
CS 294 Recursive Fourier Sampling, Simon’s Algorithm 2/25/2009
Spring 2009 Lecture 3

1 Review
Recall that we can write any classical circuitx → f (x) as a reversible circuitR f . We can viewR f as a unitary
operationU f , which acts on a quantum superposition using linearity. We will use this representation of a
function throughout the lecture.

2 Phase State
We will first see how to set up an interesting state which we will use later in Fourier sampling. Re-
call the Deutsch-Jozsa procedure which, given a classical circuit for computing a boolean functionf :
{0,1}n → {0,1}, shows how to transform it into a quantum circuit that produces the quantum state

∣

∣φ
〉

=

1/2n/2 ∑x(−1) f (x)
∣

∣x
〉

.

The quantum algorithm to carry out this task uses two quantumregisters, the first consisting ofn qubits, and
the second consisting of a single qubit.

• Start with the registers in the state|0n〉 |0〉

• Compute the Fourier transform on the first register to get∑x∈{0,1}n |x〉⊗ |0〉.

• Computef to get∑x |x〉 | f (x)〉.

• Apply a conditional phase based onf (x) to get∑x(−1) f (x) |x〉 | f (x)〉.

• Uncomputef to get∑x(−1) f (x) |x〉⊗ |0〉.

3 Fourier Sampling
Consider a quantum circuit acting onn qubits, which applies a Hadamard gate to each qubit. That is,the
circuit applies the unitary transformationH⊗n, or H tensored with itselfn times.

Applying the Hadamard transform (or the Fourier transform over Zn
2) to the state of all zeros gives an equal

superposition over all 2n states

H2n |0· · ·0〉 =
1√
2n ∑

x∈{0,1}n

|x〉 .

In general, applying the Hadamard transform to the computational basis state|u〉 yields:

H2n |u〉 =
1√
2n ∑

x∈{0,1}n

(−1)u·x |x〉

CS 294, Spring 2009, Lecture 3 1

We define the Fourier sampling problem as follows: Input ann qubit state
∣

∣φ
〉

= ∑x∈{0,1}n αx

∣

∣x
〉

. Compute
H⊗n

∣

∣φ
〉

and measure the resulting state∑y α̂y
∣

∣y
〉

to outputy with probability |α̂y|2.

Clearly this problem is easy to solve on a quantum computer, but it appears to be hard to solve classically.
We will see later by making the procedure recursive that Fourier sampling is indeed difficult in genereal.

4 Extracting n bits with 2 evaluations of Boolean Function
Suppose we are given a black box (or an obfuscated classical circuit) that computes the function function
fs : {0,1}n → {1,−1}, where f (x) = s · x, wheres · x denotes the dot products1x1 + · · ·+ snxn mod2. The
challenge is to use this black box to efficiently determines.

It is easy to see how to perform this task withn queries to the black box: simply input in turn then inputsx
of Hamming weight 1. The outputs of the black box are the bits of s. Since each query reveals only one bit
of information, it is clear thatn queries are necessary.

Remarkably there is a quantum algorithm that requires only two (quantum) queries to the black box:

• Use the black box to set up the phase state
∣

∣φ
〉

= 1/2n/2 ∑x(−1) f (x)
∣

∣x
〉

.

• Apply the Fourier transformH⊗n and measure. The outcome of the measurement iss.

To see that the outcome of the measurement iss, recall thatH⊗n
∣

∣s
〉

= 1/2n/2 ∑x(−1)s·x∣
∣x
〉

=
∣

∣φ
〉

. Since
H⊗n is its own inverse, it follows thatH⊗n

∣

∣φ
〉

=
∣

∣s
〉

.

More generally, the transformationH⊗n maps the standard basis
∣

∣s
〉

to the Fourier basis
∣

∣φs
〉

= 1/2n/2 ∑x(−1)s·x∣
∣x
〉

and vice-versa.

