
Detecting and Mitigating Secret-Key Leaks in
Source Code Repositories

Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, Senthil Mani
IBM Research

{vibha.sinha, diptsaha, pdhoolia, ropadhye, sentmani}@in.ibm.com

Abstract—Several news articles in the past year highlighted
incidents in which malicious users stole API keys embedded in
files hosted on public source code repositories such as GitHub
and BitBucket in order to drive their own work-loads for free.
While some service providers such as Amazon have started taking
steps to actively discover such developer carelessness by scouting
public repositories and suspending leaked API keys, there is little
support for tackling the problem from the code sharing platforms
themselves.

In this paper, we discuss practical solutions to detecting,
preventing and fixing API key leaks. We first outline a handful
of methods for detecting API keys embedded within source code,
and evaluate their effectiveness using a sample set of projects
from GitHub. Second, we enumerate the mechanisms which
could be used by developers to prevent or fix key leaks in code
repositories manually. Finally, we outline a possible solution that
combines these techniques to provide tool support for protecting
against key leaks in version control systems.

I. INTRODUCTION

Many web and mobile based applications interact with
external services hosted by providers such as Facebook,
Google and Amazon through Web APIs. The mechanism for
authentication between the application and the service is often
through an API key or a pair of an API client identifier and a
secret key.

Since these services are intended to be invoked by server-
side components of applications, the keys themselves would
ideally lay dormant only in server-side program memory and
thus be inaccessible for users of the application. However,
many application developers choose to host their applica-
tion source code publicly on repositories such as GitHub
and BitBucket to incorporate contributions from the open-
source community. In this scenario, if the developer keys
are embedded within source code, they can be easily stolen
by a malicious user who can authenticate themselves as the
developer and misuse the services for their own profit. In
fact, several news articles [1], [2], [3], [4] reported exactly
this attack as malicious users began stealing leaked Amazon
AWS keys from GitHub projects to run intensive compute jobs,
which were billed to the victims – in some cases the bills ran
up to several thousand US dollars. Figure 1 contains snippets
from these news articles.

Key leaks on version control systems such as Git repos-
itories are compounded by the fact that merely deleting an
accidental leak does not plug it completely, since the keys
will exist in the project’s change history. Systems such as Git
provide non-trivial mechanisms to re-write history [5], which

Fig. 1. Snippets from news articles that reported AWS key leaks. Simply
searching for “AWS key leaks” on the Web reveals many more.

are none-the-less destructive since they require explicit action
from other members of the project who are working on clones
of the repository.

In this paper, we first discuss different approaches that
attackers may use to discover leaked API keys within source
code, such as simple pattern-based search, heuristics-driven
filtering and source-based program slicing. We then discuss
the available tool support for developers to prevent or repair
key leaks within their own projects manually. Finally, we
combine these aspects to outline a possible solution for pro-
active tool-based protection of key leaks within source control
repositories.

Section II outlines key-leak detection techniques, while
Section III outlines mitigation techniques. We present related
work in Section IV and conclude in Section V.

II. KEY LEAK DETECTION TECHNIQUES

Before discussing ways to mitigate accidental leakage of
API keys on code repositories, it is worthwhile to survey some
methods for discovering API keys from such repositories.
We shall evaluate the effectiveness of these methods using
a sample set of projects derived from GitHub.

1 String ACCESS_KEY_ID
2 = "AKIA2E0A8F3B244C9986";
3 String SECRET_KEY
4 = "7CE556A3BC234CC1FF9E8A5C324C0BB70AA21B6D";
5
6 AWSCredentials creds =
7 new BasicAWSCredentials(ACCESS_KEY_ID, SECRET_KEY);
8
9 AmazonSimpleDBClient client

10 = new AmazonSimpleDBClient(creds);

Fig. 2. Sample Java code snippet containing (fictional) embedded Amazon
AWS keys. The underlined constructor call is the slicing criteria for data-flow
based key leak detection.

