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Miscellaneous and electronic loads (MELs) consume about 20% of the primary energy used in U.S.
buildings, and this share is projected to increase for the foreseeable future. Our understanding, however,
of which devices are most responsible for this energy use is still rudimentary due to the difficulty and
expense of performing detailed studies on MELs and their energy use. In order to better understand the
energy use of MELs and the design of MELs field metering studies, we conducted a year-long study of
MELs in an 89,500 sq. ft. (8310 m2) office building. We present insights obtained from this study using
455 wireless plug-load power meters including the study design process, the tools needed for success,
and key other methodology issues. Our study allowed us to quantify, for the study buildings, how many
devices we needed to inventory and meter as well as for how long we needed to collect meter data. We
find that the study design of earlier work would not have yielded accurate results in our study building.
This paper presents these findings along with a brief summary of the energy related results.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Buildings account for 40% of the total primary energy con-
sumption in the U.S., with 22% consumed by the residential sector
and 18% by the commercial sector. Fig. 1 shows how the primary
energy use is broken down by end-use in the U.S [1].1 About 20% of
the primary energy is consumed by a category we labeled miscel-
laneous and electronic loads (MELs), and the energy use of these
devices is projected to grow to one-third of the primary energy
used in U.S. buildings in the next 20 years [2]. MELs energy use is
spread among many devices and product categories but primarily
comes from plug-loads in many buildings. However, MELs often
include elevators and medical, cooking, and refrigeration equip-
ment [3]. As a result, the devices that dominant MELs energy use
changes depending on the function of the building. Plug-loads are
particularly challenging to address because of their large number,
diversity and transient nature, and we estimate this category is
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responsible for 15% of U.S. building primary energy use. Developing
and evaluating efficiency strategies for these products depends on
understanding their prevalence, varied usage patterns, and energy
use information. Few studies have collected field data on the long-
term energy use of individual plug-load devices due to the difficulty
and expense of such a study.

In this paper we present results and insights from a study of the
plug-loads and their energy use in an 89,500 square-foot (8310 m2)
office building. We tested techniques for inventorying plug-loads in
buildings and performed a full inventory of the plug-loads in the
building. We then deployed custom wireless power meters on a
random sample of 455 plug-loads for 6e16 months. We based our
study and sampling weights on past experience or other studies
where possible, but it was clear that there is no good basis for
determining sample weights, sample size and many other ques-
tions related to study design.

This study was designed to look at the methodology for col-
lecting accurate energy information on annual energy use, usage
patterns, and energy savings opportunities of representative plug-
loads in a typical office building. Specifically, we addressed the
following important methodological questions: (1) What tools are
required to effectively evaluate plug-loads energy use, (2) How
much of the building floor area should be inventoried, (3) What
fraction of the inventoried devices should bemetered, (4) How long



Fig. 1. Breakdown by end-use of U.S. annual energy use.
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should these devices be metered, and (5) At what sampling in-
tervals should power data be collected?

Addressing these methodological questions will help inform
future plug-loads energy measurement studies by providing some
basis for setting study parameters, but it is important to keep in
mind that this single building may not be representative of all of
the diversity present in office buildings. This paper provides a
summary of related work, the tools developed to enable this study,
a brief overview of inventory and energy results, and our attempts
to answer to the methodological questions discussed in this
introduction.
2. Related research on MELs energy use

There have been several studies on MELs energy use in recent
years, and these studies have increased our level of knowledge. This
section provides an overview of basic study methods and the lim-
itations of these methods.

Building energy surveys provide a comprehensive, top-down
study of building energy use and can include a breakdown of
some MELs energy use. For example the Commercial Energy Con-
sumption Survey (CBECS) characterizes U.S. commercial building
energy use [4], and it uses a survey of building owners to collect
building details on size, function, schedule, and a few other cate-
gories. This information is combined with weather data and annual
energy use by fuel type in a statistical regression model to estimate
end-use breakdowns of energy use. The method is not based on
actual inventory of devices or metering in the buildings and is
therefore subject to errors due to data accuracy or model specifi-
cation in both the traditional end-uses and in the MELs case. The
traditional end-uses of heating, cooling, lighting, and water heat-
ing, however, tend to be modeled better because the regression
model outputs can be compared to extensive field study results and
physics-based simulation of building energy use. This leaves MELs
as more or less residuals with large estimation errors. Building
energy surveys tend to provide the broadest picture of building
energy use, however.

