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ABSTRACT
This paper addresses the DATA-DIFF problem: given a dataset and
a subsequent version of the dataset, find the shortest sequence of
operations that transforms the dataset to the subsequent version,
under a restricted family of operations. We consider operations
similar to SQL UPDATE, each with a condition (WHERE) that
matches a subset of tuples and a modifier (SET) that makes changes
to those matched tuples. We characterize the problem based on
different constraints on the attributes and the allowed conditions
and modifiers, providing complexity classification and algorithms
in each case.

1. INTRODUCTION
Over the course of data analysis, data scientists routinely

generate versions of datasets by performing various data cura-
tion and cleaning operations, including updating, normalizing,
fixing, adding, or deleting attribute values or rows, or adding
or deleting new features or columns. They may use various
ad-hoc tools for performing these edit operations, including
scripting tools like sed, awk, or perl, or programming lan-
guages, like R or Python. Each such new dataset version is
stored in a networked file system and shared with other data
scientists [5, 22, 6]. Usually, however, the sequence of edit
operations or the script that was used to generate the new
version is not recorded along with the new version—since
it may have been the result of a quick-and-dirty update; and
even if the script is recorded, since the script may be in vari-
ous programming or scripting languages, it may be hard to
decipher or reverse-engineer the sequence of edit operations
performed within this script.

To tackle this issue, in this paper, we introduce the DATA-
DIFF problem: given a dataset DS and a subsequent dataset
DT that was derived fromDS, can we synthesize the most suc-
cinct sequence of edit operations, ∆, that transforms DS to
DT? Our target is SQL edit operations that can be efficiently
executed in relational databases. We call this problem the
DATA-DIFF problem as the data-analog of the traditional text
diff, or differentiation problem, often used in source code ver-
sioning systems to synthesize the sequence of edit operations
that resulted in a new version.

There are three reasons why solving DATA-DIFF, i.e., syn-
thesizing a succinct sequence of edit operations, is valuable:
understanding, generalization, and compactness. First, the
data-diff helps users compactly understand the edit operations
that have been made to generate a new version DT from DS,
without having to read through a long programming script;

second, it allows us to potentially record and recreate the
edit operations so that they can be similarly applied to other
datasets; and third, instead of storingDT, we can simply store
the sequence of edit operations, which, since it is written in
SQL, is often smaller.
Our Focus. In this paper, our key contribution is to introduce
the DATA-DIFF problem and study it from a theoretical per-
spective, aiming to characterize the complexity of the problem
and understand when the problem becomes intractable. We
focus on recovering edits to a single relation R, with edit
operations that follow the following template:

UPDATE R SET 〈U〉 WHERE 〈C〉;

We characterize the complexity of DATA-DIFF across three
dimensions:

1. [characteristics] the attributes that may be used within
U and C: we call an attribute read-only (write-only) if
it can be used within C (U ) but not U (C), read-write
if it can be used within U and C, and inaccessible if
should not be used within either U or C;

2. [modifiers] the space of transformations that can be
used within U : we span basic assignment operations,
as well as arithmetic operations; and

3. [conditions] the space of conditions that can be used
within C: we span both equality conditions, ≤ and ≥,
and range-based conditions.

In any of these cases, the user will specify the space of at-
tribute characteristics, modifiers, and conditions, and the
system will then automatically synthesize the smallest se-
quence of edit operations. Next, we illustrate the challenges
in solving DATA-DIFF using a simple example.

EXAMPLE 1.1 (MOTIVATING EXAMPLE). Consider the
scenario in Figure 1, where we depict three versions of a
given relation R, namely R1, R2, and R3, with the primary
key K. Using K, we can identify how individual tuples have
evolved across the versions. For this simple example, we do
not have any tuples being added or deleted, nor do we have
any attributes being added or deleted. Our goal is to solve
DATA-DIFF under the specification that we have one read-
write attribute, A, and one write-only attribute, B. (since
K is the primary key, in this case, it has been denoted an
inaccessible attribute, which means that it cannot be used in
the modifier or in the condition.)
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= [Thm 4.1] O(N logN) [Thm 4.1] O(N logN) [Thm 4.1] O(N logN) [Thm 4.1] O(N logN)
≤ [Thm 4.2] O(N logN) [Thm 4.3] O(N logN) [Thm 4.4] O(N logN) [Thm 4.5] O(N logN)

≤≥ [Thm 4.6] O(N2)
[Thm 4.7] NP-hard [Thm 4.17] NP-hard [Thm 4.19] NP-hard[Thm B.1] O(N logN) to +1-approx

R [Thm 4.20] O(N4)
[Thm 4.21] NP-hard [Thm 4.28] NP-hard [Thm 4.30] NP-hard[Thm B.2] O(N logN) to ×2-approx

U [Thm 4.31] NP-hard [Thm 4.38] NP-hard [Thm 4.38] NP-hard [Thm 4.38] NP-hard

Table 1: Results summary for the one read-only attribute, one write-only attribute case

K A B
c17 1 0
3bd 5 0
97a 3 0
1b8 0 0
94f 4 0
842 2 0

R1

K A B
c17 1 1
3bd 5 3
97a 3 2
1b8 0 1
94f 4 2
842 2 1

R2

K A B
c17 7 1
3bd 8 3
97a 8 2
1b8 7 1
94f 8 2
842 7 1

R3

Figure 1: Example of a setting with three versions of a
relation R where we want to solve DATA-DIFF with one
read-write column A, and one write-only column B.

One approach to solving DATA-DIFF between R1 and R2,
which only differ in the value of B, is to use six edit operations
of the following form:

UPDATE R SET B = bk WHERE A = ak;

one for each tuple. Recall that A being a read-write attribute,
can be used for the (equality) condition, while B being a
write-only attribute can be used for the (assignment) modifier.
If we relax the space of conditions to admit ≤ and ≥ in
addition to equality, then there is a shorter sequence of three
edit operations:

U1 : UPDATE R SET B = 1 WHERE A ≤ 2;
U2 : UPDATE R SET B = 2 WHERE A ≥ 3;
U3 : UPDATE R SET B = 3 WHERE A = 5;

Notice that the order of operations is important: U1 → U2 →
U3 does not give the same result as U1 → U3 → U2. Simi-
larly, to solve DATA-DIFF between R2 and R3 (wherein the
read-write attribute A is transformed), we could use as many
as six operations, but in fact two operations suffice:

U4 : UPDATE R SET A = 7 WHERE A ≤ 2;
U5 : UPDATE R SET A = 8 WHERE A ≤ 5;

Once again, U5 → U4 does not provide the same result
as U4 → U5. As it turns out, this sequence of three edit
operations for the first case, and two edit operations for the
second case are the smallest possible sequences, based on
modifiers that are assignment-based and on conditions that
are based on ≤, ≥ or equality. Indeed, when we expand the
space of modifiers to not just assignment, but also addition
or subtraction, the DATA-DIFF problem becomes even more
challenging. Overall, depending on the instance, the smallest
sequence of operations may be as small as one operation, or

as many as O(N) (typically non-commutative) operations,
where N is the number of tuples, making it challenging to
navigate.

Related Work. The DATA-DIFF problem is related to the
view synthesis problem, a complementary problem that tar-
gets the following setting: givenD,D′, find the most succinct
single view definition Q using selection operations such that
D′ ≈ Q(D) [13, 28]. For example,

Q(R) : SELECT ∗ FROM R WHERE A = k;

is a view definitionQ that selects all of the tuples that match a
certain criteria fromR. This work has been extended in multi-
ple directions that we will discuss in Section 2. DATA-DIFF is
much harder than view synthesis, due to non-commutativity
of edit operations, leading to intractability even for relations
with a finite number of attributes, while view synthesis is
only intractable when the number of attributes is allowed to
vary. DATA-DIFF is also related to the problem of synthesiz-
ing string transformations—the difference between that line
of work and ours is the difference between learning regular
expressions and learning SQL modification statements: the
space of operations and therefore the techniques and contribu-
tions are very different. We will cover related work in more
detail in Section 2.
Contributions. We introduce the family of DATA-DIFF prob-
lems under different attribute characteristics and the space
of modifiers and conditions of interest. We identify a “base
case”, fully characterize it, and then identify a generalization
and proceed to show hardness results in the generalization.
The characterization summary can be seen in Tables 1 and 2.

2. RELATED WORK
DATA-DIFF is related to the topics of view synthesis and

learning string transformations from examples.
View Synthesis. The view synthesis problem originally de-
fined the question of synthesizing a view definition given
two database instances, which was originally laid out in Das
Sarma et al. [13] and Tran et al. [28] and extended in various
ways since then [21, 31, 29, 30, 23]. For example, recent
work has extended the original work on the view synthesis
problem to the problem of synthesizing join queries [30] and
top-k queries [23]. Other work has extended the view synthe-
sis problem to an iterative one, with the user being asked to
confirm the presence or absence of tuples one at a time in or-
der to learn an appropriate user query for various settings [8,
10, 7, 9, 1]. Earlier work studied the problem of checking
if there exists a view definition without synthesizing it [14].
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= [Thm 5.1] NP-hard [Thm 5.2] NP-hard [Thm 5.2] NP-hard [Thm 5.2] NP-hard
≤ ? [Thm 5.4] NP-hard [Thm 5.4] NP-hard [Thm 5.4] NP-hard
≤≥ ? [Thm 5.6] NP-hard [Thm 5.6] NP-hard [Thm 5.6] NP-hard
R [Thm 5.7] NP-hard [Thm 5.6] NP-hard [Thm 5.6] NP-hard [Thm 5.6] NP-hard
U [Thm 5.9] NP-hard [Thm 5.6] NP-hard [Thm 5.6] NP-hard [Thm 5.6] NP-hard

Table 2: Results summary for the multiple read-only attributes, one write-only attribute case

Another related direction is that of synthesizing a view given
multiple pairs of database instances, introduced in the context
of data integration as a problem of learning schema mappings
from data examples [11, 16, 2].

