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Abstract 
 
The growing number of deployed heterogeneous networks 
and applications is resulting in a sporadic isolated 
embedded sensor network environment.  The TinyML 
project addresses the need for an embedded sensor 
network standardized “markup language” for intra-
network, as well as inter-network, communication. The 
GML-based SensorML (SML) markup language provides a 
sensor-centric approach for satellite-based sensor 
coordination for global location services.  However, SML 
relies on characteristics that differ from embedded 
wireless sensor networks, such as scale, hardware, energy, 
and infrastructure.  TinyML focuses exclusively on 
embedded sensor network features, constraints, and 
capabilities.  TinyML is capable of leveraging the 
flexibility of XML data structures with embedded sensor 
network reprogrammability.  We present the concept of 
virtual sensors and actuators and implemented the 
necessary components to overcome the SML deficiencies.  
TinyML is a step forward in making sensor networks more 
accessible to the non-expert user and for archiving data 
retrieved from senor networks in a self-documenting 
manner.  
 
Introduction 
 
Embedded sensor networks are rapidly becoming a 
mainstay in many areas.  Currently, these networks are 
custom assembled for specific applications.  The 
applications entail complicated software, one of a kind 
combinations of hardware and unique deployment details.  
But take a moment to imagine the future.   
 
A new homeowner wants to instrument his home to 
monitor and control temperature and manage the locks on 
his doors and windows.  He determines the best value 
temperature control sensor network system is from 
RadioHut, while the best solution for this locking system is 
from HomeDump.  Of course these two sensor systems, 
from different vendors, and are implemented with entirely 
different technology.   
 

Now, Mr. Homeowner tries to integrate the two systems 
because he wants locking system to be able to react if the 
temperature system detects the presence of people in the 
room.  He method is to have the temperature readings 
approximate the presence of a warm body.  If a person is 
detected in a room at the proper times, the locks on the 
windows and doors open.  In order to do this, he has to 
interface to both systems, then integrate the data from the two 
systems and generate commands to the locking system.  
Rather than deal with two different interfaces, data 
definitions and infrastructures, our Homeowner decides to 
use TinyML for this integration and control task since it has 
the capability to provide a generalize interface to any sensor 
network.  Fortunately, both manufacturers support TinyML 
in addition to their proprietary interfaces. Because TinyML is 
based on XML, our Homeowner also has the ability to use 
many other tools manipulate, transform and manage his data, 
including translation to Web data and databases. 
 
As sensor networks become more prolific, the need for 
methods to retrieve the data save the data in understandable 
formats, set aspects of the network and understand the 
parameters of the network will grow.  Furthermore, today, 
each sensor network has its owns way to interface and 
retrieve data values.  In the future, it will become critical for 
sensor networks to have simple ways to interface to standard 
web methods.  This will enable many users to access data in a 
sensor net.  Access should be archived or real time with the 
same methods as accessing archive data. 
 
In the future, it will be imperative to be able to exchange and 
manage data from multiple sensor nets.  Since it is likely 
most serious applications will have multiple sensor networks 
involved in their deployment, it is key to have the ability to 
easily interface between networks, and to facilitate the ability 
for data to flow between the components of the networks. 



 
 

 
 
 
 
 

Figure 1 shows what a user (person or program) of a 
sensor network desires in the future.  In essence they 
want to make a simple query of the sensor network in 
terms they can understand and receive back the 
information in the format they requested. 

 
Markup Languages 
 
Markup Languages have benefits of generalizing how 
information is organized and interpreted.  This is most 
widely shown in the HyperText Markup Language 
(HTML) that is the lingua franca of the Web.  Now there 
are new, improved markup languages defined that extend 
the concept of HTML and improve many features.  These 
new ML’s are the underlying basis for “Web Services” just 
as HTML was the basis for the browsers of the first 
generation Web. 
 
A major goal of this work is to make use of this new 
technology to access and store data from embedded sensor 
networks, as well as controlling them as well.  
 

XML 
 
The Extensible Markup Language (XML)1 is designed to 
organize working with and exchanging data in a structured 
manner on the Web.  It is a standard set by the World Wide 
Web Consortium (W3C). “Extensible” means that the 
standard is very simple, but very flexible.  It is designed to 
create tree relationships with data, originally for document 
descriptions.  Because XML is ext ensible and flexible, it is 
being used in many ways, well beyond its original goal of 
describing written documents. 
 
XML files have to be well formed and valid2.  An XML 
file definition is called an XMLSchema (or the older style 
Document Type Definition - DTD).  The XMLSchema 
describes how data is organized and what is allowable for 
valid data.  It defines elements that can have attributes, 
default values, data types, and other features.  Elements 
can be simple, or consist of other elements and attributes – 
therefore becoming complex. Applications are created by 

defining an XML Schema, and then using either common 
tools or custom code to transform the data.  Using standard 
API's for XML, it is possible to use the Simple API for XML 
(SAX) for sequential one time parsing of XML or the 
Document Object Model (DOM) for random access parsing. 
XML is designed with the future in mind.  Thus many of the 
evolving Web Services, such as 6h4 Simple Object Access 
Protocol (SOAP)3,  can use XML as their underlying 
descriptions. 
 

