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1 Recap: Simon’s Algorithm
Recall that in the Simon’s problem, we are given a functionf : Zn

2 → Zn
2 (i.e. from n-bit strings ton-bit

strings), with the promise that there is a non-zero strings ∈ Zn
2\{0} such that

for all x 6= y, f (x) = f (y) if and only if x⊕ y = s.

The challenge is to determines. As we saw last time, the problem can be solved with the following circuit.
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Figure 1: Circuit for Simon’s Algorithm

The above circuit corresponds to the following sequence of transformations.

∣
∣0

〉∣
∣0

〉 H⊗n

−→ 1√
2n ∑

x

∣
∣x

〉∣
∣0

〉

f−→ 1√
2n ∑

x

∣
∣x

〉∣
∣ f (x)

〉

measure−→ 1√
2
(
∣
∣x0

〉
+

∣
∣x0⊕ s

〉
)⊗

∣
∣a

〉

(measuring the 2nd register, we observea ∈ Zn
2 such thata = f (x0) = f (x0⊕ s))

H⊗n

−→ 1√
2n ∑

y
αy

∣
∣y

〉∣
∣a

〉

for some numbersαy.

Recall that the Hadamard transform of a general state
∣
∣x

〉
is

H⊗n
∣
∣x

〉
=

1√
2n ∑

y
(−1)x·y∣∣y

〉
,

so

αy =
1√
2
((−1)x0·y +(−1)(x0⊕s)·y).

There are now two cases. For eachy, if s · y = 1, thenαy = 0, whereas ifs · y = 0, thenαy = (−1)x0·y
√

2.
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When we observe the first register, we get a uniformly randomy such thats · y = s1y1 + · · ·+ snyn = 0. We
repeat to collect more and more equations, and recovers from n linearly independent equations.

There is another way to view the final Hadamard transform. When we have
∣
∣x0

〉
+

∣
∣x0 ⊕ s

〉
, measuring

immediately would destroy the state. That’s why we transform it to another basis (the Hadamard basis)
before measuring.

2 Fourier Transform on ZM for Integer M

Let f : ZM → C be a complex-valued function onZM. Its Fourier transformf̂ : ZM → C is given by

f̂ (t) =
1√
M

∑
x∈ZM

f (x)ωxt

whereω = exp(2πi/M) is a primitiveM-th root of unity. If we write f as the vector

~f =








f (0)
f (1)

...
f (M−1)








∈ C
M,

and similarly write f̂ as~̂f ∈ C M , then the vectors~f and~̂f are related by a change of basis~̂f = FM~f , where
the matrixFM takes the form

FM =
1√
M












1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωM−1

1 ω2 ω4 ω6 · · · ω2M−2

1 ω3 ω6 ω9 · · · ω3M−3

...
...

...
...

. . .
...

1 ωM−1 ω2M−2 ω3M−3 · · · ω(M−1)(M−1)












,

that is,(i, j)-th entry ofFM is ω i j (if we ignore the normalization factor 1/
√

M).

3 Classical Fast Fourier Transform
Straightforward multiplication of the vector~f by FM would takeΩ(M2) steps because multiplication of~f
by each row requiresM multiplications. Exploiting the symmetry ofFM, it is possible to perform Fourier
transform inO(M logM) operations whenM is a power of two, i.e.M = 2m. This algorithm is known as
fast Fourier transform (FFT).

The idea is to rewrite the Fourier coefficientsf̂ ( j) as

f̂ ( j) =
M−1

∑
i=0

ω i j f (i) (where for simplicity we ignore the normalization factor 1/
√

M)

= ∑
i even

ω i j f (i)+ ∑
i odd

ω i j f (i) (splitting into odd and even terms)

=
M/2−1

∑
i′=0

(ω2i′) j f (2i′)+ ω j
M/2−1

∑
i′=0

(ω2i′) j f (2i′ +1) (write eveni as 2i′, odd as 2i′ +1)

=
(

FM/2
−−→
feven

)

( j)+ ω j
(

FM/2
−−→
fodd

)

( j).

CS 294, Spring 2009, Lecture 4 2



identity

vv----
----

----
----

-

v0






FTN/2 GFED@ABC×1

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
?>=<89:;+

v1






FTN/2 ONMLHIJK×w j

ttttttttttttttttttttttttttttttttttt ?>=<89:;−

multiplication byw j

gg----------------

Figure 2: A circuit for classical fast Fourier transform

The above idea is summarized in the diagram below.

