identifica-
tion marks dependents of the updated cell as dirty in the
dirty manager. In addition, if the update involves adding,
removing, or modifying a formula, the formula parser in-
terprets the formula and identifies which cells are required
for computation—this information is sent to the dependency
graph and the dependency table to make appropriate updates.
The computation scheduler coordinates the formula com-

putation. It retrieves dirty cells from the dirty manager and
schedules their computation as discussed in Section 4. The
actual formula evaluation is done using the formula engine,
which fetches the cells required for computing the formula
from the LRU cell cache in a read-through manner, i.e., the
cache fetches the cells that are not present on demand from
the storage layer. The formula engine then computes the
result of the formula. Finally, it persists the calculated result
by passing it back to the LRU cell cache in a write-through
manner, i.e., the cache pushes its updates to the storage.

Finally, in addition to utilizing the techniques described in
Sections 2, 3, and 4, and described above, DataSpread sup-
ports a number of additional features to ensure interactivity
and scalability. (i)We implement caching at multiple layers
using an LRU-based evacuation scheme. (ii) Our back-end
is context-aware, meaning it keeps track of what the user
is looking at and what data is cached in the web-browser.
(iii) We adopt a push-based architecture, where upon scroll
event or change in data, updated cell values are pushed by
the back-end to the front-end via web sockets and vice-versa.
(iv)We adopt the idea of a virtual DOM (Document Object
Model), where the web browser only renders the visible cells.

18

Research 13: Fairness, Uncertainty SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1294

	Abstract
	1 Introduction
	2 Asynchronous Computation
	2.1 Standard Spreadsheet Terminology
	2.2 Design Principles
	2.3 New Concepts

	3 Fast Dependency Identification
	3.1 Motivation and Problem Statement
	3.2 Compressed Dependency Table (CDT)
	3.3 Construction of the CDT
	3.4 Maintenance of the CDT

	4 Computation Scheduling
	4.1 Motivation and Problem Statement
	4.2 On-the-fly Scheduling
	4.3 Weighted Computation Scheduling

	5 The DataSpread System
	6 Additional Experiments
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References
	Acknowledgments
	A Proofs
	B Maintenance of the CDT
	C Handling Scale
	D Architecture

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 297.61, 55.30 Width 24.10 Height 29.34 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 18

 CurrentAVDoc

 297.6147 55.299 24.1026 29.3423

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 18
 17
 18

 1

 HistoryList_V1
 qi2base