GML 
 
The Geographic Mark Language (GML)4 is an XML based 
schema focused on the defining geographic and graphical 
information.  This is a building block of other Markup 
Languages, including SensorML  
 
GML is designed for modeling, exchanging , and storing 
geographic information by providing a the ability to describe 
geography including features, coordinate reference systems, 
geometry, topology, time, units of measure and generalized 
values.5 GML support complex geometries, spatial and 
temporal reference systems, topology, units of measure, 
metadata, gridded data, and default styles for feature and 
coverage visualization. There are also packaging tools to 
create custom GML Schemas from the core  XMLschemas.  
 
Sensor Markup Languages  
 

SensorML 
 
SensorML6 was created to handle data dissemination for 
satellite and other sensor networks.  It defines a data schema 
that describes the geometric, motion characteristics and 
observations of a sensor7 and is one of the first attempts to 
make a generalized sensor oriented Markup Language 
implementation using GML.  SensorML is primarily 
designed for complex sensor platforms with a relatively few 
sensors but the sensors have a relatively large data flow. 
SensorML is also oriented on platforms that have complex 
positioning characteristics, such as satellites. Finally, 
SensorML is oriented to provide a structure for archived 
sensor data- including data in databases. 
 
SensorML does not really have the concept of an actuator in 
the context of we use them in sensor networks.  Rather it it 
has the concept of “Sensor Planning Services” who defines a 
way for a user to exrpress the desire to reserve and 
manipulate a sensor platform.  An example of this is a 
scientist making a request to have a satellite positioned in a 
certain way  
 
It is possible to consider using SensorML for sensor 
networks, but the resulting system may be overly complex 

SensorNet 

What is the 
temperature of node 1? 

Node 1 has a 
temperature reading of 
21? Celsius. 



for current sensor networks. Further, SensorML is not yet 
released for general use until it is approved as a standard.  
Currently there are only reference implementations out for 
comment. 
 
SensorML does not have the full concept of in-network 
processing.  Rather, it has element definitions  “Sensor 
Collection Services” that provide collected (observed) 
values.  The Sensor Planning Service is a way for a 
acquisition request to be indicted.  Once requested, there is 
a Web Notification Service that is used to alert requestors 
and other things from the Sensor Planning Service 
 

Cougar 
 
Cougar8 is a method of handling queries for sensor 
networks. The major aspects of this are that queries are 
processed with a  “query optimizer” that generates a query 
that is efficient on the particular network, reducing the use 
of network resources.  Cougar introduces the idea of 
declarative queries as the manner to specify queries.  The 
query optimizer determines how data flows between nodes 
and establishes aggregation filters that allow an 
optimization between computation and communication. 

 
TinyDB 

 
TinyDB9 is an query processing architecture  for TinyOS 
sensor networks.  It is an SQL like interface that is 
distribute in natural, with a front end interface for users 
and the functionality to respond to the queries distributed 
in the network. It has the ability to efficiently use network 
resources and to perform limited operations on the data 
values – either with in network or at the interface. 
 
Overview of TinyML 
  
TinyML is a lightweight implementation following some 
of the SensorML ideas that are built on XML.  Appendix A 
has a complete description of the elements defined for 
TinyML, and Appendix B gives the XMLSchema for 
TinyML.  This section provides a basic overview of its 
structure.  The basic platform components relate to 
physical devices, such as the Mica2 platform. 
 
There are a few fundamental elements for TinyML.  The 
first is the concept of a Platform.  A platform consists of a 
basic infrastructure with some type of processor, an energy 
source and a radio or other communication device.  In 
addition to the infrastructure, platforms have sensors 
and/or actuators.  Basic sensors are such things a 
thermistors for temperature readings and microphones for 
sound detection. 
 

A sensor field (TinyML’s term for a collection of sensor 
nodes) is made up of a collection of platforms.  The 
platforms may be uniform or different in their capabilities 
and attributes.  A sensor network also has elements that could 
provide data to link the field to an external reference points.  
An example is a sensor field that has platforms with self 
organizing  location data and a field reference description 
that has a link to GPS data at one or more points.  It is 
possible to have multiple sensor fields grouped together into 
what is called a “super sensor field”.  This allows the ability 
for independent sensor networks to be joined and share data. 
In our first example, the homeowner is attempting to create a 
superSensorField from two sensor fields that have their own 
purpose and implementation.  
 
All the elements mentioned above, as well as the virtual 
sensors and actuators mentioned below, have sub elements 
that provide detailed descriptions and additional information.  
This means descriptions of components in a field can be 
stored and queried. Thus if a user needs to know the details 
of a themistor’s manufacturer or model number, it is possible 
to retrieve it. 
 
There is a query flag, that when set, means the XML file is 
requesting a response from the component.  A query 
indicator can also have an associated start time and duration. 
Many components also have a Set flag.  For actuators, this 
means the XML file has values that set the actuator in some 
way, maybe positioning it.  Set flags also are used to define 
the functions of a virtual sensor described below. 
 
Table 1 provides a high level summary of the attributes and 
goals for SensorML, TinyDB, Cougar and TinyML.  
Essentially, each is different and provides unique features.  
TinyML is unique in it focus with embedded sensor networks 
while dealing with both basic sensors and actuators as well as 
virtual sensors and actuators. Figure 2 shows the potential 
interaction among the four systems.  TinyML is capable of 
providing an interface between TinyDB, Cougar and 
SensorML.  TinyML can also be used to archive sensor 
network data, just as SensorML does.  
 