This representation gives a recursive algorithm for computing the Fourier transform in timeT (M)= 2T (M/2)+
O(M) = O(M logM).

4 Quantum Fourier Transform
We continue to assumeM = 2m. Suppose a quantum state

∣
∣ f

〉
on m qubits is given as

∣
∣ f

〉
= ∑M−1

x=0 f (x)
∣
∣x

〉
.

Quantum Fourier transform (QFT) is the operation that maps
∣
∣ f

〉
to

∣
∣ f̂

〉
, where

∣
∣ f̂

〉
= ∑M−1

x=0 f̂ (x)
∣
∣x

〉
(and

f̂ (x) are the Fourier coefficients off ).

As we shall see, QFT can be implemented by circuit of sizeO(log2M). However, this does not constitute
an exponential speed-up over the classical algorithm because the result of quantum Fourier transform is a
superposition of states which can be observed, and any measurement can extract at mostm = logM bits of
information.

We now describe a circuit that implements quantum Fourier transform.

Step 1: QFTM/2 on the firstm−1 qubits

Similar to the classical fast Fourier transform, we will split ∑x f (x)
∣
∣x

〉
into odd and even terms. Hence

∑
x

f (x)
∣
∣x

〉
=

M/2−1

∑
i=0

f (2i)
∣
∣i
〉∣
∣0

〉
+

M/2−1

∑
i=0

f (2i+1)
∣
∣i
〉∣
∣1

〉
.

where
∣
∣2i

〉
is written as

∣
∣i
〉 ∣
∣0

〉
because appending a zero to a binary number is the same as doubling the

number (e.g. ifi is 101100 in binary, then 2i is 1011000). In a quantum circuit for uantum Fourier transform,
we will first applyQFTM/2 on the first register (i.e. the firstm−1 qubits), obtaining

M/2−1

∑
i=0

αi
∣
∣i
〉∣
∣0

〉
+

M/2−1

∑
i=0

βi
∣
∣i
〉∣
∣1

〉
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Figure 3: Circuit for quantum Fourier transform

for certain amplitudesαi andβi.

Step 2: Controlled phase shifts

Next, for each of the first m-1 qubitsk (1 ≤ k ≤ m), if both thek-th qubit and the last qubit are 1, then
we need to multiply the phase byω2m−k

, and otherwise leave the phase unchanged. Thus, we apply the
following transformationsRk:

Rk

∣
∣

k-th qubit
︷︸︸︷

1

last qubit
︷︸︸︷

1
〉

= ω2m−k∣
∣11

〉

Rk
∣
∣01

〉
=

∣
∣01

〉

Rk
∣
∣10

〉
=

∣
∣10

〉

Rk
∣
∣00

〉
=

∣
∣00

〉

Hence,Rk is just a controlled phase shift (with angle 2π/2k). After the controlled phase shift, we get the
state

M/2−1

∑
i=0

αi

∣
∣i
〉∣
∣0

〉
+

M/2−1

∑
i=0

ω iβi

∣
∣i
〉 ∣
∣1

〉
.

Step 3: Hadamard gate

Finally, we apply a Hadamard gate to the last qubit, and end upwith the state

1√
2

[
M/2−1

∑
i=0

αi
∣
∣i
〉
(
∣
∣0

〉
+

∣
∣1

〉
)+

M/2−1

∑
i=0

ω iβi
∣
∣i
〉
(
∣
∣0

〉
−

∣
∣1

〉
)

]

=
1√
2




∑

i
(αi + ω iβi)

∣
∣i
〉∣
∣0

〉

︸ ︷︷ ︸

ith output

+∑
i
(αi −ω iβi)

∣
∣i
〉∣
∣1

〉

︸ ︷︷ ︸

(i+M/2)th output




 .

Putting together, in the circuity above the quantum Fouriertransform onm− 1 qubits corresponds to two
Fourier transforms onm−1 bits in the figure??. The controlled phase shifts correspond to multiplications
by ω j in classical circuit. Finally, the Hadamard gate at the veryend corresponds to the summation.

The number of gatesT (M) satisfies the recurrence relationT (M) = T (M/2) + logM. Thus T (M) =
O(log2 M).
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5 Period Finding
Period finding is the problem in which we are given a functionf : ZM → C , with the promise thatf is
periodic with periodr, i.e.

there is ar such that for allx 6= y, f (x) = f (y) if and only if x ≡ y modr.

The challenge is the find the periodr.