1 OAuthClientRequest request = OAuthClientRequest
2 .tokenProvider(OAuthProviderType.FACEBOOK)
3 .setGrantType(GrantType.AUTHORIZATION_CODE)
4 .setClientId("950513172001321")
5 .setClientSecret("3b2e464637e5159024254dd78aadb17a")
6 .setRedirectURI("http://localhost:8080/facebooklogin")
7 .setCode(code)
8 .buildQueryMessage();

Fig. 3. Sample Java code snippet containing (fictional) embedded Facebook
OAuth keys. The underlined method call is the slicing criteria for data-flow
based key leak detection.

A. Sample Selection using Keyword Search

Let us consider the point of view of an attacker who
wishes to steal keys or passwords leaked on GitHub. The first
and most naive approach is to simply use GitHub’s in-built
search function to look for keywords or file-names that may
indicate the presence of such keys. In fact, GitHub reportedly
suspended its search function temporarily [6] in 2013 after
several SSH keys were stolen by simply looking for files
named id_rsa or searching for the string ---BEGIN RSA
PRIVATE KEY--- which is typically present at the head of
RSA private key files generated by ssh-keygen.

For other types of confidential keys, there is not necessarily
a file format but simply a pattern of characters. Table I enu-
merates patterns for API keys of a handful of API providers,
as described by the authors of [7]. However, GitHub does
not allow searching of regular expressions in code, and thus
the naive approach to search for such patterns is to create a
clone of every repository – essentially a mirror of GitHub –
and then search their contents for such patterns. This is in no
means a trivial task, since GitHub is known to host several
million repositories. While projects such as GHTorrent [8]
have attempted to provide a queryable mirror of millions of
GitHub repositories, it would be far more efficient for an
attacker to first reduce the sample set to projects that are likely
to contain an embedded API key by searching for references
to client APIs which consume such keys.

For example, if an attacker is looking for applications
that make use of Amazon’s AWS, they can search for
calls to Amazon’s client API. Figure 2 shows a sample
Java code snippet using one of Amazon’s client APIs –
BasicAWSCredentials – that simply takes the client and
secret keys as input strings rather than picking them up from a
secure key store or other configuration file. Similarly, Figure 3

TABLE I
REGULAR EXPRESSIONS FOR API KEYS OF VARIOUS SERVICE

PROVIDERS [7].

Service Provider Client ID Secret Key
Amazon AWS AKIA[0-9A-Z]{16} [0-9a-zA-Z/+]{40}

Bitly [0-9a-zA-Z_]{5,31} R_[0-9a-f]{32}
Facebook [0-9]{13,17} [0-9a-f]{32}

Flickr [0-9a-f]{32} [0-9a-f]{16}
Foursquare [0-9A-Z]{48} [0-9A-Z]{48}
LinkedIn [0-9a-z]{12} [0-9a-zA-Z]{16}
Twitter [0-9a-zA-Z]{18,25} [0-9a-zA-Z]{35,44}

shows an equivalent client operation for the Facebook API
that takes OAuth keys as strings. Since OAuth is a generic
standard, there are multiple library implementations – the
example shows usage of the Apache Oltu1 library.

For the purposes of our evaluation, we assume the role of an
attacker who is looking to steal Amazon AWS keys and hence
our sample set consists of 84 projects that were returned in
one page of results when searching GitHub with the string
“BasicAWSCredentials”.

B. Pattern-based Search

Since our data-set contained projects that are likely candi-
dates for leaking Amazon AWS credentials, we first performed
a full-text search for strings that match the pattern for Amazon
credentials as listed in Table I. Of the 84 projects, 51 projects
had a match with a total of 2,457 instances. Clearly, a simple
pattern search results in a large number of false positives.

Remembering that our data-set consisted of projects that
make use of Amazon’s Java-based Client API, we next re-
stricted our search to only string literals in Java source files
within these repositories. We made use of the Eclipse JDT [9]
parser to generate abstract syntax trees (ASTs) from Java
source files and performed a pattern search on string literal
nodes. Using this technique, our results reduced to 30 instances
in 14 projects matching the Client ID pattern, and 43 instances
in 17 projects matching the Secret Key pattern. We find more
strings matching the key pattern than the Client ID pattern
since the Client ID pattern is restricted to those strings starting
with an explicit letter sequence AKIA. Hence, in general this
technique is still limited to returning false positives.