Virtual Devices  
 
TinyML has the important concept of virtualizing physical 
components.  Virtualization provides the ability to do several 
things.  First, when associated with a platform, a virtual 
sensor or actuator can be created from physical devices.  For 
example, if a platform has a thermistor that provides voltage 
readings as an output, a virtual sensor could be defined that 
would use the platform’s processor to take thermistor output 
and, using calibration information, transform it to Celsius or 
Fahrenheit responses.  Virtual devices can also be a 
collection of sensor outputs or actuator actions.   
 



There are two major types of virtual sensors/actuators: 
those focused on platforms and those focused on sensor 
fields. Platform virtual sensors/actuators are associated 
only with basic sensors and/or actuators on a physical 
platform.  For example, sensor field can have a virtual 
sensor or actuator associated with it. A field virtual sensor 
is an aggregate virtual sensor that can take readings from 
all the same sensors in the field and use a function such as 
Average, Maximum, or Minimum as possible virtual 
sensor output.  Virtual sensors can also be associated with 
groups of sensors in the sensor field.  This creates 
subgroups of platforms that use a function to develop a 
composite value.  For instance, consider a sensor field 
throughout a building.  A field virtual sensor could be the 
temperature sensors in a room providing a single 
temperature reading for the room.  A more sophisticated 
virtual sensor function might use temperature differences 
to determine whether there is a person in the room.  
 
Virtual sensors have a function associated with them.  The 
function defines how a virtual sensor takes data from basic 
physical sensors and transforms it to become output of the 
virtual sensor.  These functions have basic operators, such 
as add subtract, divide and multiply, as well as boolean 
operators for And, Or, Not, etc..  Further, it is possible for 
a virtual sensor to support intrinsic functions such as 
MAX, AVERAGE, etc.   
 
The operators and functions can be performed by the 
physical platform or by the sensor network proxy that 
provides external network connectivity for the sensor 
network.  The actual implementation details will vary for 
operators and functions and could be a predefined list that 
the sensor network supports, a set of library calls or, in 
more complex functions, over the net programming.  The 
implementation is independent of TinyML since it is a 
feature of the network specific part of the TinyML Proxy.  
In this case, it is TinyDB 
 
Consider a sensor network made up of platforms that have 
two sensors on them – represented in the diagrams below 
as a triangle and a circle.  Figure 2a. shows a single 
platform with two sensors.  Figure 2b shows a platform 
where a Virtual sensor is made by combining the output of 
two sensors.  This would be a virtual sensor.  The platform 
virtual sensor would have a function and a list of members 
– in this case the types of sensors that make up the virtual 
sensor.   
 
Field sensors are also virtual sensors, but a more comp lex 
type. They are collections of sensors that exist on different 
platforms, but may not be all the platforms.  Consider that 
a virtual sensor made up of the same sensor on a set of 
platforms – shown in Figure 2c.  This would be a sensor 
field virtual sensor.  Likewise, A sensor field virtual sensor 
could be created from a set of non-uniform sensors on 

collection of platforms as shown in figure 2d.  Finally, as 
shown in Figure 2e, a field sensor may be a collection of 
virtual sensors on different platforms. 

 
 Physical Sensor 1 

– PS1 

Physical Sensor  2 
– PS2 

Virtual 
Sensor  - VS 

Figure 2a – all 
physical Sensors 

Figure 2b – two physical sensors made into 
a virtual sensor 

Field Sensor  
- FS 



  

Platform 1 
 

Platform 2 
 

Platform 3 
 

Platform N 
 

Field Sensor  
 

Figure 2e – a field virtual sensor made up of virtual sensors on different nodes.  This 
requires a list of node ids and the type of sensors to be associated with the virtual 
sensor 

Platform 1 
 

Platform 2 
 

Platform 3 
 

Platform N 
 

Field Sensor  
 

Figure 2c – a field virtual sensor made up of homogeneous physical sensors on 
different nodes.  This requires a list of node ids to be associated with the field senssor 

Platform 1 
 

Platform 2 
 

Platform 3 
 

Platform N 
 

Figure 2d – a field virtual sensor made up of heterogeneous physical sensors on 
different nodes.  This requires a list of node ids, and the sensor types on each node to 
be associated with the field sensor 

Field Sensor 



 SensorML TinyDB/ 
TinySchema 

Cougar TinyML 

Objective  “Functional 
Description … 
not detail” 

Application 
Specific 
Implementations 

Application Specific 
Implementations 

General Sensornet 
descriptions 

Focus Small number of 
platforms and 
sensors  

Single networks 
with large numbers 
of platforms and 
sensors  

Single networks with large 
numbers of platforms and 
sensors  

Multiple networks 
with large numbers of 
platforms and sensors 

Actuators Sensor Planning 
Service 

No No Yes 

Aggregation Sensor 
Collection 
Service 

Yes Within network Virtual Sensors, 
Actuators and Fields 

SensorNets 
Data 
Exchange 

Yes No No Yes 

Routing No Some Query specific routing No 
Query 
Structure 

XML Declarative – SQL 
like 

Simple - “declarative 
query” details left for the 
future 

XML 

Location External to 
sensors 
distributed in 
servers and 
www 

Distributed 
between nodes and 
front-end 

Distributed between nodes 
and front-end 

External to a sensor 
network 

Query 
Processing 

Off nodes Distributed 
between front end 
and www 

Front end Interfaced to the 
Sensor Network by a 
Proxy 

Permanent  Yes – focus on 
archive data 

No method for 
permanent storage 
– but does have a 
basic schema 

No Yes – data definitions 
are usable for archived 
data 

Table 1- A comparison of different interfaces for sensor networks.  This high level comparison explinas what is similar 
and different about TinyML. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Positions TinyML and some other components discussed above in a typical sensor network.  It shows two sensor 
networks, each with a different software implementation being linked by TinyML.  It shows Cougar and TinyDB as 

