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Abstract. In this paper, output tracking control of a helicopter based unmanned aerial vehicle model is
investigated. First, based on Newton-Euler equations, a dynamical model is derived by considering the
helicopter as a rigid body upon which a set of forces and moments act. Second, we show that the model cannot
be converted into a controllable linear system via exact state space linearization. In particular, for certain
output functions, exact input-output linearization by state feedback results in unstable zero dynamics. Third,
by neglecting weak couplings between forces and moments on the model, we apply input-output linearization
to the approximate model for deriving an approximate control with positions and heading as the outputs .
Given a bounded output trajectory, the tracking error of the original model by applying the approximate
control is proved to be bounded. Finally, we prove by construction that the approximate model with the same
outputs is differentially flat and hence the state and input can be expressed as functions of the outputs and
their derivatives. This property is very useful for real-time trajectory generation. Based on natural time scale
separation, we decompose the dynamics into two subsystems: inner and outer systems. A nonlinear controller,
which is based on outer flatness property of the system, is proposed. Simulation results using output tracking
controllers based on exact and approximate input-output linearization, and differentail flatness are presented.
The controlled system with approximate control and outer flatness based control exhibits small control effort
and stable behavior. The response of the controlled system using exact input-output linearization shows
unstable pitch and roll dynamics which is shown as the non-minimum phase property of the system.

1. Introduction

Helicopter [24] is versatile in maneuverability and this makes helicopter based unmanned aerial vehicles (UAVs)
indispensable for both civilian and military applications where human intervention, especially in restricted
areas, is considered difficult or dangerous. Given a multi-agent, multi-objective UAV mission, control system
design for a single UAV is a very complicated and challenging task. One natural way to reduce the complexity
of system design is by compositional methods. Compositional methods attempt to solve a complex problem
by decomposing the problem into a sequence of smaller problems of manageable complexity. In sophisticated
flight management systems [10, 14], a single UAV flies from origin to destination while satisfying a large
number of aerodynamic, scheduling, and environmental constraints by switching among a finite set of control
modes, where each control mode essentially corresponds to a different output tracking controller. For example,
for regulating at a fix location, position and heading control mode is used. In the case of sensor failure such as
in the absence of position information from the global positioning system (GPS), altitude and attitude control
mode is more desired to be used for stabilizing the vehicle since the on-board inertial navigation system (INS)
would still be able to provide altitude and attitude information for control. The resulting hierarchical control
strategy which involves the interaction of continuous and discrete dynamics can be modeled as a hybrid system
[1] for system analysis and controller synthesis [17, 11]. In this paper, output tracking control of a helicopter
model is investigated. The helicopter model is based on a UAV [13] being developed by the Berkeley Aerial
Robot (BEAR) team at UC Berkeley.

Helicopter control [19, 24] requires the ability to produce moments and forces on the vehicle for two purposes:
first, to produce equilibrium and thereby hold the helicopter in a desired trim state; and second, to produce
accelerations and thereby change the helicopter’s velocity, position and orientation. Like airplane control,
helicopter control is accomplished primarily by producing moments about all three aircraft axes: roll, pitch,
and yaw. The helicopter has in addition direct control over the vertical force on the aircraft, corresponding to
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Figure 1. A group of UAVs are flying in formation to perform a searching task

its vertical take-off and landing (VTOL) capability. The engine power is controlled by a rotor speed governor
to automatically manage the power. Helicopter flight dynamics are inherently unstable, particularly in hover.

Linearization by state feedback [7] has been successfully applied in control design for highly maneuverable
aircraft such as VTOL aircraft [20] and conventional take-off and landing aircraft [32]. In this paper, we design
an output tracking controller for a helicopter model based on input-output linearization. Our control design
is constructed by first neglecting the coupling effect, then showing that the approximate control results in
bounded tracking on the exact model. The idea of using approximate input-output linearization in helicopter
control is motivated by the control design of planar VTOL in [5] and VTOL in [30]. In [5], approximate input-
output linearization is applied by neglecting the coupling between rolling moment and lateral acceleration. A
state transformation technique is used on constructing an output tracking control in [30]. In [29, 6], helicopter
control design based on µ-synthesis and fuzzy logic are studied.

Differentially flat systems are systems in which all states and inputs can be expressed as functions of the
outputs and their derivatives [33, 4]. They have the useful property that there is a one-to-one mapping
between trajectories in output space and trajectories in state and input space. Instead of incorporating the
dynamical equations as constraints, trajectory generation for differentially flat system can be computed by
considering algebraic functions of the outputs and their derivatives as constraints. Thus, the complexity of
computation can be reduced and the efficiency for computation can be enhanced. Differential flatness has been
applied to approximate models of aircraft [18, 33] for trajectory generation. Trajectory plays a significant role
in determining the performance of a closed-loop system especially under saturation. For details related to
trajectory generation under the effect of control saturation, please refer to [8, 23].

In this paper, we first derive a helicopter dynamical model which is derived by considering the helicopter as
a rigid body upon which a set of forces and moments act. In section 3, we prove that the model cannot be
converted into a controllable linear system via exact state space linearization. In particular, for certain output
functions, exact input-output linearization results in unstable zero dynamics. In section 4, by neglecting weak
couplings between forces and moments on the model, we apply input-output linearization to the approximate
model for deriving an approximate control with positions and heading as the outputs . Given a bounded
output trajectory, the tracking error of the original model by applying the approximate control is proved
to be bounded. Then, in section 5, we prove by construction that the approximate model with the same
outputs is differentially flat and hence the state and input can be expressed as functions of the outputs and
their derivatives. Based on geometric control theory, we decompose the dynamics into two subsystems: an
inner and outer system. A nonlinear controller is proposed based on differential flatness of the outer system.
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Finally, in section 6, simulation results using both output tracking controllers based on exact and approximate
input-output linearization are presented for comparison. We conclude our work in section 7.

2. Helicopter Model

A model of a helicopter can be divided into four different subsystems, which are actuator dynamics, rotary
wing dynamics, force and moment generation processes, and rigid body dynamics. The connections between
subsystems, and state and control variables are defined in Figure 2. In this paper, due to the fact that the
complete dynamics of a helicopter, taking into account flexibility of the rotors and fuselage, the dynamics of
the engine and actuators is quite complex and somewhat unmanageable for the purpose of control, we consider
a helicopter model as a rigid body incorporating with a force and moment generation process. For illustration,
we use model data obtained from a model helicopter on which we will apply the proposed control law in real
flight. However, the result is also applicable to other helicopters with similar force and moment generation
processes.
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Figure 2. Helicopter dynamics

By regarding the helicopter as a rigid body as in [24], the equations of motion of a model helicopter can be
derived by applying Newton-Euler equation.