C. Heuristics-driven Filtering

In [7], the authors use additional criteria to filter false
positives, such as by looking at instances where a match for
the Client ID and a match for the Secret Key appear within 5
lines of each other, presumably because they are hard-coded
within the client API call or in a constants file. This is a useful
heuristic, which in our case returns 30 instances of ID-key
pairs in 14 projects that we manually verified were actually
leaked credentials.

While this approach is generally precise, it is liable to miss
instances of leaked keys where the credentials are not close
together. There was also one instance of an ID and key pair

1https://oltu.apache.org

in which the ID did not start with the prefix AKIA. Since
the chosen-pattern for the ID itself was insufficient, its secret
key, though it matched the pattern, was not returned by the
proximity heuristic.

A different approach to reduce false positives in strings that
match the pattern of the API key is to try and guess whether
they are auto-generated or hand-written. We noticed that many
false positives were actually human-readable strings such as
"SomeLabelTextInMyAppWhichIsAPerfectMatch",
or placeholders such as "00000000...". To remove
such results, we applied a standard password strength
estimator [10], which penalizes strings with repeating
characters or those that contain dictionary words while
accepting strings that have a high amount of apparent
randomness (entropy). This technique returned 34 instances
of Secret Key matches in our data-set, with 100% recall and
precision of 91%. The false positives that remained were
auto-generated key-like strings that were used for different
purposes, such as identifiers of serialized objects.

D. Source-based Program Slicing

A heavy-weight approach to finding exactly those strings
that flow in-to the Client API calls is to employ program
slicing. There are several existing techniques to precisely
trace the value of a string even if it subject to operations
such as concatenation and substring-extraction [11], [12], [13].
However, these approaches are an overkill for our purpose
since we do not expect hardcoded secret keys to undergo such
transformations.

We therefore evaluate a lightweight source-based flow-
sensitive program slicing algorithm that was developed in-
house. This algorithm builds a system dependence graph sim-
ilar to the classic HRB slicing [14], but is context-insensitive
in that we do not match call-return points precisely.

We ran the slicer on our data-set of 84 projects
with the slicing criteria being the constructor call of
BasicAWSCredentials, as shown in Figure 2. The anal-
ysis returned 40 instances of non-null and non-empty strings.
We further applied the password strength filter as above to
prune placeholder strings such as "SOME_KEY" and we were
left with 26 instances. This technique gave 100% precision
and 84% recall at the cost of some computational effort. The
apparent loss of recall was because not all strings flowed into
the client API calls. For example, in one project we found
multiple API key pairs all defined in one file, but only one of
them was being used by the application (and was detected by
this method).

These results are summarized in Table II, which additionally
includes results for a similar evaluation on Facebook OAuth
keys, where the pattern is as listed in Table I and the slicing
criteria is the call to setClientSecret, an example of
which is shown in Figure 3.

III. KEY LEAK MITIGATION TECHNIQUES

We now discuss some tools that could be useful for devel-
opers to protect themselves against accidental key leaks.

TABLE II
RESULTS OF EVALUATING DIFFERENT KEY DETECTION TECHNIQUES FOR

TWO TYPES OF API KEY USAGES.