We have shown that a quantum algorithm can be more efficient than any probabilistic algorithm in terms of
the number of queries. One way to use this difference in the number of queries in order to demonstrate a
gap between quantum and probabilistic algorithms is to makethe queries very expensive. Then the quantum
algorithm would ben/2 times faster than any probabilistic algorithm for the given task. It turns out that we
can increase this gap substantially, as we will see next. Theidea is to make each query itself be the answer
to a Fourier sampling problem, so each query itself is much easier for the quantum algorithm than for any
probabilistic algorithm. Carrying this out recursively for logn levels leads to the superpolynomial speedup
for quantum algorithms.

5 Recursive Fourier Sampling
Our goal is to give a superpolynomial separation between quantum computation and classical probabilistic
computation. The idea is to define a recursive version of the Fourier sampling problem, where each query
to the function (on an input of length n) is itself the answer to a recursive Fourier sampling problem (on
an input of length n/2). Intuitively a classical algorithm would need to solven subproblems to solve a
problem on an input of lengthn (since it must maken queries). Thus its running time satisfies the recurrence
T (n) ≥ nT (n/2)+ O(n) which has solutionT (n) = Ω(nlogn). The quantum algorithm needs to make only
two queries and thus its running time satisfies the recurrence T (n) = 2T (n/2) + O(n), which solves to
T (n) = O(n logn).

Recall that for one level we have an oracle forf (x) with the promise thatf (x) = s · x. For two levels,
we are given functionsf (x) and f ′(x,y) with the promise that for someg(x) we have f (x) = s · g(x) and

CS 294, Spring 2009, Lecture 3 2

f ′(x,y) = g(x) · y. To computes we must know a few values ofg(x), and to compute each of these values
we sampley and usef ′. More generally, we are given oracles tof1, . . . , fk andgk with the promise that
fi(x1, . . . ,xi) = gi−1(x1, . . . ,xi−1) · gi(x1, . . . ,xi) and we wish to computeg0 ≡ s. Illustrated below is level
three:

1. To finds, sample enough values fromg1(·) and use the promisef1(x1) = s ·g1(x1).

2. To sampleg1(x1) for some particularx1, sample enough values fromg2(x1, ·) and use the promise
f2(x1,x2) = g1(x1) ·g2(x1,x2).

3. To sampleg2(x1,x2) for some particularx1,x2, use the oracle forg3(x1,x2, ·) and the promisef3(x1,x2,x3)=
g2(x1,x2) ·g3(x1,x2,x3).

It should be clear now why this is the procedure we want. For the lengths to scale appropriately, we must
have 2|xi| = |xi−1| andk = logn.

The proof that no classical probabilistic algorithm can reconstructs is somewhat technical, and establishes
that for a randomg satisfying the promise, any algorithm (deterministic or probabilistic) that makesno(logn)

queries tog must give the wrong answer on at least 1/2−o(1) fraction ofg’s. This lemma continues to hold
even if the actual queries are chosen by a helpful(but untrusted) genie who knows the answer.

This establishes that relative to an oracleBQP 6⊆ MA. MA is the probabilistic generalization ofNP. It is
conjectured that recursive Fourier sampling does not lie inthe polynomial hierarchy. In particular, it is an
open question to show that, relative to an oracle, recusive Fourier sampling does not lieAM or in BPPNP.
The latter class is particularly important since it includes approximate counting.

6 BQP ⊆ PSPACE

To put this gap result in context, we give an important complexity result relatingBQP to PSPACE.

Theorem 3.1: P ⊆ BPP ⊆ BQP ⊆ P#P ⊆ PSPACE.