While all of these directions are interesting and relevant
to the DATA-DIFF problem, note that the DATA-DIFF prob-
lem is substantially harder than the view synthesis problem,
even when applied on a single relation R. First, edit opera-
tions, unlike selection operations, are non-commutative and
therefore cannot be applied in any order. Thus, the order of
operations, while unimportant in view synthesis, is crucial in
DATA-DIFF. Second, the ability to use multiple operations is
not very important in the view synthesis problem, since we
can simply overload the WHERE clause to be more complex;
in the DATA-DIFF problem on the other hand, multiple edit
operations offer substantial additional power, e.g., transform-
ing R1 to R3 as given in Figure 1 would be difficult using
one operation.

For these reasons, we find that the problem of DATA-DIFF
becomes intractable much sooner—even on edit operations
on a single relation with two or three attributes, while the
view synthesis problem is only intractable when the number
of attributes is allowed to vary. In fact, notice that DATA-DIFF
problem has a view synthesis problem as a sub-problem: for
the case where a number of tuples have been deleted from
D to D′, we could use the results from the view synthesis
problem to identify the condition that selects all of the tuples
to be deleted, and therefore we can inherit all of the same
hardness results for those cases. To understand the complex-
ity of DATA-DIFF independent of view synthesis, we focus
on the case when no tuples have been deleted.

String Transformations. A related direction from the pro-
gram analysis community focuses on the learning of string
transformations given input-output examples [17, 18], extend-
ing it to various settings in cleaning data in spreadsheets, such
as transforming times and dates [24], numbers [25], text [20],
and miscellaneous data types [26], changing the structure
of spreadsheet tables [19], as well as extracting structured
data from semi-structured spreadsheet data [4]. Like us, this
body of work targets edit operations—however, these opera-
tions are regular-expression like operations that are applied
to transform each value in a set of values (e.g., extracting
the first three digits of a phone number). Each such value
can be then treated as a training example for learning the
edit operation. Instead, we focus SQL operations: not as
fine-grained at the value level, but are more fine-grained at a
global level, admitting conditional clauses, e.g.: if A ∈ [a, b],
add c to B. Thus, the difference in the space of operations
under consideration can be seen as the difference between
regular expressions being applied to a set of values (in the

string transformation case), versus a sequence of SQL modifi-
cation statements (in our case). In addition, we do not attempt
to precisely characterize the complexity of learning transfor-
mations as a function of the space of operations, preferring
instead to prove soundness and completeness.

3. PROBLEM DEFINITIONS
In this section, we formulate the problem of finding a

succinct description of changes between two datasets. We
define the diff, which captures the notion of the description of
changes, along with some relevant terms. Then we formally
define the problem and scope of operations that are of interest
in this paper.

To understand and characterize the complexity frontier of
the DATA-DIFF problem, where the goal is to find the most
succinct sequence of operations that transform DS to DT, we
assume that DS and DT are both single relations RS and RT

with the same schema, along with an unmodified primary key
attribute (e.g., employeeID, transactionID) that allows
us to track how tuples have evolved—thus, there is a one-to-
one correspondence between the tuples in RS and RT. We
further assume that the primary key values in RS and RT are
the same, essentially guaranteeing that there are no insertions
or deletions. Thus, overall, our setting is one where there
is a single relation (with a primary key) being modified by
data modification operations, but there are no insertions or
deletions (of tuples or attributes), or modification of schema.
We will formalize these assumptions later in this section.

Rationale for Assumptions. We now briefly describe why
we make these simplifying assumptions to focus on DATA-
DIFF for data modification operations. When there is an
unmodified primary key, insertions of new tuples are easy
to identify, and trivial to represent as either a single batch
INSERT statement, or insertion of one tuple at a time, with
no further compression possible or necessary. Deletions of
tuples, on the other hand, ends up being equivalent to the view
synthesis problem (as described in Section 2), since we need
to identify a queryQ that selects precisely the tuples that were
deleted, and thus we can reuse existing results from related
work previously discussed. Since there is an unmodified
primary key, if we know which attributes are deleted, they
can all be dropped in one single ALTER statement, along with
any attributes that are renamed. Naturally, attributes that
are inserted are a lot more complicated, since, in general, a
succinct description for new attributes would fall under the
realm of pattern recognition—this is outside the scope of our
work, which focuses on data modification.

3.1 Similar Relations, Diff, and Best Diff
First, we introduce the notion of attribute characteristics.



Different settings of characteristics play a major role in de-
termining the hardness of the problem. Here, A is the set of
read attributes on which conditions are based, and B is the
set of write attributes on which modifiers make changes.

In general, we can detect which attributes B have been
modified automatically, but we allow the user to specify the
set of attributes A explicitly, since they may not want the
system to use all attributes to infer SQL data modification
scripts. For example, if the user knows that gender is never
an attribute that is read when modifying the GPA, they can
exclude gender from the set of attributes in A.

DEFINITION 3.1 (ATTRIBUTE CHARACTERISTICS). An
attribute A ∈ A ∪ B is called read-only if A ∈ A and A 6∈ B,
or write-only if A 6∈ A and A ∈ B, or read-write otherwise.

Second, we define “similar” relations. The DATA-DIFF
problem concerns two relations, one representing the “before”
snapshot and the other representing the “after” snapshot. As
previously discussed, we will not consider adding or remov-
ing attributes, and we want to exclude insertions and deletions
of tuples from our family of possible operations; we only con-
sider “update” operations. Thus, the two relations should
have the same schema and the same number of rows.

In addition, we want to be able to tell which tuples map to
which in the two relations, hence the requirement that the two
relations share a primary key K, and that the sets of primary
keys are identical and cannot be modified. The primary key
serves as an identifier of the tuples in the two relations.

DEFINITION 3.2 (SIMILAR RELATION). For an attribute
K and sets of attributes A and B, neither of which contains
K, two relations RS and RT are (K,A,B)-similar iff

• RS and RT both have schema {K} ∪ A ∪ B, and K is
their primary key, and
• πK(RS) = πK(RT) (here π is the projection operator

in relational algebra).

In other words, RS and RT have the same schema with one
primary key attribute containing the same set of values. This
implies that the number of tuples in RS and RT are equal,
and that we can match the tuples in RS and RT one-to-one
based on the primary key. Note that we could simply define
two relations as similar if they have the same schema, but
our definition explicitly references the sets A and B as a
notational convenience that will help with later exposition.

Third, we define what an operation is, and what it does. It
must obey the read-write characteristics of the attributes.

DEFINITION 3.3 (OPERATION). For sets of attributes
A and B, an (A,B)-operation f = (p, u) has a condition p
on attributes in A and a modifier u on attributes in B. Let
f(RS) = RT if and only if RT is the resulting relation after
calling the SQL command:

UPDATE RS SET u WHERE p.

Note that the result of an (A,B)-operation is (K,A,B)-similar
to the operand; i.e., if RS and RT are relations such that
f(RS) = RT and RS has schema {K} ∪A ∪ B, then RS and
RT are (K,A,B)-similar.

We now define the diff, the sequence of operations trans-
forming the “before” relation to the “after” relation, along
with its associated cost. In the following definitions, we
consider an attribute K, sets of attributes A and B neither of
which contain K, a set of (A,B)-operationsF , and (K,A,B)-
similar relations RS and RT.

DEFINITION 3.4 (DIFF). A sequence of operationsF =
(f1, . . . , fm) where fi ∈ F for each i ∈ [m] is called a diff
between RS and RT under F , also written F (RS) = RT, if
there are relations R0, . . . , Rm such that

• R0 = RS,
• Rm = RT, and
• fi(Ri−1) = Ri for all i ∈ [m].

Let ∆(RS, RT,F) denote the set of all diffs between RS and
RT under F .

DEFINITION 3.5 (COST). Each operation f has an as-
sociated integer cost, denoted cost(f). The cost of a diff
F = (f1, . . . , fm) is defined as cost(F ) =

∑m
i=1 cost(fi).

DEFINITION 3.6 (BEST DIFF). A diffF ∈ ∆(RS, RT,F)
is called a best diff between RS and RT under F if it has
the smallest cost in ∆(RS, RT,F); i.e., for any diff F ′ ∈
∆(RS, RT,F), we have cost(F ) ≤ cost(F ′). We also write
that F is a best diff in ∆(RS, RT,F).

Note that if ∆(RS, RT,F) is nonempty, then it must con-
tain a best diff, by the well-ordering principle of integers.

3.2 Diff Problems
Next, we define the best diff problem that is the focal point

of this paper.

DEFINITION 3.7 (BEST DIFF PROBLEM). Fix a family
of (A,B)-operations F . The best diff problem BD(F) is,
given as input:

• an attribute K,
• attribute sets A and B, neither of which contain K, and
• two (K,A,B)-similar N -tuple relations RS and RT,
where all values are integers,

find and return a best diff between RS and RT under F if one
exists, or correctly report that no diffs exist.

Note that while we restrict relations RS and RT to integer
values (for simple arguments of representation sizes), condi-
tions and modifiers are not restricted to integers; real values
can be used.

The following auxiliary definitions are used in proofs.

DEFINITION 3.8 (ATTRIBUTE VALUES). For an attribute
A, VA(RS, RT) is the set of all A values in relations RS and
RT; in other words,

VA(RS, RT) = πA(RS) ∪ πA(RT)

DEFINITION 3.9 (BOUNDARY AND LENGTH). Let

vmax
A = maxVA(RS, RT) + 1

vmin
A = minVA(RS, RT)− 1



For an operation f , define the length `(f) as

`(f) =


a− vmin

A if f has the condition A ≤ a
vmax

A − a if f has the condition A ≥ a
z − a+ 1 if f has the condition A ∈ [a, z]

For a sequence of operations F = (f1, . . . , fm), define the
total length of F as `(F ) =

∑
i∈[m] `(fi).

3.3 Families of Operations
Generally, (A,B)-operations can be simple or compli-

cated. Given two relations RS and RT, one might claim
that there is a diff between them containing the following
(A,B)-operation as its only operation:(

A ∈ {2, 9, 11, 23},B←
⌈
|B|
√

11
⌉
− 7B2

)
The given (A,B)-operation has an overfitting condition and
a complicated modifier, which makes it unlikely to be an
operation actually used to transform RS into RT by, say, an
accountant working on this database. Therefore, we would
like to limit ourselves to operations that are relatively simple
and are more likely to correspond to actual scenarios.