Amazon AWS Facebook
Projects 84 30
True leaks 31 16
Filters # Pr Rc # Pr Rc
P 2,457 1% 100% 40 40% 100%
P + J 43 72% 100% 29 55% 100%
P + J + U 30 100% 97% 16 87.5% 87.5%
P + J + E 34 91% 100% 22 73% 100%
P + J + D + E 26 100% 84% 13 100% 81.25%

Metrics: Pr = Precision, Rc = Recall;
Filters: P = Pattern match on all Java files, J = Pattern match on Java string literals, U
= User-ID + Secret-Key proximity, E = Entropy (password strength estimation), D =

Data-flow analysis (program slicing)

A. Preventing Leaks Explicitly

Best practice suggests that applications that use secret keys
should not embed them within source code, but instead read
them from a file that is not tracked by their version control
repository. In Git, for example, one can specify a list of files
that should be ignored in a file named .gitignore. Often
a template file with dummy key values is checked-in so that
project members can re-create the key file in their individual
work-spaces by simply copying the template and replacing the
placeholder values with the real secret keys.

One issue with this approach is that project members
must find alternative ways of sharing secret keys amongst
themselves. This issue becomes notable if the application is
using multiple keys or if the project team changes frequently.

An alternate solution is to allow the file with API keys to
be checked-in to the shared repository, but in an encrypted
fashion. Tools such as git-crypt [15] allow transparent
encryption and decryption of files within Git repositories. A
user who creates and shares a sensitive file can specify a list
of PGP users who are allowed to access that file. The tool
encrypts the file with each privileged user’s public key and
stores multiple encrypted copies in the code repository. When
another project member performs a check-out, the tool will
find the right copy corresponding to that PGP user and de-
crypt with their private key accordingly.

Of course, with all such solutions, the burden of creating
the black-list of files falls on the user. Many a time, users
fail to take such measures and accidentally commit files
with sensitive information. Since version control systems are
designed to keep a history of every change intact, it is not
trivial to undo such an accidental leak.

B. Remedying Leaked Keys

Most version control systems such as SVN and Git do not
store each revision in it’s entirety, but simply as a diff since
the previous version. Thus, in theory it should be possible to
remedy an accidental leak by removing the sensitive informa-
tion at the point it was committed, and allowing the remaining
commits to remain intact.

Unfortunately it is not really so easy to do this. For example,
Git identifies commits by a SHA1 hash, which is a function of

Fig. 4. Flow-chart of a pro-active key leak detection and mitigation solution
implemented as a hook or plug-in on top of a version-control system.

the contents of the commit. If the contents change, so does the
hash, and hence the contents of the next commit also change
(since the pointer to its parent now has a different value),
and this snowballs all the way up to the head of the branch.
Fortunately, Git allows a way to perform forceful rewriting
of history using a tool called git filter-branch [16].
This tool allows a user to run a command (such as deletion
of a file or replacement of a string within a file) at any
given point in the project’s history, and re-constructs the entire
branch with the new hashes. The downside of this action is
that the user who performed this purge is now out-of-sync
with other project members, since they are working with a
different base commit. Hence, project members who have
concurrently committed new changes to the original branch
have to manually re-base their changes to the filtered branch,
which can result in peculiar inconsistencies.

In any case, removing such a key leak from history is not
a complete solution, since any sensitive information that has
been shared publicly for even an instant can be considered to
be compromised. Users should ideally have their leaked keys
or passwords changed with their service providers to prevent
mis-use by a malicious user who may have read the contents
in the interval before the project’s history was re-written. This
tool is thus mainly useful for the removal of other types of
sensitive data, such as personal identification information.

C. Preventing Leaks Automatically

Given that it is possible to detect key leaks with high
precision using simple heuristics, it should be possible for
enhancing version control systems by pro-actively warning a
user who may be accidentally leaking a secret key.

We propose a simple solution, that combines the methods
of key leak detection and mitigation discussed in this paper,
implemented as a plug-in to a version control system that
is fired when a user checks-in new code. The flow-chart for
such a system is shown in Figure 4. Whenever a new file is
added to the repository or an existing file has been changed, a
key leak detection module is launched. If a potential key leak
is detected, the system warns the user about it and suggests
possible auto-refactoring using one of the previously discussed
mitigation techniques.