Another study approach that provides a deeper look at MELS
energy use is to combine power-consumption data with activity
patterns and stock data to produce bottom-up estimates of MELs
energy use by device type. Power data and activity patterns can be
taken from controlled, laboratory studies with assumed activity
profiles or from existing field study data if it is available. Such a
study for the commercial sector in the U.S was presented in Ref. [3].
While the engineering approach provides a detailed energy esti-
mate for each product category, data for shipment, stock, device
power consumption, and usage patterns are subject to different,
and often large, levels of uncertainty. This study type provides more
detail in the area of study than standard building surveys, and it is a
critical component of understanding the energy use of MELs.

Branch-circuit metering in individual buildings can be used to
identify large individual loads (e.g. furnaces) or aggregates for a
large number of smaller loads. Circuit level metering is expensive to
install, and this limits studies to a relatively small number of cir-
cuits. Most circuits containing MELs contain not only a large
number of individual devices but also a significant diversity in
device type. While these studies are an important basis for our
knowledge of energy use in buildings, they are best at identifying
the consumption of large devices such as furnaces, water heaters,
and refrigerators, and in determining the energy shares of major
end uses. The study in Ref. [13] used this method to evaluate the
fraction of building energy use that is plug loads and the savings
available through smart plug strips.

Non-Intrusive Load Monitoring (NILM) collects data at the circuit
breaker or whole building level and uses algorithms to disaggregate
loads by recognizing energy use signatures of specific devices and
reporting their power draw and operation time. NILM has been
studied since the 1980s but MELs studies have not relied upon this
technology due to its inability to measure more than a few large ap-
pliances. The challenges of using NILM on MELs lie in that the rela-
tively small powerdrawofMELs tendtobeobscuredwithfluctuations
aggregated power profile. There are a significant number of com-
panies currently developing and deploying NILM technologies, and it
is possible NILMwill be useful for MELs studies in the near future.

Device level metering is considered the best method of col-
lecting MELs energy data today. In the US, MELs metering has been
conducted in both residential [5] and commercial [6] buildings in
California, and also for residential buildings in Minnesota [7]. The
commercial building study in Ref. [6] evaluated devices in 25 small
office buildings and collected two weeks of 1-min power data on
430 total devices, and it was the first study tomeasure plug-loads in
an office environment. Devices were not randomly selected
limiting the ability tomake comparisons across similar devices. The
data collected through these studies significantly improved the
state of knowledge of MELs energy use in U.S. buildings. The main
limitations are that the expense of the metering equipment limits
the number of devices per building that can be metered and the
limited on-board data storage limits the number of data points that
can be collected. The storage limit results in the product of the
samples taken per hour and the metering period in hours being a
fixed value for a particular meter, and sample rate and metering
period can be traded off depending on study needs. These studies
have not shown, however, how long devices should be metered to
accurately estimate annual energy use or how often the power
should be recorded. Studies have also not reported on how many
devices should bemetered to accurately estimate device energy use
and variability in energy use or how to reduce labor associatedwith
device inventory data collection.

3. Design of a device-level, plug-load metering study

Metering individual devices provides high quality data on the
energy use of those devices, but it is challenging to design a study
that answers the energy questions of interest. Key questions this
type of study should answer include:

� What types and quantities of devices are present?
� How much time and at what power level do devices spend in
particular power modes?

� How much energy do the devices use annually?
� What load shapes occur?
� How much variability exists in power levels, usage patterns,
and energy use between devices?



Fig. 2. Inventory and estimated annual energy consumption, for the top 7 energy-
consuming device categories.

S. Lanzisera et al. / Building and Environment 65 (2013) 170e177172
This list is not exhaustive, but it shows that questions commonly
involve both non-energy and energy data, and the energy data
should include time-series power measurements. This section de-
scribes the high-level design of the study discussed in this paper
including some basic tradeoffs in these decisions.

We selected a commercial office building for this study that was
conveniently located, moderate in size, to which we could acquire
broad access permissions, and which appeared to be typical based
on our experience in office buildings. The commercial study
building is a 1960s era facility largely used as a traditional office
space. It has a total floor area of 89,500 square feet. Approximately
450 occupants in six working groups are located on four floors and
a basement.