This problem can be solved efficiently using the following circuit.
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++(0.1,-0.25) arc (90:0:10pt) ++(-0.4,0) [-¿] – ++(0.4,0.4); [left] at (0,-0.5)
∣
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; [left] at (0,-1.375)

∣
∣0

〉
;

[right] at (6,-1.375)
∣
∣ f (x)

〉
; [rectangle,draw,fill=white,minimum height=40pt,minimum width=40pt,below]
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Figure 4: Circuit for period finding

The above circuit corresponds to the following sequence of transformations.

∣
∣0

〉∣
∣0

〉 QFTM−→ 1√
M

∑
x∈ZM

∣
∣x

〉∣
∣0

〉

f−→ 1√
M

∑
x

∣
∣x

〉 ∣
∣ f (x)

〉

measure 2nd register−→ 1
√

M/r

M/r−1

∑
k=0

∣
∣`+ kr

〉∣
∣ f (`)

〉

(Here we assumer dividesM to simplify the analysis. We will remove this restriction
later.)

QFTM−→
√

r
M

1√
M

∑
y

αy

∣
∣y

〉
,

whereαy = ∑M/r−1
k=0 ω(`+kn)y = ω`y ∑k ωkry.

There are two cases fory:

1. Case 1:y is a multiple ofM
r .

In this case, thenωkry = e2πiry/M = 1. Soαy =
√

r
M

M
r = 1√

r .

Note that there arer multiples ofM/r. The sum of the magnitudes squared for these values ofy is 1.
This implies that for any othery, αy = 0.

2. Case 2:y is not a multiple ofMr .

We already showed thatαy must be 0 from the previous case. But we can also give an intuition for
why this is the case. Note thatωry,ω2ry, . . . are evenly spaced vectors of unit length around the origin.
Being the sum of these complex numbers,αy is 0.
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In other words, if we measure the output from the second quantum Fourier transform, we get a uniformly
random multiple ofM/r. If we repeat the whole processt times, gettingt random multiplesy1, . . . ,yt of
M/r, the greatest common divisor of they j ’s is likely to beM/r. Since we knowM, we can recoverr from
M/gcd(y1, . . . ,yt).

Let us compute the chance of finding the correct period witht samples. Suppose after repeatingt times,
we have not found the desired periodM/r, but instead a multiple, sayλM/r. This means that each of thet
samples must be a multiple ofλM/r. There areM/(λM/r) = r/λ multiples ofλM/r, and since there are
r multiples in total, the probability of getting a multiple ofλM/r is 1/λ . Therefore,

Pr[gcd is a multiple ofλM/r] =

(
1
λ

)t

≤
(

1
2

)t

,

and we err with probability

Pr[gcd> M/r aftert samples] ≤ M

(
1
2

)t

.

Sot = O(logM) measurements suffice to guarantee a solution. A more carefulanalysis shows that a constant
number of samples is sufficient.

6 Period Finding: The General Case
For the general case whereM is not a multiple ofr, we will fix M = 2m to be a power of two that is at least
r2.

The change to the above analysis is that, after measuring the2nd register, we get

measure 2nd register−→ 1√
s

s−1

∑
k=0

∣
∣`+ kr

〉∣
∣ f (`)

〉

wheres = bM/rc or s = bM/rc+1. If we now take QFT on the first register, we get∑y αy
∣
∣y

〉
with

αy =
1√
sM

ω`y
s−1

∑
k=0

ωkry.

Case 1 now becomes:

1. Case 1:|ry modM| ≤ r
2 (in this section the remainder modM is allowed to be negative):

Intuitively, in this case the amplitudesωkry “almost line up” in the complex plane. Previously, when
the periodr dividesM exactly, all the amplitudes for multiples ofM/r “line up” at 1.

Claim: If |ry modM| ≤ r
2, then|αy| ≥Cs for some constantC.

This claim implies that we have substantial probability of observing ay that falls into case 1. How
manyy belong to this case? Whenr is coprime toM (which is the usual case when we run period
finding as a subroutine in factoring), the set{ry | y ∈ ZM} is justZM. Put differently, asy runs through
ZM, the productry also runs throughZM. Hence there are about 2r

2 = r suchy. Then

Pr[Observing such ay] ≥ r ·C2 · s2 1
Ms

≥C2 · s · r
M

≥ const.