We describe families of (A,B)-operations that are of inter-
est in this paper. Here, A is an attribute from A, and B is an
attribute from B.
Condition Types. We consider conditions p that are conjunc-
tions of single-attribute clauses, i.e., statements in the form
p = p1 ∧ . . . ∧ ph, where the clauses pi have the same type
but are on different attributes. The condition p on A does not
necessarily use all attributes in A, but must use at least one
(cannot be empty).

We consider the following single-attribute clause types.

symbol name condition cost
= equality A = a 1
≤ at-most A ≤ a 1
≤≥ at-most/at-least A ≤ a or A ≥ a 1
R range A ∈ [a, z] 1
U union-of-ranges A ∈

⋃r
j=1[aj , zj ] varies

The cost is 1 per operation (not per clause), except in the
union-of-ranges case, where the cost is κ0 + κ1

∑
r, where∑

r is the sum of number of ranges over all clauses. Here,
κ0 and κ1 are non-negative integers to be supplied as input.

For the at-most/at-least clause type, each clause can assume
either of the two subtypes, and it is not required that all
clauses use the same subtype. The clause type with only
at-least condition is not explicitly discussed, because it is
symmetric to using the at-most clause type.
Modifier Types. We only consider single-attribute modifiers
in this paper. We consider the following modifier types.

symbol name modifier
← assignment B← b
+ increment B← B + b
← + assignment/increment B← b or B← B + b
aff affine B← bB + c

The modifier type does not affect the cost of an operation.
Operations. The family of (A,B)-operations using con-
dition type φ and modifier type ω is denoted by Fφω . For

example, F≤+ is the family of (A,B)-operations where each
operation uses an at-most condition and an increment modi-
fier.

EXAMPLE 3.10. Once again, consider the three versions
of the relation R given in Figure 1, namely R1, R2, and R3.
LetA = {A}, B = {A,B}, so that A is a read-write attribute
and B is a write-only attribute.

Let f1 and f2 be the following operations:

f1 = (A ≤ 2,A← 7)

f2 = (A ≤ 5,A← 8)

Here, f1 is in F≤≥← (and also F≤← and F≤≥←+), and so is f2.
If F = (f1, f2), then F is a diff between R2 and R3 under
F≤≥← , and cost(F ) = 2. Note that F ′ = (f2, f1) is, however,
not a diff between R2 and R3 under F≤≥← .

4. BASE CASE: BD1 PROBLEMS
In this section, we consider a “base case” of the best diff

problems in terms of number of attributes and attribute char-
acteristics, and present its characterization under different
families of operations.

The BD1(F) problem is similar to the best diff BD(F)
problem, but constrained to one read-only attribute, one write-
only attribute, and no read-write attributes. LetA = {A} and
B = {B}, where A and B are different attributes.

We also assume that for any tuple T1 ∈ RS and T2 ∈
RT, if T1.K = T2.K then T1.A = T2.A, because an (A,B)-
operation cannot modify A values. If the assumption does
not hold, we can immediately claim that a diff between RS

and RT does not exist.
Table 1 summarizes the characterization. The table is

roughly ordered according to how “powerful” each condi-
tion/modifier type is, although it is not necessarily true that
a condition/modifier is a generalization of what precedes it.
We encounter the hardness boundary at the families of opera-
tionsF≤≥+ andFU

←, where we present two main NP-hardness
results via reductions from different problems. While the re-
maining NP-hardness results do not trivially follow from the
two main results, they use similar reductions. Polynomial-
time results are discussed more thoroughly in Appendix A.

4.1 With Equality Conditions
With equality (A = a) conditions, tuples with different

A values are independent of each other, in terms of how
the (A,B)-operations affect them. Therefore, the best diff
problem under these families of operations is rather straight-
forward.

THEOREM 4.1. The BD1(F=
←), BD1(F=

+ ), BD1(F=
←+),

and BD1(F=
aff) problems can be solved in O(N logN) time.

4.2 With At-most Conditions
With at-most (A ≤ a) conditions, we can always reorder

the operations within a diff (with some modifications) so
that they affect the tuples in a certain order. Such reordering
allows for polynomial time algorithms under all families of
operations of interest.



More precisely, the at-most condition and the modifiers
permit the theorems to utilize this property: if there is a best
diff, there must be a best diff F = (f1, . . . , fm) in which for
all i, j ∈ [m], if i < j and fi has condition A ≤ ai and fj
has condition A ≤ aj , then ai > aj .

THEOREM 4.2. The BD1(F≤←) problem can be solved in
O(N logN) time.

THEOREM 4.3. The BD1(F≤+ ) problem can be solved in
O(N logN) time.

THEOREM 4.4. The BD1(F≤←+) problem can be solved
in O(N logN) time.

THEOREM 4.5. The BD1(F≤aff) problem can be solved in
O(N logN) time.

4.3 With At-most/At-least Conditions
With at-most/at-least (A ≤ a or A ≥ a) conditions, the

arguments from the previous section cannot be directly reused.
In fact, the introduction of this new condition type is where
we first encounter the hardness boundary for most families of
operations.

4.3.1 With Assignment Modifiers
There is still a polynomial time algorithm for the family

of operations with the assignment modifier, following the
reasoning that it is possible to avoid having a tuple selected
by both an at-most condition and an at-least condition.

THEOREM 4.6. The BD1(F≤≥← ) problem can be solved
in O(N2) time.

4.3.2 With Increment Modifiers
This is the first time we encounter the hardness boundary.

Despite the fact that the operations are commutative, we
cannot utilize the same techniques as we did for other families
of operations.

THEOREM 4.7. The BD1(F≤≥+ ) problem is NP-hard.

In order to prove Theorem 4.7, we provide a polynomial-time
reduction from SUBSETSUM, which is a known NP-hard
problem, defined as follows [15].

DEFINITION 4.8 (SUBSETSUM). The SUBSETSUM de-
cision problem is, given a set S = {s1, . . . , sn} of positive
integers, and a positive integer t, determine whether there
exists a subset T ⊆ S such that the sum of all elements in T
equals t.

Consider an instance of the SUBSETSUM problem with a set
S = {s1, . . . , sn} of positive integers and a positive integer
t. The reduction is as follows: let s0 = −t and

RS = {(K = k,A = k,B = 0) | k ∈ {0, . . . , n}}
RT = {(K = k,A = k,B = bk) | k ∈ {0, . . . , n}}

where bk =
∑k
`=0 s`. This reduction takes polynomial time.

The claim is that it is a positive instance of SUBSETSUM if
and only if the best diff between RS and RT under F≤≥+ has
cost n. We show the correctness of this reduction via a series
of lemmas. Throughout this subsection, RS and RT refer to
the sets of tuples from the reduction as described here.

LEMMA 4.9. Operations in F≤≥+ are commutative.

PROOF. This follows immediately from commutativity of
addition and the fact that attributes in A never change as a
result of an (A,B)-operation.

LEMMA 4.10. ∆(RS, RT,F≤≥+ ) is nonempty, and if F is
its best diff, then cost(F ) ≤ n+ 1.

PROOF. A sequence of operationsF = (f0, . . . , fn) where
fk = (A ≥ k,B ← B + sk) for k ∈ {0, . . . , n} is a diff be-
tween RS and RT, and cost(F ) = n+ 1.

Next, we establish a few lemmas claiming that there must
be best diffs between RS and RT satisfying certain properties.

LEMMA 4.11. ∆(RS, RT,F≤≥+ ) contains a bounded best
diff F ′ = (f ′1, . . . , f

′
m), in which for all i ∈ [m],

f ′i = (A ≤ a′i,B← B + b′i) or

f ′i = (A ≥ a′i,B← B + b′i)

where a′i is an integer in {0, . . . , n}.

PROOF. By Lemma 4.10, ∆(RS, RT,F≤≥+ ) contains a
best diff F = (f1, . . . , fm). Entries in the A attribute in RS

and RT, by construction, are integers in {0, . . . , n}. Define

bnd(a) = max{0,min{n, a}}

We construct F ′ = (f ′1, . . . , f
′
m) from F : for each i ∈ [m],

• if fi = (A ≤ ai,B ← B + bi), then we construct
f ′i = (A ≤ bbnd(ai)c,B ← B + bi), since A ≤ ai if
and only if A ≤ bbnd(ai)c.

• if fi = (A ≥ ai,B ← B + bi), then we construct
f ′i = (A ≥ dbnd(ai)e,B ← B + bi), since A ≥ ai if
and only if A ≥ dbnd(ai)e.

Thus, F ′ is a bounded best diff in ∆(RS, RT,F≤≥+ ).

DEFINITION 4.12 (GAP OPERATION). A gap operation
at k, where k ∈ [n], is an operation with the condition A ≤
k − 1 or the condition A ≥ k.

LEMMA 4.13. ∆(RS, RT,F≤≥+ ) contains a canonical best
diff F ′ where F ′ contains exactly one gap operation at k,
which must be either

f = (A ≤ k − 1,B← B− sk) or
f = (A ≥ k,B← B + sk)

for every k ∈ [n],

PROOF. Let F = (f1, . . . , fm) be the bounded best diff
with the fewest gap operations.

First, we prove that F has at most n gap operations, one
at every k ∈ [n]. The proof follows. If F contains two
gap operations with the same condition, by Lemma 4.9, they
can be reordered and combined, reducing the number of gap
operations, a contradiction. If F contains both

fi = (A ≤ k − 1,B← B + bi) and
fj = (A ≥ k,B← B + bj)



for some k ∈ [n], then we can replace them with

g1 = (A ≤ n,B← B + bi) and
g2 = (A ≥ k,B← B + (bj − bi))

to obtain a best diff with one fewer gap operation (g1 is not a
gap operation), a contradiction.

A

B← B + bi
k − 1

k
B← B + bj

=

A

B← B + bi
k

B← B + (bj − bi)

Second, we prove that F has at least n gap operations, one
at every k ∈ [n]. The proof follows. Assume that there is
a value k ∈ [n] such that F has no gap operation at k; that
is, all operations in F has neither the condition A ≤ k − 1
nor the condition A ≥ k. One can show by induction on the
number of operations performed on RS that the tuple with
K = A = k − 1 and the tuple with K = A = k will always
have the same value in the B attribute. More precisely, for
any i ∈ {0, . . . ,m} and Fi = (f1, . . . , fi), in the relation
Fi(RS), the tuple with K = A = k − 1 and the tuple with
K = A = k have the same value in the B attribute. However,
in RT those values in the B attribute differ by sk 6= 0 by
construction, a contradiction.