2.1. Rigid Body Dynamics. Consider the helicopter depicted in Figure 3. The equations of motion for a
model helicopter can be written with respect to the body coordinate frame, which is attached towards the
center of mass of the model helicopter. The x axis is pointed to the body head and y axis goes to the right
of the body. As shown in [21], the equations of motion for a rigid body subject to body force f b ∈ R

3 and
torque τ b ∈ R

3 applied at the center of mass and specified with respect to the body coordinate frame is given
by the Newton-Euler equation in body coordinate, which can be written as

(2.1)

[
mI 0
0 I

][
v̇b

ω̇b

]

+

[
ωb ×mvb

ωb × Iωb
]

=

[
f b

τ b

]

where vb ∈ R
3 is the body velocity vector, ωb ∈ R

3 is the body angular velocity vector, m ∈ R specifies the
mass, I ∈ R

3×3 is an identity matrix, and I ∈ R
3×3 is an inertial matrix.

The position and velocity of the helicopter center of gravity are given by P ∈ R
3 and vp = Ṗ ∈ R

3, respectively,
expressed to the spatial frame in North-East-Down orientation. Let R ∈ SO(3) be the rotation matrix
of the body axes relative to the spatial axes and ωb ∈ R

3 be the body angular velocity vector. Given
e = [e1 e2 e3]

T ∈ R
3, we define ê ∈ so(3), the space of skew-symmetric matrices in R

3×3, by

ê =





0 −e3 e2
e3 0 −e1
−e2 e1 0





Differentiating the orthogonality constraint RTR = I , ω̂b = RT Ṙ as shown in [21]. We parameterize R by
ZYX Euler angles with φ, θ and ψ about the x, y, z axes respectively.

R(Θ) = exp(ẑψ) exp(ŷθ) exp(x̂φ)(2.2)

=





cθcψ sφsθcψ − cφsψ cφsθcψ + sθsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ







4 T. JOHN KOO, YI MA, AND S. SHANKAR SASTRY            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 3. Coordinate frames for specifying rigid motions and forces acting on a helicopter.

where x = [1 0 0]T , y = [0 1 0]T , z = [0 0 1]T and cθ, sθ are abbreviations for cos(θ) and sin(θ) respectively,
and similarly for the other terms. By differentiating R with respect to time, we have the state equations of
the Euler angles, Θ = [φ θ ψ]T , which are

Θ̇ = Ψ(Θ)ωb

=





1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ



ωb

where tθ is an abbreviation for tan(θ). In the ZYX Euler angle parameterization of rotation matrix, there are
singularities at θ = ±π/2. For the following discussion, we assume that the trajectory of helicopter does not
pass through the singularities. If the trajectory is required to pass through the singularities, we can simply
switch to another chart parameterizing the rotation matrix. By using the fact that vp = Rvb, we can rewrite
the motion equations of a rigid body as

(2.3)







Ṗ
v̇p

Θ̇
ω̇b







=







vp
1
mR(Θ)f b

Ψ(Θ)ωb

I−1(τ b − ωb × Iωb)







2.2. Force and Moment Generation Processes. The helicopter system can be considered as a lumped
model consisting of a main rotor, a tail rotor, a horizontal stabilizer, a vertical stabilizer and a fuselage, which
are denoted with subscripts M,T,H, V, F , respectively.

In the following, we express the external wrench, a force/moment pair, exerted on the helicopter. The force
experienced by the helicopter is the resultant force of the thrust generated by the main and tail rotors, damping
forces from the horizontal and vertical stabilizer, aerodynamic force due to fuselage, and gravitational force.
The torque is composed of the torques generated by the main rotor, tail rotor and fuselage, and moment
generated by the forces as defined in Figure 4.

Assume that the helicopter is operated at low speeds and hence the drag contributed from the horizontal,
vertical stabilizers, and the fuselage can be ignored. Therefore, the terms with subscripts H,V and F are
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discarded. As shown in [16], the external wrench can be written as:

f b =





XM

YM + YT
ZM



 +RT (Θ)





0
0
mg





τ b =





RM
MM +MT

NM



 +





YMhM + ZMyM + YThT
−XMhM + ZM lM
−YM lM − YT lT





The forces and torques generated by the main rotor are controlled by TM , a1s and b1s, in which TM is the
main rotor thrust, a1s and b1s are the longitudinal and lateral tilts of the tip path plane of the main rotor
with respect to the shaft, respectively. The tail rotor is considered as a source of pure lateral force YT and
anti-torque QT , which are controlled by TT , tail rotor thrust. The forces and torques can be expressed as

XM = −TM sin a1s(2.4)

YM = TM sin b1s(2.5)

ZM = −TM cosa1s cos b1s(2.6)

YT = −TT(2.7)

RM ' ∂RM
∂b1s

b1s −QM sina1s(2.8)

MM ' ∂MM

∂a1s
a1s +QM sin b1s(2.9)

NM ' −QM cosa1s cos b1s(2.10)

MT = −QT(2.11)

The moments generated by the main and tail rotor can be calculated by using the constants, {lM , yM , hM , hT , lT },
as defined in Figure 4. In above, we approximate the rotor torque equations byQi ' CQi T

1.5
i +DQ

i for i = M,T .
The details of generation of the rotor torques, QM , QT , one can obtain by applying the equations as shown in
[16]. The system parameters are given in Appendix A.1.

2.3. System equations. We assume that all the states can be measured accurately. In order to present the
system in an input-affine form, we assume that the inputs of the about nonlinear system are the derivatives of
TM , TT , a1s and b1s. Define P = [px py pz]

T , vp = [vpx v
p
y v

p
z ]
T , and ωb = [ωbx ω

b
y ω

b
z]
T . The system equations

can be rewritten as

(2.12) ẋ = f(x) +

4∑

i=1

giwi

where f : R
16 → R

16 and gi ∈ R
16 can be expressed as

f(x) =














vp
1
mR(Θ)f b

Ψ(Θ)ωb

I−1(τ b − ωb × Iωb)
0
...
0














, g1 =














0
...
0
1
0
0
0














, g2 =














0
...
0
0
1
0
0














, g3 =














0
...
0
0
0
1
0














, g4 =














0
...
0
0
0
0
1














.

In above, x = [px py pz v
p
x v

p
y v

p
z φ θ ψ ωbx ω

b
y ω

b
z TM TT a1s b1s]

T ∈ X ⊂ R
16 and w = [w1, w2, w3, w4] ∈ R

4

are defined as the state vector, with dimension n = 16, and auxiliary input vector, with dimension m = 4,
respectively. It can be easily seen that f(x), gi are smooth vector fields.
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Figure 4. The free-body diagram of a helicopter in flight. (Figure courtesy of D. H. Shim)

As defined in [24], a helicopter is said to be in trim if all the forces, aerodynamic and gravitational, and
aerodynamic moments acting on the helicopter about the center of gravity are in balance. Hence, by solving
the nonlinear equations of body wrench, which are f b = 0 and τ b = 0, one can solve for the system trim
condition. The trim condition is irrespective of the values of P , vp, ψ. In the following, we define x0 in
trim condition, in which px = 0, py = 0, pz = 0, vpx = 0, vpy = 0, vpz = 0, ψ = 0, TM = 47.97, TT = 2.42,

a1s = −0.018, b1s = 0.0061, φ = 0.044, θ = 0.018, and hence ωb = 0 and wi = 0 for i = 1, . . . , 4.