CS 294, Spring 2009, Lecture 4 6



For the rest of the discussion, assume that we measure any satisfying|ry modM| ≤ r/2. How does this help
us compute the periodr? By assumption|ry− cM| ≤ r/2 for some integerc, and hence

∣
∣
∣

y
M

− c
r

∣
∣
∣ ≤ 1

2M
.

Herey andM are both known. We shall show, assuming thatM > r2, how to recoverc/r by continued
fraction.

Here is the idea:c/r is a close approximation toy/M. Is it possible to get a better rational approximation
with denominator at mostr? We will show it is impossible. Supposec′/r′ is a better rational approximation
with denominatorr′ ≤ r. Then ∣

∣
∣
∣

c
r
− c′

r′

∣
∣
∣
∣
=

∣
∣
∣
∣

cr′− c′r
rr′

∣
∣
∣
∣
≥ 1

r2

But now it follows that ∣
∣
∣
∣

c′

r′
− y

M

∣
∣
∣
∣
≥ 1

r2 −
1

2M
>

1
2M

.

So if we compute the continued fraction expansion ofy/M and look at the successive approximations to
y/M, one of these must bec/r, thus yieldingr. (See the section on continued fractions below.)

7 Continued Fraction
Definition 4.1 (Continued Fraction): A real numberα can be approximated by an iterated fraction

CFn(α) = a0 +
1

a1 +
1

a2 +
1

... +
1

an

=
Pn

Qn
,

wherea0, . . . ,an (and hencePn andQn) are integers.
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2 Example 1: Let us approximateπ to two decimal places with a rational number. We know that

π = 3.14. . .

= 3+
14
100

= 3+
1

100

14

= 3+
1

7+
2

14

≈ 3+
1
7

=
22
7

Example 2: If we decide to approximateπ to four decimal places, we would have

π = 3.1415. . .

= 3+
1415

10000

= 3+
1

10000

1415

= 3+
1

7+
95

1415

= 3+
1

7+
1

1415

95

= 3+
1

7+
1

14+
85

95

≈ 3+
1

7+
1

14

=
311
99

The following lemmas are well known facts about continued fraction that we state without proof.

Lemma 4.1: CFn(α) is the best rational approximation of α with denominator ≤ Qn.

Lemma 4.2: If α is rational then it occurs as one of the approximations CFn(α).
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Moreover, it is easy to see that the continued fraction is easy to compute for any rational number.

8 Shor’s Quantum Factoring Algorithm
Below we give a quantum algorithm that factorsN in polylog(N) time (factoring in poly(N) time is trivial
and is too slow). It turns out the problem of factoring reduces to finding a nontrivial square root.

Claim: If we can findu such thatu2 ≡ 1 (mod N) andu 6≡ ±1 (mod N), then we can factorN. (Such a
numberu is called a nontrivial square root of 1(mod N).)

Proof: The condition onu is equivalent toN | u2 − 1 = (u + 1)(u − 1) but N - u + 1 or N - u − 1. So
gcd(N,u+1) and gcd(N,u−1) are nontrivial factors ofN. 2

To find a non-trivial square root, we simply pick a random number x (mod N) and compute its order, where
the order ofx is the least positiver such thatxr ≡ 1 (mod N).

Claim: If N is odd, with probability at least 1/2 over a randomx∈ ZN , the orderr of x is even andxr/2 6≡ ±1
(mod N).

Example: Let N = 15. Then let’s suppose we pickedx = 7. Thenx = 7,x2 = 4,x3 = 13,x4 = 1, sox has
order 4. Now, takingy = xr/2 = 4, notice thaty−1 = 3 andy+1 = 5 are both factors of 15.

To compute the order, we can use a quantum circuit to computef (a) = xa (mod N). The function maps
element fromZM to ZM with M > N2. This function can be implemented efficiently with̃O(log2N) gates if
we do modular exponentiation with repeated squaring.

Below we give the algorithm that, given an odd integerN, outputs a nontrivial factor ofN with constant
probability.

[1] Pick a randomx ∈ ZN gcd(x,N) > 1 Output gcd(x,N) Run period finding onf (a) = xa (mod N) to get
the orderr of x (mod N) Computexr/2 (mod N) xr/2 6≡ ±1 (mod N) Output gcd(N,xr/2±1) Abort

Note that GCD can be computed quickly using Euclid’s algorithm.

Because of randomized nature of part of the algorithm, we mayneed to repeat this procedure many times.
Since the algorithm succeeds with constant probability, a constant number of repititions suffice to splitN
into two non-trivial factors. We can then repeat the procedure on each factor until we are down to the prime
factors.
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