Our proof-of-concept implementation is in the form a pre-
commit hook for Git, designed for Java projects. The hook

applies the pattern detection and entropy-based filtering tech-
niques on lines added or modified in a commit. For source
files, we restrict analysis to string literals only. If potential
key leaks are detected, users can choose to (1) replace the key
string with dummy values, (2) add the file to .gitignore
(non-source files only) or (3) ignore the warning, in case it was
a false positive. If a warning is ignored, the containing file is
not scanned in the future for key leaks. We do not currently
support transparent encryption or history re-writing.

Of course, no tool can guarantee to catch all instances
of accidental leakage of sensitive information, and hence
developers still need to be smart about taking necessary steps
to protect themselves. However, as the precision and recall
numbers in Table II show, it is possible to catch a large fraction
of such accidental leaks and in these cases tool assistance
could save developers from incurring significant losses.

IV. RELATED WORK

Both pattern based [17] and data-flow based [18], [19] tech-
niques have been applied for detecting deliberate leakage of
user credentials by malicious software. Similar techniques [7]
have also been applied for detecting accidental leakage of cre-
dentials in innocuous client-side software. We have addressed
another facet, where the software itself may be intended to
deployed server-side, but the leakage of credentials occurs
through its source code if the application is hosted on open-
source code sharing repositories.

Service providers have been urging developers to take
measures to prevent such credential leakage [1], but there is
no tool support from the version control systems themselves
to protect the user against accidental key leakage to the best
of our knowledge.

V. CONCLUSION

Increasingly developers and organizations are warming up
to the idea of sharing their code and/or code examples on
public code management platforms such as GitHub. Even
within enterprises, instead of keep code in dedicated version
management systems, projects maintain their code in shared
systems.

Accidental leakage of secret keys in such code repositories
is a real problem and attacks that mine such platforms to steal
API keys have already occurred, causing thousands of dollars
in losses for users and service providers alike.

While tools exist to allow developers to host projects requir-
ing API keys on shared code repositories by using measures
such as ignore-lists and transparent encryption, accidents are
still likely to occur as long as it is the sole responsibility of
the developer to safeguard themselves by using these tools.

We argue that more support is required from the version
control systems or their plug-ins to assist developers in pro-
tecting themselves against such accidents. We have described
different ways to detect the presence of API keys or other
credentials in source code and presented a solution for tool-
based pro-active mitigation of accidental key leaks in code
repositories.

REFERENCES

[1] http://www.itnews.com.au/News/375785,
aws-urges-developers-to-scrub-github-of-secret-keys.aspx.

[2] http://www.net-security.org/secworld.php?id=16566.
[3] http://searchcloudsecurity.techtarget.com/news/2240224543/

Old-AWS-API-key-led-to-search-providers-cloud-security-breach.
[4] https://securosis.com/blog/my-500-cloud-security-screwup.
[5] https://help.github.com/articles/remove-sensitive-data.
[6] http://it.slashdot.org/story/13/01/25/132203/

github-kills-search-after-hundreds-of-private-keys-exposed.
[7] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of Google

Play,” in The 2014 ACM International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS ’14, 2014, pp. 221–
233.

[8] G. Gousios, “The GHTorrent dataset and tool suite,” in Proceedings
of the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13, 2013, pp. 233–236.

[9] “Eclipse JDT Core,” http://eclipse.org/jdt/core.

[10] “A realistic password strength estimator,” https://github.com/dropbox/
zxcvbn.

[11] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis
of string expressions,” in SAS’03.

[12] T. Tateishi, M. Pistoia, and O. Tripp, “Path- and index-sensitive string
analysis based on monadic second-order logic,” in ISSTA ’11.

[13] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based string solver
for web application analysis,” in ESEC/FSE 2013.

[14] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Trans. Program. Lang. Syst.

[15] “Transparent file encryption in git,” https://github.com/AGWA/git-crypt.
[16] https://www.kernel.org/pub/software/scm/git/docs/git-filter-branch.html.
[17] M. Roesch, “Snort - lightweight intrusion detection for networks,” in

LISA ’99.
[18] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint

flow analysis for app sets.” in SOAP ’14.
[19] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing smartphone applications (on android),” in TRUST’11.