In order to identify the types and number of devices in the
building, we needed to carry out either a complete or partial in-
ventory of devices at the site. A partial inventory, one that only
covers a subset of the building’s floor area, can be projected to the
entire building by taking average device densities found in the in-
ventory and multiplying by the number of rooms or amount of
space in the full building. In a partial inventory, researchers must
determine how much floor area and what types of spaces to in-
ventory to reasonably estimate the devices present in the building.

We carried out a complete inventory of the plug-loads in the
building in order to have ground truth to estimate howmuch of the
building needed to be inventoried for a reasonable whole building
estimate.

With the large number of MELs found in our study building,
metering all of the devices would be time- and cost-prohibitive.
With constraint of resources for about 450 metered devices, we
developed a multi-stage, stratified random sampling approach to
select devices for metering. Devices were divided into stages by
physical location or organization owning the devices in order to
ease coordination with workgroups. For each stage, devices were
selected for metering using a stratified sample by device. A strati-
fied sample is critical because a simple random sample would
result in metering a large number of devices with low energy use or
low energy use variability (e.g. computer speakers, external disk
drives) while also not metering as many devices with more energy
use and variability such as computers or LCD displays. We set our
sample weights based on the number of meters we had available
and the proportion of devices for each device category we thought
we would need to minimize the total annual energy estimation
confidence interval for the population of plug loads in the building.
It was not possible to analytically evaluate this second goal before
deployment because there were no data available on the variability
in energy use between devices of the same category. Instead
considered the unit energy consumptions (UECs, the average
annual energy use for single unit of a particular device type) taken
from earlier data collections and variability estimates based on our
experience for different device categories and developed sampling
weights. Devices expected to use more energy on an individual
basis had higher sample weights, and devices with greater inter-
device variability also had greater sample weights. For example,
task lights are not expected to use much energy on average
(because many are never turned on at all), but their variability in
usage is high. As a result, they were sampled with a moderate
sample weight (5%). We expected to see high energy use and
variability in computers, computer displays, and small imaging
equipment, so they were assigned high sample weights (15%).
Computer speakers and electric staplers were assigned low sample
weights (2.5%). Some devices, like appliances, water coolers and
large imaging equipment (e.g. multifunction printer copy ma-
chines), are few in number but can contribute significantly to en-
ergy use, and we sampled these devices at the highest sample rate
(40%).
In order to collect data for a long period of time at a relatively
high sample rate, we decided data should be collected over a
network to break away from constraints of internal storage and
reduce the labor needed to download meter data on a regular basis.
After reviewing network enabled plug-load meters, we selected a
wireless metering system under development by the University of
California, Berkeley. After updating and modifying the metering
system for this study, we deployed ourmeters for 6e16months and
collected an average power measurement every 10 s.

4. Inventory and energy results

We completed a full device inventory and metered a random
sample of devices for a longer time period than in related studies. A
total of 80 h (160 person hours) were spent performing the in-
ventory showing that a full inventory is a significant cost for
studying plug load devices. We deployed a total of 455 meters on
selected devices. The deployment took approximately 120 person-
hours which involved about an equal amount of time obtaining
written consent from individual occupants and physically installing
the meters. Time-series energy data were collected in the com-
mercial building from 6 to 16months, as we deployed themeters in
a few stages but uninstalled them all at once.

We were able to project from our sample of metered devices to
the building population energy use as well as compare power, ac-
tivity and energy information between similar devices. Fig. 2 pre-
sents the whole building inventory count as well as annual energy
consumption of devices in the top seven energy-consuming cate-
gories and all other metered devices for the study building, and
Table 1 presents these values numerically. The energy estimates for
the entire population are projected from the metered sample of
devices using the sample weights, and energy is projected from the
metering period to the entire year. Computers use the most energy
overall (about half of the plug-load energy) and significantly more
energy per unit than most other categories, whereas the “Other”
category of devices shows the opposite behavior. Because the
building is primarily office space, displays, imaging and network
equipment (e.g. network switches and routers), and miscellaneous
(i.e. task) lighting are the next largest MEL energy users. Space
heaters and fans make up most of miscellaneous HVAC, and the
appliances are primarily refrigerators found in break rooms and a
few offices. The energy breakdown shows that information tech-
nology equipment consumes over 75% of the annual MELs energy
but is less than half of the total devices. This suggests that targeted
plug load efficiency strategies that reduce IT energy will have the
largest opportunity for impact in an office building, and this
conclusion agrees with other sources [1,3].

In addition to these aggregate energy results, it was possible to
look at aggregate power for the sample or estimated for the



Table 1
Summary of building inventory and plug load annual energy use.