We give a sketch of the proof thatBQP ⊆ P#P. We assume without loss of generality that all the transition
amplitudes specified in the transition functionδ are real (exercise). The action of a quantum circuit may
be described by a tree, each node is labelled with a computational basis state, i.e. a bit string. The root
of the tree corresponds to the input

∣

∣x
〉

and applying a gate to any node yields a superposition of basis
states represented by the children of that node. We label theedge to each child by the corresponding
amplitude. Let us assume that the quantum circuit accepts orrejects depending upon whether the first qubit,
when measured in the computational basis is 0 or 1. Thus each leaf of the tree is either an accepting or
rejecting node depending on whether the first bit of the string labeling it is 0 or 1. The amplitude of a pathp
from the root to a leaf of the tree,βp, is just the product of the branching amplitudes along the path, and is
computable to within 1/2j in time polynomial inj. Several paths may lead to the same configurationc. Thus
the amplitude ofc after application ofT gates is the following sum over allT length pathsp: αc = ∑p to c βp.
The probability that quantum circuit accepts is∑accepting c |αc|2. Letap = max(βp,0) andbp = max(−βp,0).
Then|αc|2 can be written as|αc|2 = ∑p to c(ap −bp)

2 = ∑p to c a2
p +b2

p −∑p,p′ to c 2apbp. It follows that the
acceptance probability of the quantum circuit can be written as the difference between the two quantities
∑accepting c ∑p to c a2

p +b2
p, and∑accepting c ∑p,p′ to c 2apbp′ . Since each of these quantities is easily seen to be

in P#P, it follows thatBQP ⊆ P#P.

In view of this theorem, we cannot expect to prove thatBQP strictly containsBPP without resolving the
long standing open question in computational complexity theory, namely, whether or notP = PSPACE.

CS 294, Spring 2009, Lecture 3 3

6.1 Extended Church-Turing Thesis
The extended Church-Turing thesis is a foundational principle in computer science. It asserts that any ”rea-
sonable” model of computation can be efficiently simulated on a standard model such as a Turing Machine
or a Random Access Machine or a cellular automaton. This thesis forms the foundation of complexity the-
ory — for example ensuring that that the classP (polynomial time) is well defined. But what do we mean
by ”reasonable”? In this context, reasonable means ”physically realizable in principle”. One constraint that
this places is that the model of computation must be digital.Thus analog computers are not reasonable
models of computation, since they assume infinite precisionarithmetic. In fact, it can be shown that with
suitable infinite precision operations, an analog computercan solve NP-Complete problems in polynomial
time. And an infinite precision calculator with operations +, x, =0?, can factor numbers in polynomial time.

We first establish that quantum computers are digital:

7 Is Quantum Computation Digital?
There is an issue as to whether or not quantum computing is digital. We need only look at simple gates such
as the Hadamard gate or a rotation gate to find real values.

H =

(

1√
2

1√
2

1√
2

− 1√
2

)

Rθ =

(

cosθ −sinθ
sinθ cosθ

)

(1)

When we implement a gate, how accurate does it need to be? Do weneed infinite precision to build this
gate properly? A paper by Shamir, “How To Factor On Your Calculator,” shows that if we assume infinite
precision arithmetic, then some NP complete problems can besolved in polynomial time. However, we
obviously cannot have infinite precision, so we must digitize quantum computation in order to approximate
values such as 1/

√
2. It turns out that logn bits of precision are necessary.

Suppose we want to build a gate that rotates the input byθ , but the best accuracy we can actually build is
rotation byθ ±∆θ (finite precision). LetU1, . . . ,Um be a set of ideal gates that implement an exact rotation
by θ . Let V1, . . . ,Vm be a set of actual (constructible) gates that implement rotation by θ ±∆θ . Let

∣

∣φ
〉

be
the initial state. Let

∣

∣ψ
〉

be the ideal output
∣

∣ψ
〉

= U1U2 · · ·Um
∣

∣φ
〉

, (2)

and let
∣

∣ψ ′〉 be the actual output
∣

∣ψ ′〉 = V1V2 · · ·Vm
∣

∣φ
〉

. (3)

The closer
∣

∣ψ
〉

and
∣

∣ψ ′〉 are to each other, the better the approximation. If we can approximate each gate
to within ε = O(1/m), then we can approximate the entire circuit with small constant error.

Theorem 3.2: If ‖Ui −Vi‖ ≤ ε
4m for 1≤ i ≤ m, then ‖

∣

∣ψ
〉

−
∣

∣ψ ′〉‖ ≤ ε
4.