components of the sensor networks, with the function of providing an interface to get data into and out of the network.  
TinyML can also describe data in a permanent archive just as SensorML can. 

 
TinyML Implementation 
 
Unfortunately, it is not possible to create sensor network 
interfaces that accommodate the simple model presented in 
Figure 1.  Implementing the transparent solution requires 
placing XML into the sensor network itself, which means 
each platform must have the capability to parse, interpret, 
respond and formulate XML.  In other words, creating a 
DOM on each node.  This is not practical with current 
sensor/node limitations.  Furthermore there would be 
significant increases in network traffic and power 
utilization in the implementation – which is counter to the 
dising gols of most embedded networks.. 
 
Placing an interface that translates XML to and from the 
application specific sensor network format is a workable 
solution and one we use to implement our proof of 
concept. Such an implementation uses sensor network 
resources efficiently and also is more straightforward to 
implement.  Until, the Sensor/Platforms are sufficiently 
powerful ,sensor networks will have at least one gateway 
to the outside that is a more standard system (and more 
powerful).  This is likely to continue for some time. So, the 
implementation of using the application or sensor net 
specific interface is sustainable.  It is on this external 
interface that we implement the sensor field Proxy. In our 
case, we chose to use TinyDB as the interface. 
 
Figure 3 shows a more complicated interaction where 
XML travels over the network to a sensor Net interface, is 
changed and then the corresponding sensor net specific 

format is used with the network.  Thi replaces the simple t 
concept in Figure 1. 
 
 
 
 
 

 
 
 
 
 
 

Figure 3 – The actual TinyML implementation of a 
query. 

 
Network Setup and Assumptions 

 
Sensor networks commonly consist of hundreds of spatially 
non-uniformly distributed nodes.  All sensor nodes have the 
same core platform and energy reserves, but may be 
heterogeneous in the sensors contained on each node.  Each 
sensor node has a library set of standard operators, 
mathematical and logical, that are publicly accessible.  For 
example, a node can compute the sum given one or more 
arguments.  

SensorNet 

What is the 
temperature of node 1? 

Node 1 has a 
temperature reading of 
21? Celsius. 

XML 

SensorNet 
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Dir 
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SensorML 

Archive 

                  Cougar TinyDB 
Bcast TinyML Dir Dif 



 
The routing and MAC layers are arbitrary however the 
network is assumed fully connected, as shown below in by 
the inter-node lines.   Communication between nodes is 
symmetrical.  Post-deployment, all nodes initially 
constitute a single sensor field, or a collection of 
collaborating nodes, and identify themselves with that 
default sensor field.  As shown in Figure 4, all nodes are 
initially elements of sensor field SF1.
 

 

Figure 4 – A simple schematic of a sensor field. 

 
  The network has at least one gateway node, 
depicted as the grayed node 1, which provides inter-
network connections, specifically via the Internet.  The 
gateway node consists of a sensor node and a 
computationally-superior unlimited-energy hardware 
platform, commonly a PC.  The gateway maintains a list of 
sensor node ID’s contained in the sensor network.  The 
sensor network and gateway communicate through a 
predetermined syntax and semantics.  The arrangement 
between the TinyDB API and TinyOS TinyDBApp10  
exemplifies this type of design.  The gateway node utilizes 
a sensor network interface, such as TinyDB, to format 
packets into to the predetermined syntax.  The proxy could  
manages message transmission, particularly for messages 
that exceed the data payload limits of one packet.  The 
proxy may also contain a query generator that translates 
queries to the proper syntax and semantic meaning 
understood by a sensor node.  Again, TinyDB exemplifies 
this functionality.  Importantly, the sensor network, by 
definition, includes the proxy and query generator software 
modules. 
 
Applying TinyML 
 

Core Functions 
 
A common procedure exists for querying a TinyML-
enabled sensor network, independent of the type and 
specific knowledge of the sensor network.  A query is 
initiated by a remote user, either a human or external 

network, via a proxy.  Despite the details of the remote user, 
any remotely-initiated query is first translated by the user’s 
Proxy-to-DOM translator into a Document Object Model 
(DOM) following the TinyML schema.  The Proxy -to-DOM 
translator converts the remote user’s syntax and semantics to 
a generic DOM.  The Proxy -to-DOM translator is proxy-
specific and, if applicable, query-generator-specific.  The 
proxy and Proxy -to-DOM translator must provide methods 
for handling and translating, respectively, all valid TinyML 
elements (simple and complex) and applicable attributes.  
Our prototype utilized the org.w3c.dom package in the 
J2SE1.4.2 API to parse a set of input strings (“light”, “temp”, 
etc…) from the prototype GUI to the correct TinyML-based 
DOM elements.  In this case, the remote user proxy is the 
GUI since it translates queries. 
 