Device category Devices in inventory Annual energy use (MWh)

Other 1697 37
Appliances 21 12
M HVAC 269 22
M Lighting 544 22
Networking 300 23
Imaging 234 46
Displays 645 47
Computers 744 214
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population for any period of time or on an average basis. In building
simulation, two values for plug-loads are commonly used: the
average occupied plug load power per unit area, and the unoccu-
pied plug load power per unit area. Our study building yielded
1.1 W/ft2 (12 W/m2) during the day and 0.47 W/ft2 (5.1 W/m2) at
night, and these values are similar to those commonly used for
typical buildings in the US office building stock.

5. Methodological results

This study was designed to look at the energy use of plug-in
devices while also enabling a study of the methodology for col-
lecting accurate energy information on annual energy use, usage
patterns, and energy savings opportunities of representative plug-
loads in a typical office building. At the time of our study, there
were no example studies that provided empirical guidance on the
selection of key study parameters. This section uses the data
collected in this study to help determine, in this study building,
how to optimally set study parameters. It is important to note that
the conclusions drawn here are for the study building, and any
other building will be different. However, we believe that these
results provide a better starting point for making study design
decisions than have been available before. This section follows the
methodological questions presented in the introduction.

5.1. What tools are required to effectively evaluate plug-loads
energy use?

A good set of tools improves the study while reducing costs, and
we looked at how earlier studies collected andmanaged data [5e7].
We adopted or improved techniques presented in these studies as
possible. Researchers need a taxonomy or a standardized way to
categorize devices, an inventory data collection system, an energy
data collection system, and data analysis tools. Each of these will be
described in this section.

5.1.1. Taxonomy
Because different names can be used to refer to the same device,

we developed a taxonomy of device types, and this standardized
system of identifying the device type is essential for inventory and
energy data analysis. A taxonomy of MELs was developed for a
California Energy Commission study [8], and we augmented this
taxonomy by referencing other existing taxonomies (Energy Star
product categories and California Energy Commission appliances
list). We expanded the taxonomy to include newer plug-load de-
vices as well as devices from traditional end-uses, and we included
all MELs plus any plug-loads that may fall outside the MELs cate-
gory. The taxonomy consists of three levels e End Use, Category,
and Product Type. MELs are divided into three major end uses e

Electronics, Miscellaneous, and Traditional. Electronics are devices
whose primary function is obtaining, storing, managing or dis-
playing information. Miscellaneous devices are those that use
energy but are not part of a traditional end-use and are not elec-
tronics, but the end-use includes portable heating and cooling
(e.g. space heaters and fans) as well as task lighting. The traditional
end use includes primary HVAC, primary lighting, major appliances,
and water heating. Appliances can be considered MELs in an office
building because they do not perform a business function, but we
included them in the traditional category because they are broken
out for analysis in CBECS. Each end use is composed of different
device categories, and each category contains many product types.
For example, a “LCD computer display” is a product type in the
“Display” category, which is part of the end use “Electronics”.
During the study, we expanded and fine-tuned the taxonomy, as we
encountered new device types during the inventory or to describe
certain devices in a more consistent way.

5.1.2. Inventory data collection system
In buildings over a few thousand square feet, understanding the

type and number of devices in a building can be a daunting task.
Due to the large number of devices in the building we experi-
mented with a variety of inventory data collection mechanisms to
find one that was both time efficient and reliable. Previous studies
collected data either on paper with later transcription or directly
into a computerized system. A comparison of these methods was
not presented in earlier work.

Before conducting the extensive plug-load inventory as part of
our field work, we explored different inventory methods, seeking
compromise between time and effort, quality and quantity of in-
formation gathered, and minimizing disturbance to building oc-
cupants. We tested the following inventory methods:

� Voice recognition, with instant transcription;
� Paper, with electronic transcription after inventory;
� Videotaping, with electronic transcription after inventory;
� Direct electronic entry (typing) in spreadsheet.

We found that unless people had a clear set of prompts to help
them remember exactly which pieces of information to collect,
informationwas often left out. In addition, if the taxonomy was not
easily available to the inventory agent, significant deviations from
the taxonomy were common. As a result the first three methods
resulted in lower quality data that required significant follow-up
efforts to reach the desired data quality.