Proof:Consider the two hybrid states

∣

∣ψk
〉

= U1 · · ·Uk−1Vk · · ·Vm
∣

∣φ
〉

, and
∣

∣ψk+1
〉

= U1 · · ·UkVk+1 · · ·Vm
∣

∣φ
〉

.

Subtractψk+1 from ψk to get
∣

∣ψk
〉

−
∣

∣ψk+1
〉

= U1 · · ·Uk−1(Vk −Uk)Vk+1 · · ·Vm
∣

∣φ
〉

(4)

CS 294, Spring 2009, Lecture 3 4

Since the unitary transformations don’t change the norm of the vector, the only term we need to consider is
Uk+1−Vk+1. But we have an upper bound on this, so we can conclude that

‖
∣

∣ψk
〉

−
∣

∣ψk+1
〉

‖ ≤ ε
4m

. (5)

Another way to see this is that applying unitary transformations toUm
∣

∣φ
〉

andVm
∣

∣φ
〉

preserves the angle
between them, which is defined to be the norm.

We use the triangle inequality to finish to proof.

‖
∣

∣ψ
〉

−
∣

∣ψ ′〉‖ = ‖
∣

∣ψ0
〉

−
∣

∣ψm
〉

‖

≤
m−1

∑
i=0

‖
∣

∣ψi
〉

−
∣

∣ψi+1
〉

‖

≤ m · ε
4m

≤ ε
4
.

We have already seen that quantum computers are digital computers, and therefore a reasonable model of
computing. But we also established thatP ⊆ BPP ⊆ BQP ⊆ PSPACE. Since we do not know how to
separateP from PSPACE, it follows that we cannot unconditionally prove that quantum computers are more
powerful than classical computers. Instead there are two ways of establishing that quantum computers are
more powerful than classical computers: by an oracle separation, or by giving an efficient quantum algorithm
for a problem believed to be hard for classical algorithms. Historically, the first demonstrations that quantum
computers are more powerful than classical computers were by proving oracle separations, starting with the
recursive Fourier sampling problem, which we will outline below. We will briefly sketch this below and
discuss the conjecture that recursive Fourier sampling does not lie in the polynomial hierarchy. The next
oracle separation, Simon’s problem, provided the basic template that Shor followed in his quantum algorithm
for factoring.

8 Quantum Circuit Implementation
As an aside, let us think about how one might implement a quantum computer. One way to do it would be to
have an environment state withn photons. Then for a bit flip operation, the qubit either absorbs an electron
or emits one. This scheme unfortunately entangles the qubitwith the environment however:

(
∣

∣0
〉

+
∣

∣1
〉

)⊗
∣

∣n
〉

e →
∣

∣1
〉∣

∣n−1
〉

e +
∣

∣0
〉 ∣

∣n+1
〉

e (6)

This seems like an unsurmountable problem, but one can imagine that the environment state would have
many more electrons than there are qubits. Slightly more precisely, if the environment is in state

∣

∣φ
〉

then
after a bit flip it would be in state

∣

∣φ ′〉 , whereφ ∼= φ ′. In fact, one can show that|φ −φ ′| ∼= 1/
√

n asn → ∞.

We will think about our quantum computations as an array ofn qubits and a classical computer as a con-
troller, which chooses qubits and performs ‘gates’ on them sequentially. It is still not clear though that
quantum mechanical theory will hold when there are many qubits.

9 Communication Complexity of Inner Product Function
Suppose Alice hasx and Bob hasy. Show that it requires at leastΩ(n) communications between Alice and
Bob to computex · y. (Hint: use the classical algorithm and the Hadamard gate.)

CS 294, Spring 2009, Lecture 3 5

10 Simon’s Algorithm
Recall that our basic primitive for designing quantum algorithms is Fourier sampling: prepare some quantum
state

∣

∣ψ
〉

= ∑x αx
∣

∣x
〉

on n qubits; perform a Hadamard transform, resulting in the superposition∑x βx
∣

∣x
〉

;
now measure to samplex with probability |βx|2. The point is that classically it is difficult to simulate the
effects of the quantum interference, and therefore to determine for which stringsx there is constructive
interference and are therefore output with high probability.