Once the DOM is created, it is exported as an XML file with 
an XML-to-DOM parser and validated with the TinyML and 
GML schemas.  The conversion to XML file format is a 
generic process and can be performed by any common utility.  
Our prototype utilized the standard java and javax packages 
in the J2SE1.4.2 API.  If the validation fails, the query will 
fail back to the Proxy -to-DOM translator and requires 
modification.  Else, the query is transferred to the destination 
gateway node.   
 
Note that in all the components, the direction of translation is 
reversible.  Hence, there is a Proxy -to-DOM interfaced with 
both the GUI Proxy and the sensor network Proxy.  The GUI 
Proxy parses and prepares requests from an entity such as a 
person.  On the outbound, the Proxy -to-DOM converts the 
GUI Proxy format into a DOM.  At the sensor network, the 
process is inbound where the Proxy -to-DOM converts DOM 
to the particular format needed by the sensor network proxy.  
This reverses when the sensor network replies to the query.  
Then the sensor network Proxy -to-DOM is processing an 
outbound message and the GUI Proxy -to-DOM is processing 
an inbound message.  Thus, there is a great deal of similarity 
in the code for either the GUI or Sensor network Proxy -to-
DOM. 
 
The means for transport of the TinyML formatted document 
are application specific.  The prototype utilizes a generic 
TCP client/server connection implemented through the 
java.net package of the J2SE1.4.2 API.  Our example utilizes 
a persistent server connection, though other approaches are 
viable.  File transfer reliability and quality of service are left 
to the underlying protocols of the transport methods.   
 
Once the transfer completes, the gateway node follows the 
reverse process as at the remote user.  The figure below 
shows the local gateway node modules and sensor nodes. 
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Figure 5 – The architecture of the sensor network side 
of TinyML.  A sensor network is defined by a collection 
of sensor nodes and their proxy/query generator.  The 
XML-to-DOM component is generic – that is it is only 
implemented once.  The Proxy-to-DOM component 
needs to be specific to the sensor network proxy. 

 
The XML file is parsed into a DOM structure via a generic 
XML-to-DOM parser.   The DOM is then converted to the 
proxy/query-generator-specific structures and 
representations using a Proxy -to-DOM translator, 
referencing the TinyML and GML schemas.  This Proxy -
to-DOM translator may be different from the originating 
translator if the networks are from separate vendors or 
have different query-generators, such as Cougar and 
TinyDB.  
 
At this point, the query is at the edge of the sensor 
network, by definition. In response to the query, the local 
proxy must return a valid response.  At the time of this 
writing, valid responses are: null (rejection of query) or a 
returned value in the data type specified by the TinyML 
schema.  The null response is utilized by a local proxy in 
the situation a query can not be completed any further, 
such as a query destination that does not exist in the sensor 
network.  If the query can proceed, then the three cases 
below describe the following events. 
 

Back to the Homeowner 
 
Notice that there is a relatively simple way for our 
homeowner to set up his system.  If the two manufactures 
provide a TinyML interface to their gateways, all is well 
land the homeowner creates a simple control program to 
send XML queries and actions.  If not, then the homeowner 
only has to implement one TinyML component, a customer 
Proxy-to-DOM for the sensor network proxy.  The XML-
to-DOM component in Figure 6 is generic and will work 
with any interface. However, because there are standard 
tools available, this should be relative straight forward. 
 

Scenarios 
 
In order to better understand how a facility such as TinyML 
would work, it is instructive to think of some typical uses of 
such a system.  Below are three use cases that demonstrate 
how a user might gather data from a sensor that support 
TinyML. 
 

Scenario 1: Basic Sensor Request in a  
Standard Identity Network 

 
The standard identity is the minimal sensor node state 
configuration that a TinyML-enabled network can possess.  
The node must have a default sensor field to which it is a 
member.  Each node must also contain valid values for the 
required Platform sub-elements: PlatformCharacteristics, 
BasicSensor(s), and BasicActuator(s) and all the respective 
required sub-elements as defined by the TinyML schema.  By 
definition, a Standard Initial Identity does not contain any 
FieldSensors, FieldActuators, VirtualSensors, or 
VirtualActuators.   
 
In this simplest case, the remote user queries the thermistor 
basic sensor at node 4 in sensor field 1 by setting the basic 
sensor subelement QFlag (see TinyML schema) under the.  
Following the core procedures, the query is at the edge of the 
sensor network at the gateway node 1.  The gateway injects 
the query into the network since the destination is a valid 
sensor node.   
 
Upon reception, node 4 processes the query as per the 
predetermined syntax and semantics with the gateway.  In 
this case, node 4 knows which ADC channel to poll for the 
“thermistor” since the standard identity mandates defining 
this information.  Node 4 returns to the gateway the Qflag tag 
as true and the value as ADC reading; subsequently the 
message returns to the remote user through the established 
socket connection.   
 
The situation may occur where node 4 does not contain this 
basic sensor.  Since the gateway only manages the sensor 
node ID’s and not the basic sensor(s) or virtual component(s) 
on each node, it is plausible that the gateway forward a query 
that can not be fulfilled.  It is the responsibility of each 
TinyML-enabled sensor node to provide a null response in 
the event of such a query.  Specifically, the sensor node 
returns the Qflag value as true, since the query was accepted, 
but the value is set to null. 
 