The direct electronic entry method was time efficient and reli-
able. We developed a spreadsheet based tool that contained
placeholders for all of the data fields of interest. The device tax-
onomywas included in the spreadsheet with autocompletion in the
appropriate fields, and this made it easier for people to use the
taxonomy. The inventory was best done with a two-person team,
with one person searching for MELs in the inventory space and
reading out relevant datawhile the other person input data directly
into a spreadsheet using a notebook computer. Over a dozen
different people were involved in the inventory process with only a
few minutes of introduction to the spreadsheet and the process.

5.1.3. Energy data collection system
In order to meter hundreds of devices for six months or more

and collect data at relatively fine time steps, we found we needed a
custom meter because existing, commercial meters did not meet
our specifications. Previous studies used the most commonly used
meters, and they log data on internal storage limited to 50,000 data
points or less [9]. At a one minute sample rate, this is about one
month of data. Meters with wired data collection over an Ethernet
network or other physical layer were also available, but the wired
data connections were not practical for our study in a standard
work environment because of the large number of wires that would



Fig. 4. ACme system network design.
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be required and the high-cost of the meters. At the time this study
was launched, wireless plug-load meters were just entering the
market, and these devices did not meet our study needs in terms of
reliability, configurability, or accuracy. In order to deploy a large
number of wireless nodes in a building, it is important to limit the
infrastructure required to support the networkwhile also providing
a reliable, high-speed data store. Devices available at the time could
only support a handful of wireless nodes with a single manager
(typically between 5 and 20) and used a simple star network to-
pology. Our testing found that this network topology resulted in a
large number of lost connections and manual reconfigurations
increasing study costs. As a result we partnered with other re-
searchers to develop a wireless metering system based on the
demonstration system described in Ref. [10].

The wireless power meters used here are a research platform
called ACme (“ACmeter”) developed by the University of California,
Berkeley and refined for use in this study. The final version used in
this study consumed 0.4 W per meter, had a significantly smaller
form factor, and was capable of handling 15 A currents for extended
periods of time. Fig. 3 shows the typical configuration when the
ACme is connected to devices for metering, respectively.

Fig. 4 shows a schematic of the overall ACme metering system
design, with particular emphasis on the networking. Overall, the
system can be decomposed into three tiers: the metering tier,
backhaul tier, and datacenter tier. The metering tier is made up of a
large number of ACmes, each containing a microcontroller, radio,
and energy metering chip. ACme meters provide data readings as
frequently as every second; a sampling interval of 10 s was selected
for this study to balance network traffic and high sampling rate.
Due to the small size and use of commodity parts, the purchase cost
of the ACme system is approximately $75 per node, and this four to
five times less than meters used in previous studies. Each device
runs the TinyOS operating system and uses the open-standard
6LoWPAN network protocol to provide IPv6 (a dynamic, scalable
routing protocol) network connectivity [11]. To provide scalability
to hundreds of ACmes, the Ethernet networking consists of a
number of load-balancing routers (LBRs) that provide connectivity
to and from the ACmes. Each LBR advertises a minimum-cost path
to neighboring meters; each meter then chooses the LBR with the
lowest cost path as its default router, and sends all traffic to the
selected LBR. This allowed us to increase both network and back-
haul capacity by deploying new meters and routers at will. Data
generated by the meters are sent in User Datagram Protocol (UDP)
packets, through the LBRs, to a server in our datacenter. The LBRs
reside on a single virtual subnet enabling them to coordinate
Fig. 3. ACme devices metering loads.
routing decisions over a local broadcast domain. This is critical
because it means that meters do not need to know in advance
which LBR to communicate through. Instead the network config-
ures automatically and adapts to changes and interruptions.
Removing a meter or LBR from the network may result in a brief
data disruption, but the network finds new paths for the data
quicklyminimizing data loss. The datacenter tier makes up the final
part of the system, which runs a MySQL database and a hosted web
application for visualization. Data packets can travel through the
Internet, allowing us to share this backend infrastructure between
this and meter deployments in other physical locations. A detailed
discussion of the wireless network system used in this study can be
found in Ref. [12].

Because of variations in the manufacturing process, all meters
were tested, calibrated, and programmed before deployment to
ensure accurate and consistent measurements in the field. The
calibration procedure utilized 21 calibration points between 0 and
300 W. The calibration revealed results revealed that reasonable
accuracy can be achieved with these low cost meters. At low loads,
the absolute errors are less than 1 W for 97% of the meters cali-
brated. Additionally, more than 75% of meters are within 2% of the
measured load at 50Wwith improved relative accuracy as the load
increases.