Through a similar argument, for each k ∈ [n], the gap
operation at k in F must be either

f = (A ≤ k − 1,B← B− sk) or
f = (A ≥ k,B← B + sk)

for otherwise the difference between the B values of the tuple
with K = A = k−1 and the tuple with K = A = k in F (RS)
will not be sk, which implies that F (RS) 6= RT.

LEMMA 4.14. IfF is a best diff in ∆(RS, RT,F≤≥+ ), then
cost(F ) ≥ n.

PROOF. This is a corollary of Lemma 4.13.

LEMMA 4.15. Best diffs in ∆(RS, RT,F≤≥+ ) have cost n
if and only if there is a subset T ⊆ S such that the sum of all
elements in T equals t.

PROOF. (⇐) Let T be a subset of S such that the sum of
elements in T equals t, then F = (f1, . . . , fn) where, for
each k ∈ [n],

fk =

{
(A ≤ k − 1,B← B− sk) if sk ∈ T
(A ≥ k,B← B + sk) otherwise

is a best diff in ∆(RS, RT,F≤≥+ ) with cost n.
(⇒) By Lemma 4.11 and Lemma 4.13, ∆(RS, RT,F≤≥+ )

contains a canonical best diff F = (f1, . . . , fn) with cost n.
Because the cost is n, F contains exactly one gap operation

at k for each k ∈ [n], as described in Lemma 4.13 and nothing
else. By Lemma 4.9 let fk be the gap operation at k for each
k ∈ [n]. If fk has the condition A ≥ k, it does not affect
the tuple with K = A = 0. Let {fi1 , . . . , fim} be the subset
of {f1, . . . , fn} of operations whose conditions are of the
form A ≤ i` − 1. Thus, in the relation F (RS) = RT, the

tuple with K = A = 0 has the value in attribute B equal to
−
∑m
`=1 si` = −t. Thus, T = {si1 , . . . , sim} is a subset of

S whose sum of elements is equal to t.

This proves the correctness of the polynomial-time reduc-
tion from SUBSETSUM, which concludes the NP-hardness
proof for Theorem 4.7.

A

0
−93

0

0
−92

1

0
−89

2

0
−80

3

0
−53

4

0
28

5

B in RS

B in RT

B← B− 1 B← B + 1

B← B− 3 B← B + 3

B← B− 9 B← B + 9

B← B− 27 B← B + 27

B← B− 81 B← B + 81

Figure 2: Illustration of Example 4.16

EXAMPLE 4.16. Consider the SUBSETSUM instance with
S = {1, 3, 9, 27, 81} and t = 93. The subset T = {3, 9, 81}
of S has the sum of its elements equal to t. The reduction
gives the following instance of the BD1(F≤≥+ ) problem.

K A B
0 0 0
1 1 0
2 2 0
3 3 0
4 4 0
5 5 0

K A B
0 0 −93
1 1 −92
2 2 −89
3 3 −80
4 4 −53
5 5 28

Figure 2 shows the two possible gap operations at k for each
k ∈ [n] in their own row. In the third row, for example, one
of the two gap operations modifying B by 9 must be used
to ensure that the B values of the middle tuples differ by 9
(in the final relation, between −89 and −80). In this case,
F = (f1, f2, f3, f4, f5) where

f1 = (A ≥ 1,B← B + 1)

f2 = (A ≤ 1,B← B− 3)

f3 = (A ≤ 2,B← B− 9)

f4 = (A ≥ 4,B← B + 27)

f5 = (A ≤ 4,B← B− 81)

is a best diff with cost 5. The corresponding chosen gap
operations are shown in solid lines, while the ones not chosen
are shown in dotted lines.

4.3.3 With Assignment/Increment or Affine Modifiers
With assignment/increment or affine modifiers, the problem

is still NP-hard.
For the assignment/increment modifiers, this can be shown

via an extension of the proof above for the version with only
increment modifiers. Essentially, the proof is to show that the



assignment modifier does not provide additional expressivity
in the reduction given.

THEOREM 4.17. The BD1(F≤≥←+) problem is NP-hard.

We prove the aforementioned theorem via the following
lemma.

LEMMA 4.18. Best diffs in ∆(RS, RT,F≤≥←+) have cost n
if and only if best diffs in ∆(RS, RT,F≤≥+ ) have cost n.

PROOF. (⇐) Any diff in ∆(RS, RT,F≤≥+ ) is also a diff
in ∆(RS, RT,F≤≥←+).

(⇒) LetF = (f1, . . . , fn) be a best diff in ∆(RS, RT,F≤≥←+)
of cost n that has the smallest number of assignment modi-
fiers and, among the best diffs with the smallest number of
assignment modifiers, has the smallest total length. We show
that F has no assignment modifiers.

The proof follows. Assume to the contrary, and let i be the
smallest index in [n] such that fi has an assignment modifier.
Suppose fi = (A ≤ ai,B← bi). (The proof for when fi has
condition A ≥ ai is similar.)

Case 1: There is an operation fj = (A ≥ aj ,B← B + bj)
where j < i and aj ≤ ai. Then, let f ′j = (A ≥ ai + 1,B←
B + bj). If F ′ is defined as F where fj is replaced with f ′j ,
then F ′ would still yield F ′(RS) = RT, but the total length
of F ′ is smaller than that of F .

Case 2: There is an operation fj = (A ≤ aj ,B← B + bj)
where j < i and aj ≤ ai. If F ′ is defined as F where fj
is removed, then F ′ would still yield F ′(RS) = RT, but the
cost of F ′ is smaller than that of F .

Case 3: None of the above. Then, all tuples matching
A ≤ ai still have the same value in the B attribute, say β, in
F ′′(RS) where F ′′ = (f1, . . . , fi−1). Then, let f ′i = (A ≤
ai,B ← B + (bi − β)). If F ′ is defined as F where fi is
replaced with f ′i , then F ′ would still yield F ′(RS) = RT,
but F ′ has fewer assignment modifiers than F .

Therefore, F has no assignment modifiers. Thus, F is also
a best diff in ∆(RS, RT,F≤≥+ ).

With the affine modifier, we again show NP-hardness via a
polynomial-time reduction from SUBSETSUM, but the reduc-
tion is slightly different from the increment case.

THEOREM 4.19. The BD1(F≤≥aff ) problem is NP-hard.

Consider an instance of the SUBSETSUM problem with
a set S = {s1, . . . , sn} of positive integers and a positive
integer t. The reduction is as follows: let s0 = −t and

RS =
⋃

k∈{0,...,n}

{(K = A = 99k + i,B = 0) | i ∈ [99]}

RT =
⋃

k∈{0,...,n}

{(K = A = 99k + i,B = bk) | i ∈ [99]}

where bk =
∑k
`=0 s`. This reduction takes polynomial time.

The claim is that it is a positive instance of SUBSETSUM if
and only if the best diff between RS and RT under F≤≥aff has
cost n.

The proof is similar to that given for increment and assign-
ment/increment, and thus only the differences are sketched

here. In the reduction, instead of one tuple for each integer
in S, a block of 99 tuples with the same B value is created.
Intuitively, if an operation has a modifier with nonzero slope
(B ← bB + c with b 6= 0) and it matches multiple tuples in
the same block, then it can break the “same B value” require-
ment within that block. It can take a few operations or one
operation with zero slope to fix the block. It can be shown
that modifiers with nonzero slope are unnecessary in the best
diff in this instance.

4.4 With Range Conditions
With range (A ∈ [a, z]) conditions, the problem is NP-hard

for all families of operations of interest, except the one with
the assignment modifier, similar to the previous case with
at-most/at-least conditions. The arguments utilize the same
core ideas, but are somewhat more complicated.

4.4.1 With Assignment Modifiers
As in cases previously discussed, there is a polynomial time

algorithm for the family of operations with the assignment
modifier. The reasoning is slightly different although the
main idea is similar: it is possible to avoid having a tuple
selected by two ranges that partially overlap. That is, there is
a diff for which any two ranges are either completely disjoint
or are such that one is completely contained within the other.

THEOREM 4.20. The BD1(FR
←) problem can be solved

in O(N4) time.

4.4.2 With Increment Modifiers
With increment modifiers, like before, the problem is NP-

hard. This follows from the same reduction from SUBSET-
SUM given in the proof of Theorem 4.7. The proof of the
reduction’s correctness, however, is somewhat different.

THEOREM 4.21. The BD1(FR
+) problem is NP-hard.

We prove Theorem 4.21 via a series of lemmas. Through-
out this subsection, RS andRT refer to the sets of tuples from
the reduction.

LEMMA 4.22. Operations in FR
+ are commutative.

PROOF. same as in 4.9

LEMMA 4.23. ∆(RS, RT,FR
+) is nonempty, and if F is

its best diff, then cost(F ) ≤ n+ 1.

PROOF. A sequence of operationsF = (f0, . . . , fn) where
fk = (A ∈ [k, n],B← B + sk) for k ∈ {0, . . . , n} is a diff
between RS and RT, and cost(F ) = n+ 1.

LEMMA 4.24. ∆(RS, RT,FR
+) contains a bounded best

diff F ′ = (f ′1, . . . , f
′
m) in which for all i ∈ [m], f ′i =

(A ∈ [a′i, z
′
i],B ← B + b′i) where a′i and z′i are integers

in {0, . . . , n}.
PROOF. By Lemma 4.23, ∆(RS, RT,FR

+) contains a best
diff F = (f1, . . . , fm). Entries in the A attribute in RS and
RT, by construction, are integers in {0, . . . , n}. Define

bnd(a) = max{0,min{n, a}}
We construct F ′ = (f ′1, . . . , f

′
m) from F : for each i ∈ [m],



• if fi = (A ∈ [ai, zi],B ← B + bi), then we construct
f ′i = (A ∈ [dbnd(ai)e, bbnd(zi)c],B← B+bi), since
A ∈ [ai, zi] if and only if A ∈ [dbnd(ai)e, bbnd(zi)c].

Thus, F ′ is a bounded best diff in ∆(RS, RT,FR
+).

LEMMA 4.25. If F is a best diff in ∆(RS, RT,FR
+), then

cost(F ) ≥ n.