3. Exact Linearization by State Feedback

In this section, we show that the model cannot be converted into a controllable linear system via exact
state space linearization. In addition, for certain output functions, exact input-output linearization results in
unstable zero dynamics.

Consider the square system (i.e., system with as many inputs as outputs) multi-input multi-output (MIMO)
nonlinear control system described by

(3.1)
∑

:

{
ẋ = f(x) + gw
y = h(x)

with g = [g1 g2 g3 g4] and yj = hj(x) for j = 1, . . . , 4. h1(x), · · · , h4(x) are smooth functions on R
16. Define

strict relative degree γj at x0 ∈ X with respect to output yj as an integer such that
{

Lgi
Llfhj(x) ≡ 0 ∀x ∈ X, 0 ≤ l ≤ γj − 2, ∀i ∈ {1, . . . ,m}

Lgi
L
γj−1
f hj(x0) 6= 0
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Collecting these calculation, we have






y
(γ1)
1
...

y
(γm)
m







=






Lγ1f h1

...
Lγm

f hm




 +






Lg1L
γ1−1
f h1 · · · Lgm

Lγ1−1
f h1

...
. . .

...

Lg1L
γm−1
f hm · · · Lgm

Lγm−1
f hm




w

:= b(x) +A(x)w(3.2)

where A(x) is called the decoupling matrix. If A(x) is invertible at every point in X , then the static-state
feedback given by w = (A(x))−1[−b(x) + v] will result in a closed-loop system that is decoupled from input v
to output y. This decoupled and input-output linearized system is given by

(3.3)







y
(γ1)
1
...

y
(γm)
m







=






v1
...
vm






If the matrix A(x) is singular, we cannot use a static state feedback to linearized the nonlinear system, and
we have to look for a dynamic state feedback to achieve linearization by state feedback.

Definition 3.1. (Vector Relative Degree [7].) The system (3.1) is said to have vector relative degree
{γ1, . . . , γm} at x0 ∈ X if

{

Lgi
Llfhj(x) ≡ 0 ∀x ∈ X, 0 ≤ l ≤ γj − 2, ∀i ∈ [1,m]

Lgi
L
γj−1
f hj(x0) 6= 0

for j = 1, . . . ,m and the matrix A(x0) is nonsingular.

Define the distributions,

G0 = span{g1, . . . , gm}
G1 = span{g1, . . . , gm, adfg1, . . . , adfgm}

...

Gi = span{adkfgj : 0 ≤ k ≤ i, 1 ≤ j ≤ 4}

for i = 1, . . . , n− 1. The conditions under which there exist outputs h1, . . . , hm such that the MIMO system
has vector relative degree and furthermore is such that γ1 + · · · + γm = n are given as the following lemma:

Lemma 3.2. (Full State MIMO Linearization [7].) Suppose the matrix g(x0) has rank m. Then, there exist
m functions λ1(x), λ2(x), . . . , λm(x) such that the system

ẋ = f(x) + g(x)w,

y = λ(x),

has vector relative degree {γ1, . . . , γm} with

γ1 + · · · + γm = n

iff

(1) For each 0 ≤ i ≤ n− 1 the distribution Gi has constant dimension in a neighborhood X of x0.
(2) The distribution Gn−1 has dimension n.
(3) For each 0 ≤ i ≤ n− 2 the distribution Gi is involutive.

By applying the above lemma, we have the following result regarding full state MIMO linearization of the
system equations (2.12).
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Theorem 3.3. Consider the system equations (2.12). There do not exist any m functions λ1(x), λ2(x), . . . , λm(x)
defined on X, such that the system has vector relative degree {γ1, . . . , γm} at x0 with

∑m
k=1 γk = n

Proof: It can be computed that the distributions have constant dimensions near x0, which are {4, 8, 12, 14, 16, · · · , 16}.
The distribution G15 has dimension 16. However, the distribution G2 and G3 fail to be involutive. By applying
Lemma 3.2, we complete the proof.

Thus, the above theorem suggests that it is impossible to find a set of outputs such that the model can be
converted into a controllable linear system via exact state space linearization.

However, if the MIMO system has relative degree γ1 + · · ·+ γm < n, then we can write a normal form [25] for
the equations. In particular, consider the following set of outputs

(3.4) {px, py, pz, φ, θ, ψ},
which can be used to form various control mode and obtained from sensors such as GPS and INS. For the
square system, there are C6

4 = 15 possible input-output pairs. We define k1, · · · , k4 ∈ {1, . . . , 6} as the indices
of the output functions selected from the combinations. To perform exact input-output linearization, we pick
the jth output yj of the system equation and differentiate it with respect to time. For all j = 1, . . . , 6, one can
check that one has to differentiate every of the outputs 3 times before encountering one of the inputs, i.e.,

(3.5) y
(3)
j = L3

jhj +

4∑

i=1

Lgi
L2
fhj wi.

Given k1, · · · , k4, the input-output system can be written as

(3.6)







y
(3)
k1
...

y
(3)
k4







=






L3
fhk1
...

L3
fhk4




 +Ak1k2k3k4(x)






w1

...
w4






where the decoupling matrix is defined by

(3.7) Ak1k2k3k4(x) :=






Lg1L
2
fhk1 · · · Lg4L

2
fhk1

...
. . .

...
Lg1L

2
fhk4 · · · Lg4L

2
fhk4






Then, we have the following proposition to show that the decoupling matrix for each possible combination is
nonsingular for all x ∈ X .

Proposition 3.4. Given system equations (2.12) and any m output functions of (3.4), the decoupling matrix
Ak1k2k3k4(x) of the input-output system has full rank for all x ∈ X for all possible combinations of k1, · · · , k4 ∈
{1, . . . , 6}.
Proof: See Appendix A.2.

Since Ak1k2k3k4(x) has full rank and Lgi
hj ≡ 0 and Lgi

Lfhj ≡ 0 for all x ∈ X , by the definition, the system

has vector relative degree {3, 3, 3, 3} for all x ∈ X . It follows that Ak1k2k3k4(x) is nonsingular and A−1
k1k2k3k4

(x)
exists for all x ∈ X . Thus, the state feedback control law

(3.8)






w1

...
w4




 = A−1

k1k2k3k4
(x)






−L3
fhk1 + v1

...
−L3

fhk4 + v4






yields the linear closed loop system

(3.9)







y
(3)
k1
...

y
(3)
k4







=






v1
...
v4





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This feedback law makes the input-output map linear, but has the unfortunate side-effect of making some
dynamics unobservable. In order to guarantee the internal stability of the system, it is not sufficient to look
at input-output stability, we must also show that all internal (unobservable) modes of the system are stable
as well.