The ACme system provided a number of advantages over the
meters used in earlier studies. First the lower physical cost of the
meters along with automated data collection over a network
enabled the use of a much larger number of meters than in earlier
studies. Automated data collection had a second benefit: the ability
to detect and correct meter faults during the data collection period
rather than after data collection completed. Finally, the ACmes are
smaller than traditional meters making them less obtrusive to the
occupants.

5.1.4. Data analysis tools
Collecting power measurements from a large number of meters

over several months generates a large quantity of data. Storing data
in text files and analyzing it using spreadsheets limits the infor-
mation that can be extracted and increases the time it takes to get
results, but this is the method used in Ref. [6]. The study in Ref. [7]
used automated statistical analysis software. We found that dealing
with hundreds of millions of data records required automated
analysis tools that could access data directly from a high-speed
database. By using open-source tools like Python and MySQL, we
were able to leverage the significant body of knowledge in the open
source community to reduce development time.

Our analysis tools were not as important in ensuring success as
the tools we used to check the status of our data collection system.
In our study devices reported data in real-time to the database, and
this enabled tools to automatically check which, if any, nodes had



Fig. 5. Normalized 90th percentile error versus fraction of building inventoried.
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failed to report data recently. In Ref. [6], researchers found that over
10% of their meters failed in the field, but there did not learn of this
until they tried to download the data from the meter. In our study
the research team received a daily email report on the health of the
data collection system. Additional tools enabled researchers to
identify which specific meters required attention, and someone
could then check in on the meter and see if it needed to be reset. In
previous studies, researchers discovered a meter had failed or had
its data corrupted only at the end of the study with no opportunity
to identify failures without visiting every meter. The ability to
receive a daily report on the number of meters reporting data and
the quantity of data reported allowed us to quickly respond to in-
dividual meter issues as well as the occasional network outage.

5.2. How much of the building area should be inventoried?

Collecting a complete inventory in a building is too time
consuming to be warranted in most cases, and we thought it may
be possible to inventory only a subset of the building and project
this sample to the entire building with reasonable accuracy.
Reducing the time spent on inventory while still capturing a real-
istic view of building contents enables studies in a large number of
buildings. Several factors must be considered before selecting a
sampling method for inventory. It is critical to review sources of
variability in the inventory between different rooms so that the
audit is as representative as possible. For example, if you only
sample offices, you will not capture appliances located in break
rooms, network equipment, and servers located in closets, etc. It is
therefore important to stratify your sample based on factors that
are likely to influence room inventory. In our case study office
building, there are several such room types worth separating, and
we used the following space type categories.

� Offices and cubicles.
� Server closets.
� Network closets.
� Conference rooms.
� Facilities spaces.
� Kitchens and break rooms.
� Rooms used for an IT function (e.g. offices of department IT
workers).

� Rooms with large imaging equipment.

In order to evaluate if this projection could have been done
accurately in our test building, we used our complete inventory
data and created random samples from that inventory of varying
size. For simplicity we only considered office and cubicle spaces,
but a similar technique could be used for other space types. We
selected a random number of rooms and projected the inventory to
the building. We repeated this random sampling a large number of
times for that sample size of rooms, and we looked at the distri-
bution of the error between the projection and the true inventory.
Fig. 5 shows the 90th percentile error between our projected in-
ventory normalized by the true inventory for the buildings offices
and cubicles versus the fraction of offices and cubicles inventoried.
A normalized error of 0.1 means our projection was 10% from the
true inventory (either higher or lower). On the plot a value of 0.1
means that 90% of the trials had an error of less than or equal to 10%
from the true inventory. Device types with less variability office to
office can be accurately inventoried with a smaller sample size
while devices with greater variability need a larger sample. This is
apparent in that the error is lowest for computers andmonitors but
much higher for imaging equipment. Most offices do not have a
printer, and a large sample is required to accurately characterize the
number of devices in the building. The plots do not converge to zero
because the maximum number of rooms in our trials was less than
the total number in the building. It appears that inventorying 40%
of the building makes errors less than 10% likely on computers and
displays (60% of the total MELs energy use in the building). Sup-
plementing this inventory with a complete inventory of large im-
aging equipment (e.g. copiers), server or network closets, and break
rooms would have provided an accurate inventory in roughly half
the time it took to inventory the entire building. In the study
building, occupants each determine their own office equipment
setup without direction from a centralized IT department. As a
result, there is larger variation office to office than we have
observed in other office buildings, and it seems possible that in-
ventorying half or less of a building will enable lower cost studies
with reasonable accuracy. In order to improve accuracy, offices
containing a large number of computers (e.g. a group IT support
person’s office or make-shift server closet) should be identified
before sampling and inventoried separately from the sample used
for projection to the building.