PROOF. Define the jump of a relation as the number of
values i ∈ [n] such that for tuples (K = i−1,A = i−1,B =
bi−1) and (K = i,A = i,B = bi), we have bi−1 < bi. Note
that the jumps in RS and RT are 0 and n, respectively. We
prove the following statement by induction: after applying m
operations from FR

+ to RS, the jump of the resulting relation
is at most m. This implies that at least n operations are
required to transform RS into RT.

The proof follows. The base casem = 0 is trivial. Assume,
as an induction hypothesis, that for m′ < m, applying m′
operations to RS resulting in jump that is at most m′. Let
R′ be the result of applying m − 1 operations on RS, and
thus its jump is at most m− 1. Consider applying f = (A ∈
[a, z],B← B+b) toR′ and let f(R′) = R′′. Consider tuples
(K = i−1,A = i−1,B = bi−1) and (K = i,A = i,B = bi)
in R′ where bi−1 ≥ bi.

• If i − 1 and i are both not in [a, z], then the B values
remain bi−1 and bi respectively, and bi−1 ≥ bi. This
does not contribute to increase in jump.

• If i−1 and i are both in [a, z], then the B values become
bi−1 + b and bi + b respectively, and bi−1 + b ≥ bi + b.
This does not contribute to increase in jump.

• If i − 1 < a ≤ i, then the B values become bi−1 and
bi + b respectively, and if bi−1 < bi + b, then b > 0.

• If i − 1 ≤ z < i, then the B values become bi−1 + b
and bi respectively, and if bi−1 + b < bi, then b < 0.

Thus, jump can only increase by at most 1 depending on the
value of b: if b > 0, then jump can only increase because of
i where i − 1 < a ≤ i, and if b < 0, then jump can only
increase because of i where i− 1 ≤ z < i.

LEMMA 4.26. ∆(RS, RT,FR
+) contains a bounded best

diff F = (f1, . . . , fm) in which there are no two operations

fi = (A ∈ [ai, zi],B← B + bi) and
fj = (A ∈ [aj , zj ],B← B + bj)

such that ai = aj or zi = zj .

PROOF. Define a collision of F as a pair (i, j) where i, j ∈
[m] and i < j such that ai = aj or zi = zj .

By Lemma 4.24, let F = (f1, . . . , fm), where fi = (A ∈
[ai, zi],B← B + bi) for all i ∈ [m], be a bounded best diff
with the smallest total length. We show that F contains no
collisions.

The proof follows. Assume to the contrary that F has a
collision (i, j). Suppose ai = aj . (The argument for when
zi = zj is symmetrical.) By commutativity,

F ′ = (f1, . . . , fi−1, fi, fj , fi+1, . . . , fj−1, fj+1, . . . , fm)

is also a bounded best diff.

Case 1: if zi = zj then let

g = (A ∈ [ai, zi],B← B + (bi + bj))

then F ′′ defined as follows is also a bounded best diff:

F ′′ = (f1, . . . , fi−1, g, fi+1, . . . , fj−1, fj+1, . . . , fm)

A
ai

B← B + bi
zi

aj
B← B + bj

zj
=

A

ai
B← B + (bi + bj)

zi

However, F ′′ has smaller cost than F , contradicting the fact
that F is a best diff.

Case 2: if zi < zj then let

g1 = (A ∈ [ai, zi],B← B + (bi + bj))

g2 = (A ∈ [zi + 1, zj ],B← B + bj)

then F ′′ defined as follows is also a bounded best diff:

F ′′ = (f1, . . . , fi−1, g1, g2, fi+1, . . . , fj−1, fj+1, . . . , fm)

A
ai

B← B + bi
zi

aj
B← B + bj

zj
=

A
ai
B← B + (bi + bj)

zi

zi + 1
B← B + bj

zj

However, `(F ′′) = `(F ′)− (zi − ai + 1) < `(F ′) = `(F ),
contradicting the fact that F ′ has the smallest total length.

Case 3: if zi > zj , the proof is similar to Case 2.
Therefore, F has no collisions, and thus ∆(RS, RT,FR

+)
contains a bounded best diff F = (f1, . . . , fm) in which
there are no two operations

fi = (A ∈ [ai, zi],B← B + bi) and
fj = (A ∈ [aj , zj ],B← B + bj)

such that ai = aj or zi = zj .

LEMMA 4.27. Best diffs in ∆(RS, RT,FR
+) have cost n

if and only if best diffs in ∆(RS, RT,F≤≥+ ) have cost n.

The idea of the proof is that a diff from one set can be trans-
lated into a diff from the other set with the same cost. The
full proof is given in Appendix D.

By Lemma 4.15 and Lemma 4.27, the reduction is correct,
implying Theorem 4.21.

4.4.3 With Assignment/Increment or Affine Modifiers
With assignment/increment or affine modifiers, once again,

the problem is still NP-hard.

THEOREM 4.28. The BD1(FR
←+) problem is NP-hard.

The proof of the theorem is still based on the same re-
duction from SUBSETSUM, and follows from the following
lemma, the proof of which is given in Appendix D.

LEMMA 4.29. Best diffs in ∆(RS, RT,FR
←+) have cost n

if and only if best diffs in ∆(RS, RT,FR
+) have cost n.

With the affine modifier, NP-hardness can be shown using
the same polynomial-time reduction from SUBSETSUM as
given for Theorem 4.19.

THEOREM 4.30. The BD1(FR
aff) problem is NP-hard.



4.5 With Union-of-Ranges Conditions
With the union-of-ranges conditions, the problem becomes

NP-hard even with the assignment modifier.

THEOREM 4.31. The BD1(FU
←) problem is NP-hard.

In order to prove Theorem 4.31, we provide a polynomial-
time reduction from 2SCS (shortest common supersequence
of strings of length two), which is a known NP-hard problem,
defined as follows [27].

DEFINITION 4.32 (2SCS). The 2SCS decision prob-
lem is, given a set S = {s1, . . . , sn} of strings of length
two, and a nonnegative integer t, determine whether S has a
common supersequence of length at most t; that is, whether
there exists a string s of length at most t such that for each
string si ∈ S, it is possible to remove some symbols (possibly
none) from s to obtain si.

Note that the alphabet size is not necessarily constant: there
can be as many as 2n different symbols in a given instance.
Also, we assume that each symbol is given in the input repre-
sented as a positive integer.

In fact, we will provide a polynomial-time reduction from
2DISTINCTSCS, which is similar to 2SCS with an additional
restriction that the two letters in each string in S are not the
same. The proof that 2DISTINCTSCS is NP-hard, via a
reduction from 2SCS, is given in Appendix C.

Consider an instance of the 2DISTINCTSCS problem with
a set S = {s1, . . . , sn} of strings of length two and a nonneg-
ative integer t. For each k ∈ [n], let uk and vk be (positive
integer representations of) the two symbols of sk in order.
The reduction is as follows: for k ∈ [n], let

t5k−3 = (K = 5k − 3,A = 4k − 3,B = 0)

t5k−2 = (K = 5k − 2,A = 4k − 2,B = 0)

t5k−1 = (K = 5k − 1,A = 4k − 1,B = 0)

t′5k−3 = (K = 5k − 3,A = 4k − 3,B = uk)

t′5k−2 = (K = 5k − 2,A = 4k − 2,B = vk)

t′5k−1 = (K = 5k − 1,A = 4k − 1,B = uk)

for k ∈ {0, . . . , n}, let

t5k+0 = t′5k+0 = (K = 5k + 0,A = 4k,B = −1)

t5k+1 = t′5k+1 = (K = 5k + 1,A = 4k,B = −2)

and let κ0 = 1, κ1 = t+ 99, and

RS = {t` | ` ∈ {0, . . . , 5n+ 1}}
RT = {t′` | ` ∈ {0, . . . , 5n+ 1}}

This reduction takes polynomial time. The claim is that it
is a positive instance of 2DISTINCTSCS if and only if the
best diff between RS and RT under FU

← has cost at most
t + 2n(t + 99). We show the correctness of this reduction
via a series of lemmas. In this subsection, RS and RT refer
to the sets of tuples from the reduction as described here.

First, we define total range count, which impacts the cost.
DEFINITION 4.33 (TOTAL RANGE COUNT). Let F =

(f1, . . . , fm) where, for i ∈ [m], fi ∈ FU
← and

fi = (A ∈
ri⋃
j=1

[aij , zij ],B← bi)

The total range count of F is defined as
∑m
i=1 ri.

Next, we establish the special purpose of the tuples of the
form A = 4k in the construction, the proof of which is given
in Appendix D.

LEMMA 4.34. A diff between RS and RT contains no
operation whose condition matches A = 4k for any k ∈
{0, . . . , n}.
These A = 4k tuples provide “barriers” over which no range
condition can cross. Thus, they break the possible A values
into partitions. Let partition k, denoted Pk, refers to tuples
whose A value is between 4k − 4 and 4k, exclusive, for
k ∈ [n]. There are exactly three tuples in each partition. We
say that an operation affects a partition if some tuple in that
partition is matched by the condition of the operation.

LEMMA 4.35. A diff between RS and RT has total range
count at least 2n, and each partition has at least two opera-
tions that affects it.

PROOF. Each of the n partitions has two distinct B values
in RT, neither of which is 0 as in RS. Thus, two assignment
modifiers are required. By Lemma 4.34, a range cannot go
across barriers, thus the total range count includes at least
two ranges per partition.

LEMMA 4.36. S has a common supersequence of length
at most t iff the best diff between RS and RT under FU

← has
cost at most t+ 2n(t+ 99).

PROOF. (⇐) Let F = (f1, . . . , fm) be a best diff between
RS and RT under FU

←, where

fi = (A ∈
ri⋃
j=1

[aij , zij ],B← bi)

with cost at most t + 2n(t + 99). The total range count
of F cannot exceed 2n, otherwise its cost must be at least
(t+99)(2n+1) > t+2n(t+99). Together with Lemma 4.35,
the total range count of F must be exactly 2n. The cost
implies that m ≤ t.

Let s = b1 . . . bm. Because each partition contains two
distinct B values in RT, and because the total range count
must be 2n, there must be exactly two operations that affects
each partition. For k ∈ [n], partition Pk has two operations
fi and fj , where i < j, that affects it. The operations must
be such that bi = uk and bj = vk, where fi sets the B value
for all tuples in Pk to uk, and fj then sets the B value for
one tuple to vk. Hence, removing symbols from s except at
indices i and j would yield bibj = ukvk = sk. Thus, s is a
supersequence of S with length m ≤ t.