If a system has relative degree γ = γ1 + · · ·+ γp < n, then we can write a normal form for the equations (3.1)
by choosing as coordinates

(3.10)

ξ11 = h1(x), ξ12 = Lfh1(x), . . . , ξ1γ1 = Lγ1−1
f h1(x),

ξ21 = h2(x), ξ22 = Lfh2(x), . . . , ξ2γ2 = Lγ2−1
f h2(x),

...

ξm1 = hm(x), ξm2 = Lfhm(x), . . . , ξmγm
= Lγm−1

f hm(x).

As shown in [25], these ξji qualify as a partial set of coordinates. Furthermore, one can complete the basis by
choosing n− γ more functions η1(x), η2(x), . . . , ηn−γ(x). Define ξ = [ξ11 , . . . , ξ

1
γ1 , ξ

2
1 , . . . , ξ

2
γ2 , . . . , ξ

m
1 , . . . , ξ

m
γm

]T

and η = [η1, η2, . . . , ηn−γ ]
T . In these ξ, η coordinates the system equations (3.1) have the following normal

form

(3.11)

y1 = ξ11 , y2 = ξ21 , . . . , ym = ξm1 ,

ξ̇11 = ξ12 , ξ̇21 = ξ22 , . . . , ξ̇m1 = ξm2 ,
...

...
...

...

ξ̇1γ1−1 = ξ1γ1 , ξ̇2γ2−1 = ξ2γ2 , . . . , ξ̇mγm−1 = ξmγm
,








ξ̇1γ1
ξ̇2γ2
...

ξ̇mγm
,








= b(Φ(ξ, η)) +A(Φ(ξ, η))w,

η̇ = q(ξ, η) + p(ξ, η)w

where Φ : x 7→ (ξ, η) is the diffeomorphism mapping from x into the normal form coordinates. Note that
p ∈ R

n−γ×m, q ∈ R
n−γ .

In order to analyze the internal stability of the system, zero dynamics of the system should be examined. The
zero dynamics of a nonlinear system are the internal dynamics of the system subject to the constraint that the
outputs and all derivatives of the outputs are set to zero for all time, i.e., ξ ≡ 0. This can be done by using
the control law with v1 = · · · = v4 = 0 and initializing the system with the trim condition (ξ0, η0) = Φ−1(x0).
Hence, the zero dynamics can be written as

η̇ = q(0, η) + p(0, η)A(Φ(0, η))−1b(Φ(0, η)).

For illustration, two modes of operation will be explained.

In position and heading control mode, {px, py, pz, ψ} are chosen as outputs, one can easily verify that the
zero dynamics may be parameterized by η = [φ, ωbx, θ, ω

b
y]
T , and the linearized zero dynamics at equilibrium

point has eigenvalues ±16.4528i and ±12.1123i. The linearization is inconclusive.

We define a nonsingular matrix T which transforms the state transition matrix of the linearized zero dynamics
into block diagonal form. By applying η∗ = T−1η, the nonlinear dynamics are locally decoupled. From the
phase portrait as shown in Figure 5, one can conclude that the nonlinear system is not asymptotically stable,
since the equilibrium point is surrounded by a family of periodic orbits. In position and heading control mode,
the helicopter system is non-minimum phase.
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Figure 5. Phase portrait of zero dynamics in position and heading control mode

In attitude and altitude control mode, {φ, θ, ψ, pz} are chosen as outputs. It can be easily verified that
the zero dynamics becomes

p̈x = 0.1757

p̈y = −0.4335,

where the states px,py and their first derivatives become unobservable. The zero dynamics is unstable and
hence the system is non-minimum phase. In this mode, the helicopter is constantly drifting in the X − Y
plane while attitude and altitude are held constantly.

4. Approximate Linearization by State Feedback

In this section, approximate linearization technique is applied to the helicopter system. First, the system
equations (2.3) is rewritten as

P̈ =
1

m
R(Θ)





−TM sin a1s

TM sin b1s − TT
−TM cosa1s cos b1s



 +





0
0
g



(4.1)

Θ̇ = Ψ(Θ)ωb(4.2)

ω̇ = I−1(τ b − ωb × Iωb).(4.3)

The reason of the failure of exact linearization is due to the existence of couplings between rolling (pitching)
moments and lateral (longitudinal) acceleration. Those couplings are introduced due to the presence of
a1s, b1s and TT . As shown before, if position and heading control mode is chosen the internal dynamics are
not regulated and exhibit an unstable behavior.

Here, we propose to approximately linearize the system by neglecting the coupling terms. This can be done
by assuming that a1s, b1s, TT /TM are small. Therefore, equation (4.1) can be modeled as follows

(4.4) P̈m =
1

m
R





0
0

−TM



 +





0
0
g




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while keeping equations (4.2) and (4.3) the same. In what follows, we demonstrate the idea of approximate
linearization in position and heading control mode.

We differentiate outputs Pm = [pxm pym pzm]T on (4.4) and ψ on (4.2) until at least one input appears in
each output equation, and we get the final equations in the form:








p
(3)
xm

p
(3)
ym

p
(3)
zm

ψ(3)








=







∗
∗
∗
∗







+







∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ ∗ ∗ ∗













w1

w2

w3

w4







Since the decoupling matrix has rank 2, decoupling of the system cannot be achieved by static state feedback.
Here, we propose to use dynamic decoupling[2] . Following the algorithm, we have to add an integrator to w1,
since column one in the decoupling matrix has more than one nonzero elements. Hence, the first three rows in
the decoupling matrix are all zeros, and we have to differentiate the first three outputs again. Then, we can see
that the decoupling matrix has the same form as in previous iteration. By following the algorithm, it requires
to add another integrator to w1, and continue differentiating the first three outputs. And, the iteration ends,
since the decoupling matrix finally has full rank. The extended system is in the following form:








p
(5)
xm

p
(5)
ym

p
(5)
zm

ψ(3)








=







bP

bψ







︸ ︷︷ ︸

be

+







AP

Aψ







︸ ︷︷ ︸

Ae







ẅ1

w2

w3

w4







︸ ︷︷ ︸

u

of which the vector relative degree is {5, 5, 5, 3}.
We can rewrite the true system in normal form (ξ, η) of modeled system. Define ξ1

1 = pxm, ξ
2
1 = pym, ξ

3
1 =

pzm, ξ
4
1 = ψ, ξP1 = [ξ11 ξ

2
1 ξ

3
1 ]T , ξψ1 = ξ41 and we have

(4.5)

ξ̇P1 = ξP2
ξ̇P2 = ξP3 + h(x)

ξ̇P3 = ξP4
ξ̇P4 = ξP5
ξ̇P5 = bP +APu

ξ̇ψ1 = ξψ2
ξ̇ψ2 = ξψ3
ξ̇ψ3 = bψ +Aψu







in which

(4.6) h(x) =
1

m
R(Θ)TM





− sina1s

sin b1s − TT /TM
cosa1s cos b1s − 1



 .