5.3. What fraction of the inventoried devices should be metered?

In all but small buildings, it is impractical to meter every device
of interest, and the previous commercial study [6] metered less
than 7% (on average) of the plug-loads in the study buildings. The
devices metered in Ref. [6] were selected first based on expected
energy use but second based on convenience or accessibility rather
than randomly. We selected a random sample of devices to meter,
but we did not have a concrete basis upon which to select the
number of devices to meter. Similar to Ref. [6] we divided up our
available meters roughly according to how much energy we
thought devices consumed (i.e. we metered a greater fraction of
devices that consumed more energy than those that consumed
less) and according to how much variability in usage we expected
to find between devices (i.e. devices with greater usage pattern
variability device to device were metered with higher probability).

If we measured enough devices in our sample, we can deter-
mine howmany devices of different types we should have metered
to get a specific “tightness” in our confidence intervals on energy
use. Confidence intervals on annual energy use for these devices
have not been calculated in previous studies. To do this for a
category of devices (e.g. computers), we calculate the 90% confi-
dence interval for the mean unit energy consumption (UEC, the
annual energy use of a single device or unit) of that device category.
Themean UEC for several device categories is shown in columnD of



Table 2
Sample size versus confidence interval for various device categories.

A B C D E

Category Population total n Sampled Mean UEC Normalized confidence interval, n required

0.25 0.2 0.15 0.1

Computers 744 104 287 � 56 kWh 65 101 179 401
Displays 645 95 47 � 4 kWh 10 16 28 63
Imaging equipment 234 31 36 � 9 kWh 31 48 86 192
Misc. lighting 544 29 32 � 10 kWh 48 75 133 299
Small network equipment 300 14 32 � 14 kWh 40 62 110 247
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Table 2. We then estimated the sample size required to provide a
confidence interval that is 25%, 20%, 15% or 10% of the mean UEC
(Column E of Table 2). If a confidence interval of 20% of the mean
annual unit energy consumption is taken as acceptable, computers
required a sample size of 11% (i.e. 101 of 921) while imaging
equipment required a sample size of about 18% (i.e. 48 of 262). As
shown in Table 2, without knowing these results in advance, we
over-sampled displays and under-sampled imaging equipment,
miscellaneous lighting, and small network equipment. The esti-
mates for the number of devices to sample for miscellaneous
lighting and small network equipment in particular are probably
not very accurate because our sample size was much smaller than
needed.

5.4. How long should devices be metered?

Previous device-level, plug-load metering studies were limited
in duration because of hardware limitations, thus the duration of
many studies are determined by guessing how long of a period is
long enough to accurately predict annual energy use patterns given
a hardware constraint. In this study all devices were metered for
over 6 months and many devices were metered for a year or more.
As a result this study has the longest data set on device energy use
of existing studies. Using this longer metering period, it is possible
to consider various simulated metering periods for the same de-
vices and compare annual energy estimates across different
metering periods. Fig. 6 shows how our estimate of total energy use
by category improvedwith longer metering periods as compared to
our best estimates of those categories energy use (best estimates
were made using all metered data available for the entire metering
Fig. 6. Normalized standard error for different metering periods, shown for com-
puters, displays, plugged lighting, and imaging equipment.
period). To generate this plot, we tested many trials of each shorter
metering period and calculated the standard error between these
trials, and the standard error was normalized by our best estimate
of the category annual energy use. The shorter metering periods are
a random portion of the full metering period that is the number of
days shown in the independent axis. This plot ends at 150 days
(about 5 months) because the plot loses meaning as the number of
days in the trial approaches the total number of days in the
metering period, and some devices were only metered for six
months.

The high level conclusion from Fig. 6 is that for many common
device categories in the study building, metering over periods
longer than a few months provides little improvement in esti-
mating annual energy use. Some categories have a high degree of
variability (e.g. miscellaneous lighting which is potentially linked
with seasons), and longer metering periods are needed. We esti-
mate that metering for twomonths would have provided about the
best tradeoff between accuracy and limiting the duration of
metering in our study. This is in contrast to the only other end-use
metering study if office buildings [6] where devices were metered
for only two weeks. The annual energy use prediction errors that
are conclusions of Ref. [6] are likely to have significant deviations
from the actual annual energy use.