Scenario 2: Virtual Sensor Query in a  
Virtualized Identity Network 

 
A virtualized identity contains virtual components in addition 
to the standard identity.  As an example, the remote user 
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queries an “occupancy” virtual sensor at node 4 in sensor 
field 1 by setting the “get” element.  Assume node 4 has a 
pyroelectric basic sensor (a pyroelectric sensor is a 
specialized infrared sensor) in addition to the thermistor.  
Assume the “occupancy” virtual sensor function calculates 
the value of this virtual sensor by performing a set of 
logical operations on the two basic sensor values.  
Following the core procedures, the query is at the edge of 
the sensor network at the gateway node 1.  The gateway 
injects the query into the network since the destination is a 
valid sensor node.   
 
Upon reception, node 4 processes the query as per the 
predetermined syntax and semantics with the gateway.  
Again, node 4 knows which ADC channels to sample.  
Node 4 also knows the logical mathematical operations to 
perform as defined by the virtual sensor function.  The 
“occupancy” value is returned to the gateway, and 
subsequently returned to the remote user through the 
established socket connection.  Like the basic sensor query, 
the Qflag is  also returned true. 
 
Like the previous case, the situation may occur where node 
4 does not contain this virtual sensor.  Again, it is the 
responsibility of each TinyML-enabled sensor node to 
provide a response in the event of such a query, the null 
response.  Unlike the basic sensor query, the gateway has a 
second option to obtain the virtual sensor sample as 
described in the next scenario. 
 

Scenario 3: Virtual Sensor Query in a  
Standard Identity Network 

 
The problem was presented in the previous scenario that a 
node is queried for a non-existent virtual sensor.  Assume 
that the “occupancy” virtual sensor is not defined at node 
4.  The first valid response by the node is a null return 
value with a true Qflag.  Null responses allow a node to 
communicate to the gateway that although the query was 
received, the virtual sensor does not exist.   
 
When the null value and true Qflag tuple is received at the 
gateway, the gateway can elect to initiate a virtualization 
with the sensor node if the virtual sensor function is 
defined at the gateway.   The gateway node first queries the 
sensor node for permission to initiate a virtualization.  To 
do so, the gateway sends virtual sensor query again, but 
with the Sflag subelement set instead of the Qflag and the 
number of operations to send in the function subelement.  
If the sensor node does not permit virtualization, the Sflag 
is returned false.  Otherwise, the sensor node returns a true 
Sflag signifying it is willing and ready to accept 
virtualization.   
To virtualize the sensor node, the gateway passes the 
virtual sensor function (see TinyML schema) operations 

and operation number (from the total number of operations) 
to the sensor node, who then defines a new function 
appropriately.  For example, the “occupancy” virtual sensor 
function initially needs to compute the temperature in 
degrees Fahrenheit from the thermistor voltage value.  
Assuming a linear relationship between the voltage and 
temperature, the gateway passes the instruction to the sensor 
node as a new variable name (temperature), a tuple of 
arguments (thermistor and a coefficient) and the 
multiplication operator.  The sensor node defines and assigns, 
utilizing its library of mathematical operators, the 
temperature variable to the product of the thermistor voltage 
reading and the coeffiecient.  This process continues until the 
total number of operations are received and the new 
“occupancy” virtual sensor function is complete.  After 
receiving the last instruction, the sensor node returns a true 
Sflag signifying the completed virtual component.  Finally, 
the gateway can again query node 4 for the “occupancy” 
virtual sensor. 
 
A second situation may arise where “occupancy” virtual 
sensor is not defined at the gateway.  Here, the initial null 
response passes through the gateway to the remote user.  
Identical to the gateway-initiated virtualization, the remote 
user can virtualize the sensor node using the same process of 
sending instructions.   
 
This virutalization process can be repeated an arbitrary 
number of times for virtualized nodes that lack a specific 
virtual sensor.  In this manner, virtual components enable a 
sensor network to evolve in a piecewise fashion, bounded 
only by the basic sensors and library of operators on each 
node.    
 
Proof of Concept Implementation  
 
In order to prove the concepts discussed in the paper, a 
simple version of a TinyML based query/response system 
was created.  The system used the XML Schema presented in 
Appendix B as the description of TinyML.  The sensor 
network consisted of Mica2 platforms running Tiny OS 
version 1.1.  Each platform had a basic thermistor and 
photosensor on it.  The sensor network used TinyDB, from 
that TinyOS release as the sensor network proxy and query 
generator.  The TinyML components were created using 
Java, in the details are discussed above. 
 
This prototype had the GUI query generator running on one 
PC, and transferred XML across the Internet to a PC running 
TinyDB, the TinyML XML-to-DOM, and Proxy -to-DOM 
components.  Simple queries were demonstrated.  The code 
for the components, along with the TinyML schema are 
available on the project web site. 
 



Summary 
 
The goal of this project is to investigate the issues involved 
with the creating a general interface, TinyML, that 
facilitates two way interaction between an internet users 
and a set of sensors, as well as interactions between sensor 
networks themselves.  The project surveyed likely existing 
systems that partially met these goals, and determined none 
were sufficient for sensor networks.  
 