In above, the linearized model system does not contain any unobservable (zero) dynamics and hence is mini-

mum phase, since the sum of Kronecker indices {γ1, γ2, γ3, γ4} and
∑4

j=1 γj = 18 is equal to the order of the

extended system ne = 16 + 2. As defined in [5], the system is said to be slightly non-minimum phase, since
the true system is non-minimum phase but the approximate system is minimum phase.
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We can then apply the tracking control law designed for the model system to the true system, which is

u = −A−1
e be

+A−1
e







y
(γ1+1)
d1 − α1

1e
(γ1)
1 − · · · − α1

γ1+1e1
...

y
(γ4+1)
d4 − α4

1e
(γ4)
4 − · · · − α4

γ4+1e4







where e
(j)
i = ξij+1 − y

(j)
di for j = 0, . . . , γi and i = 1, . . . , 4 and the polynomials

(4.8) sγi+1 + αi1s
γi + · · · + αiγi+1

chosen Hurwitz. The following theorem provides a bound for the performance of this control when applied to
the true system.

Theorem 4.1. Given that the desired trajectory and its first γi − 1 derivatives are bounded, the states of the
system (4.5) are bounded and the tracking errors satisfy

‖e1‖ = ‖ξ11 − yd1‖ ≤ kε

...

‖e4‖ = ‖ξ41 − yd4‖ ≤ kε(4.9)

where ε = max(|a1s|, |b1s|, |TT /TM |) and k is bounded.

Proof: For the ith component of h, it can be easily shown that

‖hi‖ ≤ TM
m

‖ri‖

∥
∥
∥
∥
∥
∥





− sina1s

sin b1s − TT /TM
cosa1s cos b1s − 1





∥
∥
∥
∥
∥
∥

≤
∣
∣
∣
∣

TM
m

∣
∣
∣
∣

√
14

︸ ︷︷ ︸

K

ε

where ri is the ith row of R and the following facts are used: | sinx| ≤ |x|, cosx ≤ |1− x| for x ∈ (−π/2, π/2].
For illustration of bounded tracking, we consider ξ1

1 only in the following proof, and the result applies to
ξ21 , ξ

3
1 , ξ

4
1 as well. Define an error vector as

(4.10) e1 =






ξ11
...
ξ15




 −






yd1
...
y4
d1






Then the closed loop system can be expressed as








ė11
ė12
ė13
ė14
ė15









=








0 1 · · · 0
...

. . .
...

0 1
−α1

0 −α1
1 · · · −α1

4








︸ ︷︷ ︸

A1









e11
e12
e13
e14
e15









+









0
εK
0
0
0









︸ ︷︷ ︸

ζ

We first show that e1 is bounded. To this end, consider as Lyapunov function for the above error system

V = e1
T
Pe1 where P > 0 is chosen so that AT1 P + PA1 = −I . This can be done since ė1 = A1e

1 is stable.
Taking the derivative of V along the trajectory, we find

V̇ = −‖e1‖2 + 2e1
T
Pζ

≤ −‖e1‖2 + ε2‖e1‖σ̄(P )K

≤ −‖e1‖2 + ε‖e1‖K
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Thus, V̇ < 0 whenever ‖e1‖ ≥ εK which implies ‖e1‖ is bounded and, hence, ‖ξ1‖ is bounded. Furthermore,
we can conclude that the tracking error will be O(ε). 2

In above, we have demonstrated the idea of applying approximate linearization in position and heading control
mode. However, one can apply the same principle to show that there exist another set of outputs, such as
{px, py, pz, β}, called position and side slip angle mode, which approximately linearize the system. In
particular, if the controller tries to keep slide slip angle, β, to zero, the system is said to be operated in
coordinated flight mode. Since the desired side-ward movement is zero, and the desired heading is aligned
with the tangent of the trajectory projected onto X-Y plane, i.e., ψ = atan2(vpy , v

p
x). Thus, to minimize the

drag force introduced by the fuselage, coordinated flight mode is the most desirable mode of operation.

5. Trajectory Generation based on Differential Flatness

In the previous section, we have shown the idea of using approximate linearization to derive a tracking
controller. However, one can use the same framework to design a trajectory generator. In this section, we
prove by construction that the approximate model with the same outputs is differentially flat and hence the
state and input can be expressed as functions of the outputs and their derivatives. This property is very useful
for real-time trajectory generation[18, 33] in hierarchical control system as described in [10].

A system is said to be differentially flat, if there exist output functions, called flat outputs, such that all
the states and inputs can be expressed as analytic functions of the flat outputs and a finite number of their
derivatives. To be precise, we use the following definition.

Definition 5.1. (Differentially Flat System[4, 33]) Given a system ẋ = f(x, u) has states x ∈ R
n, and

inputs u ∈ R
m, the system is said to be differentially flat if there exist outputs y ∈ R

m of the form y =
Fy(x, u, u̇, . . . , u

(p)) such that, x = Fx(y, ẏ, . . . , y
(q)), u = Fu(y, ẏ, . . . , y

(q)). 2

In general, there doesn’t exist any systematic characterization of flat systems and the search for flat outputs
is usually difficult. However, as stated in [4], dynamically feedback linearizable systems [7] by an endogenous
compensator are differentially flat.

As shown above, the helicopter model is approximately linearized, hence it suggests that the approximate
mode is differentially flat with respect to the outputs. This property can be used to generate an approximate
state-input trajectory, which should be close to the true state-input trajectory as long as the assumptions are
valid, of the exact system. Differential flatness has been applied to approximate models of aircraft [18] for
trajectory generation. On the other hand, this property can also be used for the generation of output trajectory
while taking state and input constraints into consideration. Therefore, as shown in [33], the trajectory can be
generated for optimizing a specified cost function but being subject to algebraic constraints without including
any dynamical constraint.

In following, we present a constructive proof for showing that the model system with positions and heading
as outputs is differentially flat.

Theorem 5.2. Consider the system equations(4.4)(4.2)(4.3) with output chosen to be {pxm, pym, pzm, ψ}.
The resulting system is differentially flat on sets where φ 6= ±π/2 and θ 6= ±π/2.
Proof: To show that all the states can be derived by the outputs and their derivatives, first we rewrite (4.4)
as

(5.1)





p̈xm
p̈ym
p̈zm





︸ ︷︷ ︸

P̈m

= eẑψeŷθex̂φ





0
0

−TM/m



 +





0
0
g




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and the equation becomes

(5.2) e−ẑψ





p̈xm
p̈ym

p̈zm − g



 = eŷθex̂φ





0
0

−TM/m





By taking norm on both sides, TM can be obtained as

(5.3) TM = m
√

(p̈xm)2 + (p̈ym)2 + (p̈zm − g)2

and hence ṪM , T̈M , T
(3)
M = ẅ1. From (5.2), we can simplify as

(5.4) e−ẑψ





p̈xm
p̈ym

p̈zm − g




−m
TM

=





sin θ cosφ
− sinφ

cos θ cosφ





Thus, one can easily verify that

(5.5) φ = sin−1(
−p̈xm sinψ + p̈ym cosψ

TM/m
)

and hence

(5.6) θ = atan2(
p̈xm cosψ + p̈ym sinψ

− cosφ TM/m
,

p̈zm − g

− cosφ TM/m
)

By applying Ψ−1 to the derivatives of the Euler angles, we obtain vector ω. Then, one can solve for a1s, b1s
and TT from the Euler equations. Hence, taking the derivatives, we have w2 = ṪT , w3 = ȧ1s, w4 = ḃ1s.
Hence, we have set up that

(Pm, Ṗm, φ, θ, ψ, ω
b, TM , TT , a1s, b1s, w1, ẇ1, ẅ1, w2, w3, w4)

7→ (Pm, Ṗm, P̈m, P
(3)
m , P

(4)
m , P

(5)
m , ψ, ψ̇, ψ̈, ψ(3))

is a diffeomorphism on sets where φ 6= ±π/2 and θ 6= ±π/2 showing that the model system is indeed differen-
tially flat. 2

Similarly, one can show that in coordinated flight mode, {pxm, pym, pzm, β}|β≡0 are flat outputs of the model
system.