(⇒) Let s = w1 . . . wm be a common supersequence of
S of length m ≤ t. For each symbol c, let first(c) be the
smallest i such that wi = c; and last(c), largest.

Construct F = (f1, . . . , fm) where

R
(1)
i =

⋃
k∈[n]

first(uk)=i

[4k − 3, 4k − 1]

R
(2)
i =

⋃
k∈[n]

last(vk)=i

[4k − 2, 4k − 2]

fi = (A ∈ R(1)
i ∪R

(2)
i ,B← wi)



For k ∈ [n], partition Pk has two operations fi and fj that
affects it, where i = first(uk) and j = last(vk). Because s is
a supersequence of S, we have i = first(uk) < last(vk) = j.
Hence, fi sets the B value for all tuples in Pk to uk, and fj
then sets the B value for one tuple to vk. The total range
count of F is 2n. Thus, F is a diff between RS and RT under
FU
← whose cost is m+ 2n(t+ 99) ≤ t+ 2n(t+ 99).
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B← 3 B← 3

B← 1

Figure 3: Illustration of Example 4.37

EXAMPLE 4.37. Consider the 2DISTINCTSCS instance
with S = {12, 13, 31} and t = 4. The string 1231 is a
supersequence of S. The reduction gives the instance of the
BD1(FU

←) problem shown in Figure 3.
In this case, F = (f1, f2, f3, f4) where

f1 = (A ∈ [1, 3] ∪ [5, 7],B← 1)

f2 = (A ∈ [2, 2],B← 2)

f3 = (A ∈ [6, 6] ∪ [9, 11],B← 3)

f4 = (A ∈ [10, 10],B← 1)

is a best diff with cost 4 + 2 · 13 · 3 = 82. Dropping f4 and
changing the condition of f1 to A ∈ [1, 3] ∪ [5, 7] ∪ [10, 10]
yield lower cost but is not permissible, because the tuple at
A = 10 would have an incorrect B value.

THEOREM 4.38. The BD1(FU
+), BD1(FU

←+), and BD1(FU
aff)

problems are NP-hard.

PROOF. This follows from polynomial-time reductions
from respective range versions, using the same instance and
setting κ0 = 0 and κ1 = 1.

5. RELAXATION: BDµ PROBLEMS
In this section, we discuss a relaxation to the constraints of

the “base case” in the previous section. We allow the number
of read-only attributes to be more than one. We see in the
previous section that even when restricted to 1 read-only
attribute, the problem becomes NP-hard even with relatively
simple conditions and modifiers. With more attributes, the
problem reaches the hardness boundary much more quickly.

The BDµ(F) problem is similar to the best diff BD(F)
problem, but constrained to one write-only attribute and no
read-write attributes; the number of read-only attributes may
vary. Let A = {A1, . . . ,Aµ} and B = {B}, where B 6∈ A.

5.1 With Equality Conditions
Unlike in the previous section with 1 read-only attribute,

the problem becomes NP-hard even with equality conditions.

For the assignment case, the problem is closely related to
the view synthesis problem, and we derive the hardness re-
sult through it. For the remaining cases, we show hardness
through reductions from the 1 read-only attribute version with
range conditions.

THEOREM 5.1. The BDµ(F=
←) problem is NP-hard.

The proof of this theorem is given in Appendix D.

THEOREM 5.2. The BDµ(F=
+ ), BDµ(F=

←+), and BDµ(F=
aff)

problems are NP-hard.

We only show the proof for BDµ(F=
+ ), as the remaining

proofs are similar. The idea is to simulate range conditions in
one attribute with equality conditions in multiple attributes.

Consider the instance (K,A,B, RS, RT) of BD1(FR
+), where

A = {A}, and a1 < · · · < a` are values in VA(RS, RT) in
order. The reduction is as follows: we construct the instance
(K,A′,B, R′S, R′T). Here, A′ = {A1, . . . ,A2`}, and R′S and
R′T are identical to RS and RT, respectively, except that the
attribute A = a is replaced by A1, . . . ,A2` in the following
fashion.

Let a∗ = a` + 1 6∈ VA(RS, RT). Define ρi = [ai, a`] and
ρ`+i = [a1, ai] for i ∈ [`]. For each tuple, its Ai value is
assigned as its A value, except when the value is in the range
ρi, in which case it is assigned to a∗, for i ∈ [2`].

LEMMA 5.3. Best diffs in ∆(RS, RT,FR
+) have cost n (in

BD1) if and only if best diffs in ∆(R′S, R
′
T,F

≤
+ ) have cost n

(in BDµ).

PROOF. The following pair of conditions are equivalent,
matching corresponding tuples in the respective problems.

A ∈ [ai, aj ] ≡ Ai = a∗ ∧ A`+j = a∗

A ∈ [a1, aj ] ≡ A`+j = a∗

A ∈ [ai, a`] ≡ Ai = a∗

where i, j ∈ [`], and

A ∈ [aj , aj ] ≡ Ai = aj

where i, j ∈ [2`]. Thus, the best diffs translate from one
problem to the other.

5.2 With At-most Conditions
The classification for the problem with the assignment

modifier is unknown. The cases with the increment, assign-
ment/increment, and affine modifiers are NP-hard, even if we
restrict the number of read-only attributes to 2.

THEOREM 5.4. The BDµ(F≤+ ), BDµ(F≤←+), and BDµ(F≤aff)
problems are NP-hard, even with 2 read-only attributes.

We only show the proof for BDµ(F≤+ ), as the remaining
proofs are similar. The idea is to simulate range conditions in
one attribute with at-most conditions in two attributes.

Consider the instance (K,A,B, RS, RT) of BD1(FR
+), where

A = {A}. The reduction is as follows: we construct the in-
stance (K,A′,B, R′S, R′T). Here, A′ = {A1,A2}, and R′S
and R′T are identical to RS and RT, respectively, except that
the attribute A = a is replaced by A1 = a and A2 = −a.



LEMMA 5.5. Best diffs in ∆(RS, RT,FR
+) have cost n (in

BD1) if and only if best diffs in ∆(R′S, R
′
T,F

≤
+ ) have cost n

(in BDµ).

PROOF. The following pair of conditions are equivalent,
matching corresponding tuples in the respective problems.

A ∈ [a, z] ≡ A1 ≤ z ∧ A2 ≤ −a
A ∈ [vA

min, z] ≡ A1 ≤ z
A ∈ [a, vA

max] ≡ A2 ≤ −a
Thus, the best diffs translate from one problem to the other.

5.3 With At-most/At-least, Range, or Union-
of-Ranges Conditions

With at-most/at-least, range, or union-of-ranges condi-
tions, the problem is NP-hard when using increment, assign-
ment/increment, or affine modifiers, via trivial reductions.

THEOREM 5.6. The BDµ(Fφω ) problem, for

φ ∈ {≤≥,R,U} and
ω ∈ {+,← +, aff}

is NP-hard, even with 1 read-only attribute.

PROOF. These are generalizations from their BD1 coun-
terparts, which are all NP-hard.

The case with the assignment modifier is different. The
classification for the problem with the at-most/at-least con-
dition is unknown. While there is a version of the view
synthesis problem that is similar to the range case, we pro-
vide a proof of NP-hardness via a different problem. The
proof works even when we restrict the number of read-only
attributes to 2.

THEOREM 5.7. The BDµ(FR
←) problem is NP-hard, even

with 2 read-only attributes.

In order to prove Theorem 5.7, we provide a polynomial-
time reduction from RECTANGLECOVER, which is a known
NP-hard problem, defined as follows [12].

DEFINITION 5.8 (RECTANGLECOVER). The RECTAN-
GLECOVER decision problem is, given an orthogonal polygon
P (on a plane) with n vertices, and a nonnegative integer t,
determine whether there is a rectangle cover of P of size t;
that is, whether there exists a set of t axis-aligned rectangles
whose union is exactly P .

PROOF. Consider an instance of the RECTANGLECOVER
problem with an orthogonal polygon P with n vertices. With-
out loss of generality, let [`] be the set of coordinates used
by P , where ` ≤ n. (Essentially we perform a “rank-space
reduction” [3], since stretching the polygon does not affect
the size of the cover.) Construct an `×` grid and superimpose
the polygon P on it.

We create 99 tuples for each of the `×` grid cells, with their
A1 and A2 values corresponding to their x and y coordinates.
Their B values are set as follows: in RS, set all B values to
distinct positive values; in RT, set B to the same values as in
RS, except when the following condition applies: for the tuple
with A1 = x and A2 = y, the square with opposite corners

(x, y) and (x+ 1, y + 1) is contained in (the superimposed)
P ; in which case B is set to 0.

The claim is that P has a rectangle cover of size t if and
only if RS and RT has a diff under FR

← of cost t. This
is because using a rectangle with opposite corners (x1, y1)
and (x2, y2), where x1 < x2 and y1 < y2, corresponds to
setting B ← 0 to the tuples matching the condition A1 ∈
[x1, x2 − 1] ∧ A2 ∈ [y1, y2 − 1]. To see why the off-by-one
correction is needed, consider the case x1 = x2. The range
[x1, x2] is not empty (contains one element), but the rectangle
defined by those x-coordinates have zero width.

The reason we need multiple tuples per grid cell is to pre-
vent “unsetting” the B value from 0. Once the B values of
these 99 tuples are set to 0 (or any value), they cannot be
changed back into distinct B values again using assignment
modifier.

Thus, the problem is NP-hard.

THEOREM 5.9. The BDµ(FU
←) problem is NP-hard, even

with 2 read-only attributes.

PROOF. This is a corollary of Theorem 5.7.

6. CONCLUSIONS AND FUTURE WORK
This paper introduces the family of DATA-DIFF problems

characterized by a particular set of modifiers and conditions
of interest. It identifies the base case of 1 read-only and 1
write-only attribute and fully classifies the complexity across
families of operations (Table 1). It also discusses the general-
ization to multiple read-only attributes, showing NP-hardness
in most families of operations (Table 2).