TinyML was conceived and created in order to explore the 
interface between sensor nets and the internet services in a 
way the appropriately partitions and assigns data synthesis 
and control to the network and the standard servers in the 
most effective manner.   
 
GML and GML-based SensorML markup languages 
schemas currently have a focus for satellite-based sensor 
coordination for global location services.  These interfaces 
rely on certain characteristics/needs that differ in the 
following ways from mote-centric wireless sensor 
networks. 
 
The project addressed the need for such an embedded 
sensor network standardized “markup language” for intra-
network, as well as inter-network, communication is 
apparent as more systems are deployed.  
 
The project created the TinyML schema including the 
concept of virtual sensors and actuators and implemented 
the necessary components to enable a working prototype.  
Future work is to full evaluate the TinyML schema for 
robustness by implementing one or more really application 
interfaces using TinyML.  Additionally, performance study 
and optimization are needed, as is the inclusion of more 
advanced XML and Web Services functions.  Nonetheless, 
TinyML is a significant step forward in making sensor 
networks more accessible to the non-expert user and for 
archiving the data retrieved from senor networks in a self 
documenting manner. 
 
 
 
 



Appendix A Table of Elements 
 
Element Description 
superSensorField  A collection of sensor fields. 
SensorField  A basic sensor network – consisting of platforms, sensors and actuators and reference data 
Platform  The basic physical platform in a sensor field, which contains processing and communication 

elements.  It may also contain on or more sensors and actuators.  An example is the MICA ‘mote” 
BasicSensor  A basic physical sensor that is attached to a platform. It is identified by type.  
BasicActuator  A basic physical actuator that is attached to a platform.  It is identified by type. 
FieldReference  Appearing once in a Sensor Field, this is location information that may be used to connect the 

sensor  information to the real world reference.  An example would be a node with GPS location 
ability. 

FieldDescription A description of a sensor field  consisting of routing description, a field description and other 
information 

FieldSensor This is a virtual sensor associated with a set of sensors on different platforms in a sensor field.  
These could be basic sensors or virtual sensors. An example is getting the average temperature 
value for an entire sensor field. 

FieldActuator  This is a virtual actuator associated with a set of actuators on different platforms in a sensor field.  
These could be basic actuators or virtual actuators.  

VirtualSensor  A virtual physical sensor that is associated with one or more basic sensors on a platform. The 
virtual sensor performs a transformation on physical sensor data according to a function.  An 
example is a virtual sensor that transforms a thermistor value (with calibration) into a reading in 
Celsius.   

VirtualActuator  A virtual physical actuator that is associated with one or more basic actuators on a platform. The 
virtual actuator performs a transformation on physical actuator according to a function.  An 
example is a virtual actuator that ????   

Query  A complex flag that is  associated with a number of elements.  If set to TRUE, then the fields 
associated with the flag are returned.  This allows any element in the sensor field to be queried.  
Query has an optional start and duration time. 

SetFlag  A complex Boolean flag that is associated with a number of elements.  If set to TRUE, and the 
element is settable, then the fields associated with the flag are set to the provided value(s).  
Examples of use are setting the function associated with a virtual sensor or setting the values of an 
actuator. SetFlag also has a start time and duration. 

Type  A general element the definition for the type of a component or element.  This could be a 
manufacturers part number or a specification that indicates the type of  a photo sensor. 

Vendor  A general element describing the vendor of the component.  This element consists of Vendor 
Description and a Universal Resource Indicator (URI).  

Range  A description of the range or a sensor or actuator.  It is composed of a distance measure and the 
units used. 

Accuracy  Describes the accuracy of a component. 
Location  The location of the parent element.  It can be either absolute or relative coordinates.  
Orientation  The orientation description for a platform, sensor or actuator.  It is in one of several formats 
Hardware  An element that describes the hardware of a platform.  It could consist of descriptions for  

processor, radio and energy source.  
Software  The software associated with a platform.  This includes the OS description and the version. 
Function  The function specification for a virtual sensor or actuator, including field sensors and actuators.  

This function can be either preset or specified by a user if allowed. 
SpanofMembers  A list that is used to describe a virtual sensor  actuators and other composite components. 
Coordinates  An element that describes coordinates for several other elements.  It consists of an X and Y values, 

and possibly a Z and timestamp. 
Datavalues  The element for any data values from a sensor or actuator.  Data values can be integer, floating 

point or string. 
CurrentSettings  The current setting of an actuator. 
Timestamp  A timestamp for data value readings and settings and for query responses 



EnergySource  The energy source of a platform.  Components are the Power level and Source Description 
ID  The ID field for a component.  This is used by sensor fields, and platforms primarily 
ModelDecription  The platform model  as part of the description of the platform.   
Absolute  One of three types of orientation specifications.  This is in absolute X, Y, Z values 
Quatenion  Quaternions extend the concept of rotation in three dimensions to rotation in four dimensions. This 

avoids the problem of "gimbal-lock" and allows for the implementation of smooth and continuous 
rotation.  In effect, they may be considered to add a additional rotation angle to spherical 
coordinates ie. Longitude, Latitude and Rotation angles that are calculated from the combination of 
the three coordinates of the rotation axis and the rotation angle. 