6. Nonlinear Control Design Based on Outer Flatness

In general, the full helicopter dynamics are neither feedback linearizable or differentially flat, especially, if full
rotary wing dynamics and actuator dynamics are considered. However, based on the natural time scale sepa-
ration, one can treat a helicopter system as a system formed by cascading two systems, an “outer system”(the
position dynamics) and an “inner system” (the rest of the system). If the outer system is differentially flat, a
scheme called outer flatness is proposed by [34] for generating an inner trajectory for an inner system to track.
This scheme has been successfully used for generating a two stage control synthesis for many systems which
are not completely flat. Such a scheme which utilizes the flatness of the outer system is roughly illustrated in
Figure 6.

In the figure, PO is the outer system which is flat, and PI is the inner system which is not necessarily flat.
Given a desired output trajectory, say yOd (·), the mapping F in Figure 6 utilizes the flatness property of the
outer system to generate an desired output trajectory yId(·) for the inner system. The control synthesis for
the overall system then reduces to the design of an inner system controller, C, which drives the inner system
output yI(t) → yId(t) (exponentially) as t → ∞. As the inner system output converges, one can show that
the outer system output converges to the desired one, yO(t) → yOd (t) as t → ∞. That is, the overall system
asymptotically tracks the desired trajectory.
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Figure 6. Partitioned inner and outer systems.

It has been shown that the helicopter dynamics are approximately differentially flat with the position and
heading {P, ψ} as the flat outputs. The approximation is based on the assumption that the coupling terms
a1s, b1s, TT are small and can be neglected in the model. The outer system, P0, is defined as

PO :







P̈ =
1

m
R(Θ)





0
0

−TM



 +





0
0
g



 + h(x)

ψ = ψ

with

h(x) =
1

m
R(Θ)





−TM sin a1s

TM sin b1s − TT
−TM(cos a1s cos b1s − 1)





where the inputs are uO = yI = [φ, θ, ψ, TM ]T , and the outputs are yO = [px, py, pz, ṗx, ṗy, ṗz, ψ]T . The inner
system, PI , are described by (4.2), (4.3) and in addition the rotary wing dynamics which can be approximated
by the following equations(for details see [24])

TM = cM1θM + cM3θ
3
M , TT = cT1θT + cT3θ

3
T , a1s = −B, b1s = A

for near hovering operation, where θM , θT are the main and tail rotor collective pitch, and B,A are the
longitudinal and lateral cyclic pitch. Here, we have yI = [φ θ ψ TM ]T and we define uI = [θM θT B A]T . One
must notice that this approximation introduces a small non-vanishing modeling error h(x) which depends on
Θ, TM , a1s, b1s, TT . We will soon show its effect on the stability of the closed-loop system.

The control design for the overall system is be based on an assumption that there exists a controller C such
that eI = 0 is an exponentially stable equilibrium point for the inner error system

ėI = f I(eI , eO, t)|eO=0, f
I(0, 0, t) = 0

where eO = [(P−Pd)T , (Ṗ−Ṗd)T ]T and eI = yI−yId . There have been various design methodologies proposed
for the controller of the inner system, e.g. [16]. The details of the design of inner controller deployed in here,
please refer to [12]. In this section, we are only interested in the performance of the overall system assuming
such a controller C is already available and satisfies the specified property.

The design of the outer controller, F , is based on the flatness property of the approximated outer system.
As shown in previous section, for the model system (4.4), there exists a diffeomorphism for showing that the
system is differentially flat. By using only part of the results, on could obtain a smooth mapping from the
outer system output to the inner system output

Φ : R
3 × S → S3 × R

(ξ1, ξ2, ξ3, ξ4) 7→ (φ1, φ2, φ3, φ4)
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where

(6.1)







φ1

φ2

φ3

φ4







=







ξ02
atan2( ξ1 cos ξ4+ξ2 sin ξ4

−(ξ01/m) cos ξ02
, ξ3−1
−(ξ01/m) cos ξ02

)

ξ4
ξ01







with ξ01 = m
√

ξ21 + ξ22 + (ξ3 − g)2, ξ02 = sin−1(−ξ1 sin ξ4+ξ2 cos ξ4
ξ01/m

), in which Φ is defined on sets with φ1, φ2 6=
±π/2. In particular, Φ(p̈xm, p̈ym, p̈zm, ψ) = (φ, θ, ψ, TM ). Suppose that the desired output trajectory of the
outer system, yOd , and its derivative are given. To obtain the desired trajectory of the inner system, we define
a pseudo-input vector

vp = P̈d +Kv(Ṗ − Ṗd) +Kp(P − Pd)(6.2)

where vp ∈ R
3, Kp, Kv ∈ R

3×3 are control parameters. With the above pseudo-input, the desired values of
φ, θ, TM are given by

(φd, θd, ψ, TMd) = Φ(vxp, vyp, vzp, ψ).(6.3)

Thus, we obtain the desired output of the inner system yId = [φd, θd, ψd, TMd]
T .

Clearly, if the inner system exactly tracks the desired trajectory (Θd, TMd), that is, yId = yI in Figure 6, then
the behavior of the overall closed-loop system is specified by the outer system only, which, due to chosen the
control law (6.2), is approximately a linear system with poles assigned by the parameters Kv,Kp.

Now if we summarize all conditions so far and rewrite the dynamics of the overall closed-loop system in terms
of the tracking errors eI and eO of the inner and outer systems respectively, they have the form

{

ėI = f I(eI , eO, t)

ėO = AeO + gO(eI , t) + hO(eI , eO, t)
(6.4)

where

gO(eI , t) =







0
0
0

g(eI , t)






, hO(eI , eO, t) =







0
0
0

h(eI , eO, t)







with

g(eI , t) =
1

m
R(Θ)





0
0

−TM



 − 1

m
R(Θd)





0
0

−TMd



 .

In the above equations, f I(eI , eO, t) is in general a function of both eI and eO since the input of the inner
system is a function of eO.