We now consider a new way of setting up the initial superposition
∣

∣ψ
〉

= ∑x αx
∣

∣x
〉

.

10.1 Setting up a random pre-image state
Suppose we’re given a classical circuit for ak−1 function f : {0,1}n →{0,1}n.

We will show how to set up the quantum state
∣

∣φ
〉

= 1/
√

k ∑x: f (x)=a

∣

∣x
〉

. Herea is uniformly random among
all a in the image off .

The algorithm uses two registers, both withn qubits. The registers are initialized to the basis state
|0· · ·0〉 |0· · ·0〉. We then perform the Hadamard transformH⊗n on the first register, producing the su-
perposition

1

2n/2 ∑
x∈{0,1}n

|x〉 |0· · ·0〉 .

Then, we computef (x) through the oracleC f and store the result in the second register, obtaining the state

1

2n/2 ∑
x∈{0,1}n

|x〉 | f (x)〉 .

The second register is not modified after this step. Thus we may invoke the principle of safe storage and
assume that the second register is measured at this point.

Let a be the result of measuring of the second register. Thena is a random element in the range off , and
according to rules of partial measurement, the state of the first register is a superposition over exactly those
values ofx that are consistent with those contents for the second register. i.e.

∣

∣φ
〉

= 1/
√

k ∑
x: f (x)=a

∣

∣x
〉

10.2 The Algorithm
Suppose we are given function 2−1 f : {0,1}n → {0,1}n, specified by a black box, with the promise that
there is ana ∈ {0,1}n with a 6= 0n such that

• For all x f (x+ a) = f (x).

• If f (x) = f (y) then eitherx = y or y = x+ a.

The challenge is to determinea. It is intuitively obvious that this is a difficult task for a classical probabilistic
computer. We will show an efficient quantum algorithm.

1. Use f to set up random pre-image state

φ = 1/
√

2
∣

∣z
〉

+1/
√

2
∣

∣z+ a
〉

CS 294, Spring 2009, Lecture 3 6

|0n〉
|0n〉

H2nC f
| f (x)〉
H2n|y〉

Figure 1: Simon’s algorithm

wherez is a randomn-bit string.

2. Perform a Hadamard transformH⊗n.

After step 2 we obtain a superposition

∑
y∈{0,1}n

αy |y〉

where

αy =
1√
2

1

2n/2
(−1)y·z +

1√
2

1

2n/2
(−1)y·(z⊕a) =

1

2(n+1)/2
(−1)y·z [1+(−1)y·a] .

There are now two cases. For eachy, if y ·a = 1, thenαy = 0, whereas ify ·a = 0, then

αy =
±1

2(n−1)/2
.

So when we observe the first register, with certainty we’ll see ay such thaty · a = 0. Hence, the output
of the measurement is a randomy such thaty · a = 0. Furthermore, eachy such thaty · a = 0 has an equal
probability of occurring. Therefore what we’ve managed to learn is an equation

y1a1⊕·· ·⊕ ynan = 0 (7)

wherey = (y1, . . . ,yn) is chosen uniformly at random from{0,1}n. Now, that isn’t enough information to
determinea, but assuming thaty 6= 0, it reduces the number of possibilities fora by half.

It should now be clear how to proceed. We run the algorithm over and over, accumulating more and more
equations of the form in (7). Then, once we have enough of these equations, we solve them using Gaussian
elimination to obtain a unique value ofa. But how many equations is enough? From linear algebra, we
know thata is uniquely determined once we haven− 1 linearly independent equations—in other words,
n−1 equations

y(1) ·a ≡ 0(mod2)
...

y(n−1) ·a ≡ 0(mod2)

such that the set
{

y(1), . . . ,y(n−1)
}

is linearly independent in the vector spaceZn
2. Thus, our strategy will be

to lower-bound the probability that anyn−1 equations returned by the algorithm are independent.