5.5. At what sampling intervals should power data be collected?

Previous studies used a 1 min data collection rate from their
meters. In order to verify that 1 min data are sufficiently fast, we
compared a time-in-power-mode analysis performed on 10 s and
1 min data and found virtually no difference in the on time for
displays Depending on the purpose of the study, the optimal
sample rate will change, and hardware constraints with data log-
ging meters will further limit choices. In our study, sampling faster
Fig. 7. Time series data of a LCD computer display shown for three different data
sampling rates.
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than 1 min did not provide a significant benefit, and sampling at
10 min resulted in a reduced ability to accurately determine the
power mode levels and the time spent in each mode (an over 5%
difference in on-state time for displays). If only energy information
is desired, time-series power data are not required, and a single
running tally of energy used is sufficient. However, understanding
how much time devices spend in a given power mode is useful for
improving device test procedures for efficiency labeling, to inform
energy saving technology innovation, and for countless other effi-
ciency related interests. Power meters do not report the instanta-
neous power at the time of sampling but rather report the average
power over the last sample interval. Therefore longer sampling
intervals result in a power waveform that typically looks smoother
with gradual changes in power level even though the actual power
used by the device may change very quickly. Fig. 7 shows the time-
series power data collected for a LCD computer display, as an
example, to show the impact of meter sampling period on the
ability to differentiate power modes in time. For this device, 1-
min data capture the dynamics appropriately, because most activ-
ity occurs on time scales greater than 1-min. The 5-min data starts
to lose some resolution on the faster dynamics between 7 and 8 h,
but it provides a very good estimate of the curve. The 15-min data
are simply not fast enough to resolve the power trace correctly, and
automated analysis of the 15-min data would likely result in some
confusion as to how long devices spent in a given power mode. The
very short power spike between 10 and 11 h is not correctly
captured by 1-min data, so some events require even faster sam-
pling. Fine enough time resolution is important for understanding
the time devices spend in various power modes. For devices with
few power modes and more constant power draw, such as network
equipment, high resolution is not necessary to capture the device’s
power dynamics, whereas for devices with rapid changes in power
states, more frequent samples are required to understand power
draw behaviors. Although 1-min is an appropriate resolution for a
majority of plug-loads, we collected power data at 10-s intervals to
ensure we sampled fast enough to capture any spikes in power that
may occur at frequencies less than 1min (e.g. the power spikes that
occur when an imaging device is being powered up). In order to
verify that 1 min data are sufficiently fast, we compared a time-in-
power-mode analysis performed on 10 s and 1 min data and found
less than 1% difference in the on time. Depending on the purpose of
the study, the optimal sample rate will change, and hardware
constraints with data logging meters will further limit choices. In
our study, sampling faster than 1 min did not provide a significant
benefit, and sampling slower than 5 min resulted in a reduced
ability to accurately determine the power mode levels and the time
spent in each mode. Our study suggests that previous study meter
sampling rates have been sufficient to accurately characterize plug-
loads.

6. Conclusions

Over the past decade, substantial efficiency improvements have
been realized in most major end uses, making the “Other” end use a
bigger share of total electricity consumption. At the same time, the
increased market penetration of electronic products combined
with the pace of technology change and their shorter lifecycle
create challenges in understanding and reducing MELs energy
consumption. Improved and focused data collection on MELs en-
ergy use is critical in identifying mitigation strategies, but this has
been difficult to implement due to the limitations of traditional
power meters, the high density of MELs in commercial and resi-
dential spaces, and a lack of information on how to design effective
energy studies. In this study, we deployed 455 wireless power
meters in an office building with power data collected at 10-
s intervals for 6e16 months.

This large data set allowed us to answer some important
methodological questions and determine if repeating the design of
earlier studies would have yielded accurate results. From our data
analysis for the commercial office building, we concluded that
performing a device inventory for half of the floor area and
metering 10%e20% from the key device categories for a period of 2
months, would have generated representative data for our test
building. Earlier work metered fewer devices for much shorter
periods of time suggesting significant errors may exist in the con-
clusions of these studies. These findings, although probably not
representative of office buildings in general, provide the first
quantitative basis published upon which to guide future plug-load
metering studies.
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