The function hO(eI , eO, t) from (4.4) is a small non-vanishing approximation error, and gO(eI , t) vanishes when
the inner system exactly tracks the desired trajectory, i.e., gO(0, t) = 0. Since the helicopter model is smooth
and many of the parameters are physically bounded, gO(eI , t) is in fact (globally) bounded as ‖gO(eI , t)‖ ≤
L1‖eI‖ for some constant L1 > 01 and f I(eI , eO, t) is Lipschitz, i.e.,‖f I (eI1, eO1 , t) − f I(eI2, e

O
2 , t)‖ ≤ L2(‖eI1 −

eI2‖ + ‖eO1 − eO2 ‖).

1Such a L can be estimated from the system equation (4.1).
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Stability Analysis. We now analyze the performance of the overall closed-loop system. As we have argued
before, the function f in (6.4) is in general a function of both eI and eO. However, in practice, the inner
system is usually designed to have a much faster convergence rate than the outer system. To simplify the
analysis, for now we assume that the inputs TMd(·) and Θd(·) of the inner system are approximately constant,
and thus f is only a function of eI (the more general case will be presented afterwards).

Recall that given an general system ẋ = f(x, t), by the Lyapunov theorem and its converse [25], the system is
exponentially stable if and only if there exists a Lyapunov function V (x, t) satisfying

α1‖x‖2 ≤ V (x, t) ≤ α2‖x‖2(6.5)

∂V

∂t
+
∂V

∂x
f(x, t) ≤ −α3‖x‖2(6.6)
∣
∣
∣
∣

∣
∣
∣
∣

∂V

∂x

∣
∣
∣
∣

∣
∣
∣
∣

≤ α4‖x‖(6.7)

for some positive constants α1, α2, α3, α4 > 0.

However, we may write

f I(eI , eO, t) = f I(eI , 0, t) + dI (eI , eO, t)

where dI(eI , eO, t) = f I(eI , eO, t) − f I(eI , 0, t). The nominal system ėI = f I(eI , 0, t) is exponentially stable
as designed. We can apply this theorem to both the nominal outer system ėO = AeO and the nominal inner
system ėI = f I(eI , 0, t) and denote the corresponding Lyapunov functions as V O and V I and the Lyapunov
constants as α1, α2, α3, α4 > 0 and β1, β2, β3, β4 > 0 respectively. Then for the overall system, we have the
result

Theorem 6.1. Consider the following perturbed system
{
ėI = f I(eI , eO, t) = f I(eI , 0, t) + dI(eI , eO, t)
ėO = AeO + gO(eI , t)

(6.8)

where gO(eI , t) is a perturbation term that satisfies ‖gO(eI , t)‖ ≤ L1‖eI‖ for some L1 > 0. If, for f I(eI , eO, t),
there exists L2 > 0 such that ‖f I(eI1, eO1 , t)−f I(eI2, eO2 , t)‖ ≤ L2(‖eI1−eI2‖−‖eO1 −eO2 ‖), then the overall system
is exponentially stable if the product of the two Lipschitz constants satisfies the inequality

L1 · L2 <
α3

α4
· β3

β4
.(6.9)

Proof. Since f I(eI , eO, t) is Lipschitz, we have ‖dI(eI , eO, t)‖ ≤ L2‖eO‖. We consider the candidate Lyapunov
function V = V I + µV O for the overall system. Then we have

V̇ = V̇ I + µV̇ O ≤ −β3‖eI‖2 + β4L2‖eI‖‖eO‖ − µα3‖eO‖2 + µα4L1‖eO‖‖eI‖
= −(‖eI‖, ‖eO‖)Q(‖eI‖, ‖eO‖)T

where the matrix Q ∈ R
2×2 is

Q =

[
β3 − 1

2 (β4L2 + µα4L1)
− 1

2 (β4L2 + µα4L1) µα3

]

.

Q is positive definite if and only if det(Q) > 0. That is, there exists µ > 0 such that

−α2
4L

2
1µ

2 + (4β3α3 − 2β4L2α4L1)µ− β2
4L

2
2 > 0.

This is true if and only if the discriminant of the quadratic function of µ on the left hand side is positive which
yields L1 · L2 <

α3

α4
· β3

β4
. �

This theorem states a very interesting fact about the system (6.8): heuristically, α3 and β3 are proportional
to the convergence rates of the outer and inner systems respectively,2 hence the stability of the perturbed

2A more precise estimates of the convergences rates are given by α3

2α2
and β3

2β2
.
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systems requires only that the product of the Lipschitz constants of the perturbation terms is less than the
product of the two convergence rates, regardless of the rate of each individual system.

The stability of a similar model of the overall closed-loop system has been studied before in [34], however, no
explicit conditions are provided under which a µ exists such that the overall system is stable. Here, Theorem
6.1 give more detailed and useful results in characterizing the properties of the closed-loop system.

Although we have established the conditions for the system (6.8) to be exponentially stable, estimates of its
Lyapunov constants indeed depend on L1, L2 and all the Lyapunov constants of the inner and outer systems.
These constants can be optimized by maximizing the smaller eigenvalue of Q with respect to µ. We here omit
the detail and carry on the analysis by assuming that the system (6.8) is exponentially stable and its Lyapunov
constants are denoted by γ1, γ2, γ3, γ4 > 0. We now want to estimate the effect of the non-vanishing error
term h on the performance of the closed-loop system (6.4). In general, we can no longer expect asymptotic
stability when a non-vanishing perturbation is introduced. However, according to [9], we can still have good
estimates of a bound on the tracking error and the rate of convergence outside this bound.

Proposition 6.2. Assume that the system (6.8) has the Lyapunov constants {γi}4
i=1. Then, for the closed-

loop system (6.4), if ‖h(eI , eO, t)‖ ≤ δ < γ3
2γ4

√
γ1
γ2

, then the tracking error of the overall system is bounded by

b = 2γ4
γ3

√
γ2
γ1
δ, and, outside this bound, the error exponentially decreases with a rate larger than λ = γ3

4γ2
.

The control parameters Kv and Kp can be adjusted so as to minimize the error bound b. For the helicopter
model, the error term hO(eI , eO, t) is usually extremely small, as is δ. We can also choose the control parameters
such that the inner and outer systems have very fast rates of convergence, hence a large γ3. Consequently, the
error bound b is very small, and usually barely noticeable in simulations and experiments.

7. Simulation Results

We apply our approximate method and compare with the exact method on the true system. The initial
conditions are px = 0.1g, py = 0.05g, px = 0.2g, vpx = vpy = vpz = 0, ψ = 0.01, g = 9.8 and other states are in
trim conditions. For both control designs, the dominant conjugate poles are −1.4 ± 1.4283i and other poles
are placed at −5. To illustrate the idea, we set yd and all their derivatives equal to zero, and the controllers
are required to hover the helicopter back to origin while turning the heading to zero.