Suppose we already havek linearly independent equations, with associated vectorsy(1), . . . ,y(k). The vectors
then span a subspaceS ⊆ Zn

2 of size 2k, consisting of all vectors of the form

b1y(1) + · · ·+ bky(k)

with b1, . . . ,bk ∈ {0,1}. Now suppose we learn a new equation with associated vectory(k+1). This equation
will be independent of all the previous equations provided that y(k+1) lies outside of S, which in turn has

CS 294, Spring 2009, Lecture 3 7

probability at least(2n − 2k)/2n = 1− 2k−n of occurring. So the probability that anyn equations are
independent is exactly the product of those probabilities.

(

1− 1
2n

)

×
(

1− 1
2n−1

)

×·· ·×
(

1− 1
4

)

×
(

1− 1
2

)

.

Can we lower-bound this expression? Trivially, it’s at least

∞

∏
k=1

(

1− 1
2k

)

≈ 0.28879;

the infinite product here is related to something in analysiscalled a q-series. Another way to look at the
constant 0.28879. . . is this: it is the limit, asn goes to infinity, of the probability that ann×n random matrix
overZ2 is invertible.

But we don’t need heavy-duty analysis to show that the product has a constant lower bound. We use the
inequality (1− a)(1− b) = 1− a− b + ab > 1− (a + b), if a,b ∈ (0,1). We just need to multiply the
product out, ignore monomials involving two or more1

2k terms multiplied together (which only increase the
product), and observe that the product is lower-bounded by

[

1−
(

1
2n

+
1

2n−1 + · · ·+ 1
4

)]

· 1
2
≥ 1

4
.

We conclude that we can determinea with constant probability of error after repeating the algorithm O(n)
times. So the number of queries tof used by Simon’s algorithm isO(n). The number of computation
steps, though, is at least the number of steps needed to solvea system of linear equations, and the best
known upper bound for this isO

(

n2.376
)

, due to Coppersmith and Winograd.

10.3 Classical solution
We are going to prove that any probabilistic algorithm needsan exponential time to solve this problem.
Suppose thata is chosen uniformly at random from{0,1}n −{0n}. Now consider a classical probabilistic
algorithm that’s already madek queries, to inputsx1, . . . ,xk. We want to know how much information the
algorithm could have obtained abouta, given those queried pairs(xi, f (xi)).

On the one hand, there might be a pair of inputsxi,x j (with 1≤ i, j ≤ k) such thatf (xi) = f (x j). In this
case, the algorithm already has enough information to determinea: a = xi ⊕ x j.

On the other hand, suppose no such pairf (xi), f (x j) exists. Then the queriedf (xi)’s are distinct anda is

none of

(

k
2

)

valuesxi ⊕ x j.

The probability that the next query will succeed is at most

k

2n −1−
(

k
2

)

because there are at least 2n−1−
(

k
2

)

possible values of u for choosing at the(k+1)-th query. Andf (xk+1)

should be equal to one of the prior observedf (xi), i ∈ [1,k].

CS 294, Spring 2009, Lecture 3 8

Taking the sum over allk ∈ {1, . . . ,m}. We get

m

∑
k=1

k

2n −1−
(

k
2

) ≤
m

∑
k=1

k
2n − k2 ≤ m2

2n −m2

In order to have an constant probability, we must choosem = Ω(2n/2). Hence, any deterministic algorithm
has to run in exponential time to get a correct answer with probability larger than a constant.

CS 294, Spring 2009, Lecture 3 9

	Review
	Phase State
	Fourier Sampling
	Extracting n bits with 2 evaluations of Boolean Function
	Recursive Fourier Sampling
	BQP PSPACE
	Extended Church-Turing Thesis

	Is Quantum Computation Digital?
	Quantum Circuit Implementation
	Communication Complexity of Inner Product Function
	Simon's Algorithm
	Setting up a random pre-image state
	The Algorithm
	Classical solution