Some remaining open problems are discussed earlier, par-
ticularly characterizing BDµ(F≤←) and BDµ(F≤≥← ). In ad-
dition, we have only discussed the settings with 1 write-only
attribute and 0 read-write attributes. In particular, introducing
read-write attributes creates a complexity where an operation
may modify the values in the attributes used for conditions,
and therefore the same condition may match a different set
of tuples depending on when it is used, making the order of
operations even more crucial. Characterizing the problem un-
der relaxations of these constraints is therefore an interesting
venue for further investigation.
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APPENDIX
A. POLYNOMIAL-TIME RESULTS

In this section, we discuss cases of the DATA-DIFF problem
with polynomial time algorithms in more detail.

PROOF OF THEOREM 4.1 (F=
← , F=

+ , F=
←+, F=

aff ). Each op-
eration affects the value of all tuples with one value of A, and
there is not a reason to apply two operations for the same
value of A. Therefore, one simply needs to sort the tuples
by their A value, iterate through all values of A, and create
an appropriate operation to modify the B value to the right
value, if possible.

PROOF OF THEOREM 4.2 (F≤←). We first consider the fol-
lowing proposition: if ∆(RS, RT,F≤←) is nonempty, then
it contains a best diff F = (f1, . . . , fm) in which for all
i, j ∈ [m], if i < j and

fi = (A ≤ ai,B← bi) and
fj = (A ≤ aj ,B← bj)

then ai > aj .
The proof follows. Suppose ai ≤ aj , then the diff F ′

constructed by removing fi from F achieves the same result—
that is, F ′(RS) = F (RS) = RT—because changes caused
by fi are rendered moot by fj , and thus F is not a best diff.

A

B← bi
ai

B← bj
aj

=

A

B← bj
aj

Therefore, one simply needs to sort the tuples by their A, and
in decreasing order of A, create an appropriate operation to
modify the B value to the right value, if possible.

PROOF OF THEOREM 4.3 (F≤+ ). We first consider the fol-
lowing proposition: if ∆(RS, RT,F≤+ ) is nonempty, then
it contains a best diff F = (f1, . . . , fm) in which for all
i, j ∈ [m], if i < j and

fi = (A ≤ ai,B← B + bi) and
fj = (A ≤ aj ,B← B + bj)

then ai > aj . The correctness of the proposition follows
from the fact that the operations are commutative.

Therefore, one simply needs to sort the tuples in decreasing
order of A, create an appropriate operation to modify the B
value to the right value, if possible.

PROOF OF THEOREM 4.4 (F≤←+). We first consider the
following proposition: if ∆(RS, RT,F≤←+) is nonempty, then
it contains a best diff F = (f1, . . . , fm) in which for all
i, j ∈ [m], if i < j and one of the following is true:

(a) fi = (A ≤ ai,B← bi), fj = (A ≤ aj ,B← bj)
(b) fi = (A ≤ ai,B← B + bi), fj = (A ≤ aj ,B← bj)
(c) fi = (A ≤ ai,B← B + bi), fj = (A ≤ aj ,B← B + bj)
(d) fi = (A ≤ ai,B← bi), fj = (A ≤ aj ,B← B + bj)

then ai > aj . Equivalently, we define an inversion as a pair
(i, j) such that the preconditions hold but instead ai ≤ aj ,
and we claim that there exists a best diff without inversions.

The proof follows. For cases (a) and (b), the proof is the
same as in Theorem 4.2. For cases (c) and (d), the proof is
as follows. Here, an inversion, as defined above, is a pair
(i, j) ∈ [m] such that i < j, the condition for fi is A ≤ ai,
the condition for fj is A ≤ aj , and ai > aj .

If ∆(RS, RT,F≤+ ) is nonempty, then it contains a best diff
F = (f1, . . . , fm) that does not violate (a), or (b), with the
fewest inversions. We show that F has zero inversions.

Suppose F has an inversion of type (c) or type (d), that is,
there are i, j ∈ [m] such that i < j and either

fi = (A ≤ ai,B← B + bi) and
fj = (A ≤ aj ,B← B + bj)

(for an inversion of type (c))

fi = (A ≤ ai,B← bi) and
fj = (A ≤ aj ,B← B + bj)

(for an inversion of type (d)), and ai ≤ aj . Without loss of
generality, let (i, j) be such a pair where the index difference
j − i is the smallest. It must be the case that j − i = 1, for
otherwise fk where i < k < j will create a violation for (a)
or (b).

If (fi, fj) constitutes an inversion of type (c), we may
create a new diff F ′ is equivalent to F , but with fi and fj
switched. F ′(RS) = F (RS) = RT since the increment
updates are commutative (and there are no operations fk, i <
k < j with assignment updates to break said commutativity
since j − i = 1).

Otherwise, (fi, fj) constitutes an inversion of type (d). In
this case, let F ′ = (f1, . . . , fi−1, fj , g, fj+1, . . . , fm) where

g = (A ≤ ai,B← bi + bj)

then F ′(RS) = F (RS) = RT. In either case (inversion of
type (c) or of type (d)), F ′ has one fewer inversion than F , a
contradiction to the fact that F has the fewest inversions.

A

B← bi
ai

B← B + bj
aj

=

A

B← B + bj
aj

B← bi + bj
ai

Therefore, one simply needs to sort the tuples by their A, and
compute the smallest number of operations required using
dynamic programming.

PROOF OF THEOREM 4.5 (F≤aff ). We first consider the fol-
lowing proposition: if ∆(RS, RT,F≤aff) is nonempty, then
it contains a best diff F = (f1, . . . , fm) in which for all
i, j ∈ [m], if i < j and

fi = (A ≤ ai,B← biB + ci) and
fj = (A ≤ aj ,B← bjB + cj)

then ai > aj . Equivalently, we define an inversion as a pair
(i, j) such that the preconditions hold but instead ai ≤ aj ,
and we claim that there exists a best diff without inversions.

The proof follows. Suppose F has an inversion, that is,
there are i, j ∈ [m] such that i < j and

fi = (A ≤ ai,B← biB + ci) and
fj = (A ≤ aj ,B← bjB + cj)



and ai ≤ aj . Without loss of generality, let (i, j) be such a
pair where the index difference j − i is the smallest. It must
be the case that j − i = 1, for otherwise fk where i < k < j
will be such that either (i, k) or (k, j) is an inversion with a
smaller index difference.

Let F ′ = (f1, . . . , fi−1, fj , g, fj+1, . . . , fm) where

g = (A ≤ ai,B← biB + c′) and

c′ = cj + bjci − cjbi
then F ′(RS) = F (RS) = RT, but F ′ has one fewer inversion
than F , a contradiction to the fact that F has the fewest
inversions.

A

B← biB + ci
ai

B← bjB + cj
aj

=

A

B← bjB + cj
aj

B← biB + c′
ai

Label the tuples 1, . . . , n in order of increasing A. We can
use dynamic programming to compute f(m), the cost of
modifying tuples 1 throught m in order to match RT. The
process effectively segments the tuples into blocks, each of
which containing tuples that can be transformed together
using one affine transformation, i.e., lie on the same “line”,
taking extra care of constant transformations—those with the
modifier B← bB + c with b = 0.

The final answer f(n) can be computed inO(N logN).
PROOF OF THEOREM 4.6 (F≤≥← ). We first consider the

following proposition: if ∆(RS, RT,F≤≥← ) is nonempty, then
it contains a best diff F = (f1, . . . , fn) in which there are no
operations

fi = (A ≤ ai,B← bi) and
fj = (A ≥ aj ,B← bj)

such that ai ≥ aj . In other words, F contains no two “over-
lapping” operations.

The proof follows. Let F = (f1, . . . , fm) be a best diff in
∆(RS, RT,F≤≥← ) with the smallest total length. Assume to
the contrary that there exists operations fi and fj such that

fi = (A ≤ ai,B← bi) and
fj = (A ≥ aj ,B← bj)

and ai ≥ aj . If i < j, then let g = (A ≤ aj − 1,B ← bi),
and F ′ = (f1, . . . , fi−1, g, fi+1, . . . , fm). Then, F ′(RS) =
F (RS) = RT, but F ′ has smaller total length than F .

A

B← bi
ai

aj
B← bj

=

A

B← bi
aj − 1

aj
B← bj

Otherwise, if i > j, then let g = (A ≥ ai + 1,B ← bj),
and F ′ = (f1, . . . , fj−1, g, fj+1, . . . , fm). Then, F ′(RS) =
F (RS) = RT, but F ′ has smaller total length than F . In
either case, it contradicts with the fact that F has the smallest
total length.

Therefore, one simply needs to sort the tuples by their A,
decide on the “breakpoint” that separates the A ≤ a con-
ditions from the A ≥ a conditions, then use the algorithm
similar to the one given in Theorem 4.2 on each side.

PROOF OF THEOREM 4.20 (FR
←). If ∆(RS, RT,FR

←) is
nonempty, then it contains a best diff F = (f1, . . . , fn) in
which for any two operations fi = (A ∈ [ai, zi],B ← bi)
and fj = (A ∈ [aj , zj ],B← bj) where i < j, either zi < aj
or zj < ai or ai ≤ aj ≤ zj ≤ zi. The proof is similar to that
given in Theorem 4.6.

Label the tuples 1, . . . , n in order of increasing A. We
can use dynamic programming to compute f(m1,m2, δ), the
cost of modifying tuples m1 through m2 in order to match
RT where all tuples have B values set to δ, unless δ is NULL
in which case all tuples have the original B values like in RS.

The final answer f(1, n,NULL) can be computed inO(N4).

B. APPROXIMATION RESULTS
For some NP-hard cases of the DATA-DIFF problem, we

are able to provide polynomial-time approximation algo-
rithms. In fact, these algorithms are discussed earlier, since
they provide exact results for different condition and modifier
settings.

B.1 Approximation for BD1(F≤≥+ )

THEOREM B.1. For the BD1(F≤≥+ ) problem an additive
1-approximation can be found in O(N logN) time.

PROOF. In short, we show that if we only use the one of
the “at most” and “at least” condition type exclusively, and
the cost of the best diff only increases by at most one.