The result of using exact linearization is shown in Figure 7, and that of using approximate linearization is
shown in Figure 8. Both controllers are successful in stabilizing the outputs. However, in the exact method
the internal dynamics, roll and pitch angles, are excited and continue to oscillate. Furthermore, it exhibits
large control effort. While applying the approximate control law, the internal dynamics are stabilized. The
control inputs are kept relatively small throughout the simulation, and it validates the assumption made on
a1s, b1s and TT .

We present the simulation result of the propsed nonlinear controller based on outer flatness. The inner
controller has poles placed at −5 for controlling the main rotor thrust and at −10 and −7 ± 7.1414i for
controlling the attitude dynamics; the outer controller has both poles placed at −2. With the same initial
conditions and desired trajectory, the controller is applied to the exact model and the simulation result is
shown in Figure 9. The nonlinear controller stabilizes the both inner and outer system and results in bouned
errors. These phenomena have been predicted in Theorem 6.1 and Proposition 6.2.

8. Conclusion

In this paper, the output tracking control design of a helicopter based unmanned aerial vehicle model based on
approximate input-output linearization is illustrated. We show that the model cannot be converted into a con-
trollable linear system via exact state space linearization. By neglecting the couplings between rolling/pitching
moments and lateral/longitudinal forces, we show that the dynamically extended approximated system with
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Figure 7. Response of the helicopter system by exact input-output linearization with {
px, py, pz, ψ} as outputs
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Figure 8. Response of the helicopter system by approximate input-output linearization with
{ px, py, pz, ψ} as outputs
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Figure 9. Response of helicopter system by nonlinear control design based on outer flatness
linearization with { px, py, pz, ψ} as outputs. Notice that the dashed lines represent the
desired trajectories of φ, θ, TM .
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positions and heading as outputs is linearizable without zero dynamics. We have proved that bounded tracking
is achievable by applying the approximate control with a given bounded output trajectory. Next, we derive
a diffeomorphism showing that the approximate system with the same outputs is differentially flat. By that,
state and input can be expressed as functions of the outputs and their derivatives. Hence, output trajec-
tory generation can take state and input constraints into consideration. Application of path generation for
helicopter based on differential flatness can be found in [3].

Based on geometric control theory, we decompose the dynamics into two subsystems: inner and outer systems.
A nonlinear controller is proposed based on differential flatness of the outer system. This control design only
assumes that the outer system is differentially flat and the inner system is exponentially stable. Also, the
assumptions made on the outer system can be applied to many different helicopter models. The nonlinear
controller based on outer flatness has been successfully applied in landing an UAV based on computer vision
and formation flight of UAV cluster with mesh stability as shown in [27, 28] and [26] respectively. Hence, it is
possible to design a nonlinear controller based on the propsed scheme and implement it for controlling actual
helicopters.

Simulation results show that the approximate control law produces desired performance without excite the
internal states into oscillation. The performance of the control design based on outer flatness is simulated.
The nonlinear controller stabilizes both the inner and outer systems and it results in bounded errors.

To reduce the bounded error, one can simply design robust controllers to augment the presented controllers
for compensating the effects due to the existence of non-vanishing terms. For disturbance satisfying matching
condition, sliding mode controller can be applied. For mismatched disturbance, controllers can be derived
using the Backstepping method [15] and Dynamic Surface Control [31]. However, linear techniques such as
µ-synthesis [22] can also be used since the systems are linearized by state feedback. Computer Aided Control
System Design(CACSD) has enabled the analysis and design of control system. The proofs of Theorem 3.4
and 3.3 are performed symbolically. The description of the system (4.1) and controller derivation using Lie
derivatives are computed symbolically.
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Figure 10. An unmanned aerial vehicle of Berkeley Aerobot fleet: Ursa Minor.

In future, we will extend our control design to include the fuselage drag force, rotary wing dynamics and
actuator dynamics. Robustness issue will be addressed to accommodate the presence of external disturbance
and uncertainty of the dynamical model. The final tracking controller will be implemented and tested on a
UAV called Ursa Minor as shown in Figure 10, on which we have mounted embedded controller, GPS, INS
and wireless Ethernet.

Appendix A. Appendix
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A.1. System parameters. All variables except for the state variables and inputs are numeric constants,
which can be obtained by measurements and experiments. The followings are the values of the constants.

Ix = 0.142413 Iy = 0.271256 Iz = 0.271492
lM = −0.015 yM = 0 hM = 0.2943
hT = 0.1154 lT = 0.8715 m = 4.9

CQM = 0.004452 DQ
M = 0.6304 ∂RM

∂b1s
= 25.23

CQT = 0.005066 DQ
T = 0.008488 ∂MM

∂a1s
= 25.23

cM1 = 6.4578 cM3 = 100.3752 cT1 = 0.1837
cT3 = 0.1545

The operation regions in radian for a1s, b1s and newton for TM , TT are

|a1s| ≤ 0.4363 −20.86 ≤ TM ≤ 69.48

|b1s| ≤ 0.3491 −5.26 ≤ TT ≤ 5.26

A.2. Proof of Proposition 3.4. Define a 6 × 4 matrix

(A.1) L(x) =






Lg1L
2
fh1 · · · Lg4L

2
fh1

...
. . .

...
Lg1L

2
fh6 · · · Lg4L

2
fh6




 .

It can be easily shown that L(x) can be decomposed as the product of two matrices, that is,

(A.2) L(x) =

[
1
mR 0
0 ΨI−1

]

6×6






∂f b

∂w
∂τ b

∂w






6×4

.

One can observe the left matrix are nonsingular for all x ∈ X The right matrix has full column rank for all
x ∈ X , i.e. the column vectors are linearly independent, and it can be shown by applying Gaussian elimination
on columns.

Since Ak1k2k3k4(x) is constructed by extracting the rows of the matrix L(x) according to the indexes k1, · · · , k4,
we can define Ak1k2k3k4(x) = Ek1k2k3k4L(x), where the extraction matrix Ek1k2k3k4 is defined as, in each row,
it has a 1 in the position specified by the index and zeros elsewhere. By substitution, we have

(A.3) Ak1k2k3k4(x) = Ek1k2k3k4

[
1
mR 0
0 ΨI−1

]

︸ ︷︷ ︸

AL






∂f b

∂w
∂τ b

∂w






︸ ︷︷ ︸

AR

.

It is clear that

rank(Ak1k2k3k4(x)) ≤ min{rank(AL), rank(AR)} = 4.

In order to prove that Ak1k2k3k4(x) has rank equal to 4, we have to show rank(Ak1k2k3k4(x)) ≥ 4. The
lower bound of Sylvester’s inequality theorem is achieved if the rows of AL lie in the left null space of AR.
By checking the rank of the matrix constructed by appending the basis of left null space of AR with the
transpose of the row vectors of AL, one can verify symbolically that the vectors of row space of AL are linearly
independent with the vectors in the left null space of AR. Hence, we have 4 ≤ rank(Ak1k2k3k4(x)) and the
result is applied to all 15 possible combinations. Since the upper and lower bound are equal, we prove that
rank(Ak1k2k3k4(x)) = 4 for all x ∈ X . 2
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