Let F = (f1, . . . , fm) be the best diff between RS and RT,
such that I≤ is the set of indices i ∈ [m] where fi is in the
form (A ≤ ai,B ← B + bi), and I≥ is the set of indices
i ∈ [m] where fi is in the form (A ≥ ai,B← B + bi). Then,
F ′ = (f ′1, . . . , f

′
m, g) where, for i ∈ [m],

f ′i =

{
(A ≤ ai,B← B + bi) if i ∈ I≤
(A ≤ ai − 1,B← B− bi) if i ∈ I≥

g = (A ≤ vmax
A ,B← B +

∑
i∈I≥

bi)

is also a diff between RS and RT. By Theorem 4.3, a diff
better or as good as F ′ can be found in O(N logN).

B.2 Approximation for BD1(FR
+)

THEOREM B.2. For the BD1(FR
+) problem, a multiplica-

tive 2-approximation can be found in O(N logN) time.

PROOF. Let F = (f1, . . . , fm) be the best diff between
RS and RT, where fi = (A ∈ [ai, zi],B ← B + bi) for
i ∈ [m]. Then, F ′ = (f ′1, . . . , f

′
2m) where, for i ∈ [m],

f ′2i−1 = (A ≤ ai − 1,B← B− bi)
f ′2i = (A ≤ zi,B← B + bi)

is also a diff between RS and RT. By Theorem 4.3, a diff
better or as good as F ′ can be found in O(N logN).

As a side note, there is the following reduction to the edge-
cost flow problem. Construct a flow network where each
vertex corresponds to a tuple. Let v1, . . . , vn be vertices
corresponding to tuples in increasing order of A. Construct
an edge between every pair of vertices. Assume B of a vertex



changes from b to b′. If b < b′, then let the supply of that
vertex be b′ − b. If b > b′, then let the demand of that vertex
be b− b′.

The claim is that there is that there is a diff of cost m if and
only if there is a flow of cost m. Thus, any approximation
scheme for edge-cost flow can also be used for BD.

C. THE 2DISTINCTSCS PROBLEM
We prove that 2DISTINCTSCS is NP-hard, via a polynomial-

time reduction from 2SCS.
Consider an instance of 2SCS with set S of strings of length

two and a nonnegative integer t. Let C be the set of symbols
c where cc is in S.

For each symbol c ∈ C, create two new symbols c1 and c2.
Let S′ = {f1(u)f2(v) | uv ∈ S} where, for i ∈ [2],

fi(c) =

{
ci if c ∈ C
c otherwise

THEOREM C.1. S has a supersequence of length at most
t iff S′ has a supersequence of length at most t.

PROOF. (⇐) Let s′ be a supersequence of S′ of length
at most t. Changing c1 and c2 to c for c ∈ C from s′ and
S′ preserves the supersequence constraint: characters at the
same indices can be removed from s′ (or s) to obtain each
string in S′ (or S).

(⇒) Let s = w1 . . . wm be a supersequence of S of length
m ≤ t. Let s′ be identical to s, with the following change:
for each c ∈ C, change its first occurrence in s to c1 and
its last occurrence in s to c2. By definition, each symbol
in c must have at least two occurrences in s, so there is no
conflict.

Consider uv ∈ S. Let i, j ∈ [m] be indices such that i < j
and wi = u and wj = v. The first occurence of u in s is
at index i′ ≤ i and the last occurence of v in s is at index
j′ ≥ j. Thus, removing symbols other than at indices i′ and
j′ from s′ would give wi′wj′ = f1(u)f2(v). Therefore, s′ is
a supersequence of S′ of length at most t.

Therefore 2DISTINCTSCS is NP-hard.

D. ADDITIONAL PROOFS

PROOF OF THEOREM 4.27. (⇐) By Lemma 4.11, letF =

(f1, . . . , fn) be a bounded best diff in ∆(RS, RT,F≤≥+ ) of
cost n. Entries in the A attribute in RS and RT are integers
in {0, . . . , n}. We can construct F ′ from F as follows.

• If fi = (A ≤ ai,B ← B + bi), then we construct
f ′i = (A ∈ [0, ai],B ← B + bi), since A ≤ ai if and
only if A ∈ [0, ai].

• If fi = (A ≥ ai,B ← B + bi), then we construct
f ′i = (A ∈ [ai, n],B ← B + bi), since A ≥ ai if and
only if A ∈ [ai, n].

Hence, F ′ = (f ′1, . . . , f
′
n) is a best diff in ∆(RS, RT,FR

+).
(⇒) By Lemma 4.26, let F = (f1, . . . , fn), where fi =

(A ∈ [ai, zi],B← B + bi) for i ∈ [n], be a bounded best diff
in ∆(RS, RT,FR

+) of cost n such that |C(F )| = 0. Consider
a directed graph G = (V,E) where V = {0, . . . , n+ 1} and

E = {(ai, zi + 1) | i ∈ [m]}. That is, for each operation fi,
there is a corresponding edge (ai, zi + 1) in E.

From the construction of G, vertex 0 has in-degree 0, and
vertex n+ 1 has out-degree 0. In addition, any vertex in V
cannot have in-degree greater than 1. Assume the contrary:
∃i, j s.t. zi + 1 = zj + 1 = k then zi = zj . Likewise,
any vertex in V cannot have out-degree greater than 1. A
directed graph whose maximum in-degree and out-degree is
1 can be decomposed into vertex-disjoint paths and cycles.
However, E only contains edges (u, v) such that u < v, so
G does not contain cycles. Thus, G can be decomposed into
vertex-disjoint paths.

Let P = (v1, . . . , vp) be a path in the vertex-disjoint path
decomposition of G. We prove that v1 = 0 or vp = n +
1. Assume for contradiction that v1 6= 0 and vp 6= n +
1. From the degree requirements, we also have v1 6= n +
1 and vp 6= 0. For each k ∈ {1, . . . , p − 1}, let fPk =
(A ∈ [vk, vk+1 − 1],B ← B + bPk ) be an operation from
{f1, . . . , fn} corresponding to the edge (vk, vk+1).

Note that fPk−1 and fPk are the only two operations in
{f1, . . . , fn} that can affect the difference in the B attribute
between the tuples at K = A = vk − 1 and at K = A = vk.
In particular, it must be the case that bP1 = sv1 > 0 and
−bPp−1 = svp−1 > 0 and bPk − bPk−1 = svk > 0 in order
for F (RS) to agree with RT. However, these facts imply
0 < bP1 < bP2 < · · · < bPp−1 and bPp−1 < 0, a contradiction.
Therefore, v1 = 0 or vp = n+ 1.

Define bP0 = bPp = 0. If v1 = 0, we create the opera-
tion f ′i = (A ≤ vi+1 − 1,B ← B + (bPi − bPi+1)) for i ∈
{1, . . . , p−1}. Otherwise, if vp = n+1, we create the opera-
tion f ′i = (A ≥ vi,B← B+(bPi −bPi−1)) for i ∈ {1, . . . , p−
1}. It follows that F ′P = (f ′1, . . . , f

′
p−1) are equivalent to

FP = (fP1 , . . . , f
P
p−1), and therefore ∆(RS, RT,F≤≥+ ) con-

tains a bounded best diff of cost n.

PROOF OF THEOREM 4.29. (⇐) Any diff in ∆(RS, RT,FR
+)

is also a diff in ∆(RS, RT,FR
←+).

(⇒) LetF = (f1, . . . , fn) be a best diff in ∆(RS, RT,FR
←+)

of cost n that has the smallest number of assignment modi-
fiers and, among the best diffs with the smallest number of
assignment modifiers, has the smallest total length. We show
that F has no assignment modifiers.

The proof follows. Assume to the contrary, and let i be the
smallest index in [n] such that fi = (A ∈ [ai, zi],B ← bi)
has an assignment modifier.

Case 1: There is an operation fj = (A ∈ [aj , zj ],B ←
B + bj) where j < i and aj < ai ≤ zj ≤ zi. Then, let
f ′j = (A ∈ [aj , ai − 1],B ← B + bj). If F ′ is defined as
F where fj is replaced with f ′j , then F ′ would still yield
F ′(RS) = (RT), but the total length of F ′ is smaller than
that of F .

Case 2: There is an operation fj = (A ∈ [aj , zj ],B ←
B + bj) where j < i and ai ≤ aj ≤ zi < zj . This case has
an argument symmetric to Case 1.

Case 3: There is an operation fj = (A ∈ [aj , zj ],B ←
B + bj) where j < i and ai ≤ aj < zj ≤ zi. If F ′ is
defined as F where fj is removed, then F ′ would still yield
F ′(RS) = (RT), but the cost of F ′ is smaller than that of F .

Case 4: None of the above. Then, all tuples matching



A ∈ [ai, zi] still has the same value in the B attribute, say β, in
F ′′(RS), where F ′′ = (f1, . . . , fi−1). Then, let f ′i = (A ∈
[ai, zi],B← B + (bi− β)). If F ′ is defined as F where fi is
replaced with f ′i , then F ′ would still yield F ′(RS) = (RT),
but F ′ has fewer assignment modifiers than F .

Therefore, F has no assignment modifiers. Thus, F is also
a best diff in ∆(RS, RT,FR

+).

PROOF OF LEMMA 4.34. Suppose a diff between RS and
RT contains an operation

f = (A ∈
r⋃
j=1

[aj , zj ],B← b)

that matches A = 4k—that is, there exists j ∈ [r] such that
aj ≤ 4k ≤ zj—for some k ∈ {0, . . . , n}. Because, by con-
struction, there are two tuples with A = 4k, this operation
changes their B values to the same value b. However, these
tuples have different B values in RT (−1 and −2), and as-
signment operators cannot assign different B values to them,
a contradiction.

PROOF OF THEOREM 5.1. The problem is similar to the
view synthesis problem with unions of conjunctive queries
with equality predicates, which is NP-hard [13].

When a view V respective to attributes in A is desired, we
set the B values as follows: in RS, set all B values to distinct
positive values; in RT, set B to the same values as in RS,
except when the tuple is in V , in which case B is set to 0.

The claim is that there is a view definition V of cost t if
and only if RS and RT has a diff under F=

← of cost t. This
is because including a conjunctive query into the view V
corresponds to using the same query to set B← 0.

In fact, one modification to the reduction above is required
to prevent “unsetting” the B value from 0. For each tuple,
make multiple, say 99, copies preassigned with different
positive B values. Once the B values of these 99 tuples are
set to 0 (or any value), they cannot be changed back into
distinct B values again using assignment modifier.

Thus, the problem is NP-hard.