Euler  An orientation specification in Eulian angles – Pitch, Roll and Yaw 
Xvalue  A value representing an X value  
Yvalue  A value representing an Y value 
Zvalue  A value representing an Z value 
Svalue  A value representing an S value for a quaterion description of the orientation 
Pitch  The angle relative to the X axis (e.g. on an aircraft the axis defined by the wings) 
Roll  The angle relative to the Y axis (e.g. on an aircraft the axis defined from tail to nose) 
Yaw  The angle relative to the Z axis (e.g. on an aircraft the axis defined by pointing up) 
Value-int  An integer value – a sub element of Datavalues 
Value-flt  A floating point value – a sub element of Datavalues 
Value-string  A string value – a sub element of Datavalues 
Processor  An element describing a processor on a platform – consisting of a description and speed 

specification 
ProcessorSpeed  The clock rate of a processor 
ProcessorDescription  The description of a processor  
Radio  An element to describe a radio on a platform 
Routing A description of the routing of a sensor field 
Reference  A reference description of a sensor field 
OtherInformation A description of the other information related to a sensor field 
Units  A string describing the units of a range or value. 
PowerLevel  The power level of an energy source on a platform 
SourceDescription  A description of an energy source.  Examples include  battery or photo  
OSDescription  The operating systems description. 
Version  A string description of the version (for the software, hardware, etc. 
RelativeLocation  The relative location of a platform or other component 
AbsoluteLocation  An absolute location of a platform or other component 
Distance  The distance of a range specification 
Qflag The Boolean flag associated with a query Request 
StartTime The time a query is supposed to start (for a request) or time it did start (for a response). 
Duration The duration of a query request 
Date The date of a time stamp  
Time The time of a time stamp  
VendorDescription  The string description of a vendor 
URI A Universal Resource Indicator – the XML version of a URL. 
 



Appendix B TinyML XMLschema Listing 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Bill Kramer (UCB) --> 
<?xmlspysps C:\Program Files\Altova\XMLSPY2004\Examples\ExampleSite\examplesite.sps?> 
<xs:schema xmlns:gml="http://www.opengis.net/gml" 
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 
 <!-- ======================================================================= 
           includes and imports  
      ============================================================================ --> 
 <xs:import namespace="http://www.w3.org/2001/XMLSchema" 
schemaLocation="http://www.w3.org/2001/XMLSchema"/> 
 <xs:import namespace="http://www.isotc211.org/iso19115/" 
schemaLocation="D:\Data\School\CS 294-Embedded 
Networks\Project\tinyML_files\iso19115\0.1.21\iso19115.xsd"/> 
 <!-- ======================================================================= 
           The set of Sensor Fields  
      ============================================================================ --> 
 <xs:element name="superSensorField"> 
  <xs:annotation> 
   <xs:documentation>A collection of sensor fields</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="SensorField" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <!-- ======================================================================= 
          Funduamental set of platforms and fields  
      ============================================================================ --> 
 <xs:element name="SensorField"> 
  <xs:annotation> 
   <xs:documentation>SensorField is the root element</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="Platform" maxOccurs="unbounded"/> 
    <xs:element name="FieldDescription" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="Routing" type="xs:string" 
minOccurs="0"/> 
       <xs:element name="Reference" minOccurs="0"/> 
       <xs:element name="OtherInformation" 
type="xs:string" minOccurs="0"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element name="ID"/> 
    <xs:element ref="Query" minOccurs="0"/> 
    <xs:element ref="FieldActuator" minOccurs="0"/> 
    <xs:element ref="FieldSensor" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 



 </xs:element> 
 <!-- ======================================================================= 
         Elements that make up a sensor field       
         ============================================================================ -
-> 
 <xs:element name="Platform" abstract="false"> 
  <xs:annotation> 
   <xs:documentation>Platform object </xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Sensor" minOccurs="0" maxOccurs="unbounded"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element ref="BasicSensor" minOccurs="0" 
maxOccurs="unbounded"/> 
       <xs:element ref="VirtualSensor" minOccurs="0"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element name="Actuator" minOccurs="0"> 
     <xs:complexType> 
      <xs:choice> 
       <xs:element ref="BasicActuator"/> 
       <xs:element ref="VirtualActuator"/> 
      </xs:choice> 
     </xs:complexType> 
    </xs:element> 
    <xs:element ref="Location" minOccurs="0"/> 
    <xs:element ref="Orientation" minOccurs="0"/> 
    <xs:element name="PlatformCharacteristics" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element ref="Vendor" minOccurs="0"/> 
       <xs:element ref="Software" minOccurs="0"/> 
       <xs:element name="ID" type="xs:string" 
minOccurs="0"/> 
       <xs:element ref="Hardware" minOccurs="0"/> 
       <xs:element name="ModelDescription" 
type="xs:string" minOccurs="0"> 
        <xs:annotation> 
         <xs:documentation>A description of 
model/attributes/version</xs:documentation> 
        </xs:annotation> 
       </xs:element> 
       <xs:element ref="Query" minOccurs="0"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element ref="Query" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="FieldReference" abstract="false"> 
  <xs:annotation> 
   <xs:documentation>For providing geolocation models</xs:documentation> 
  </xs:annotation> 



  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="Location"/> 
    <xs:element name="LinktoRealWorld" type="xs:string" minOccurs="0"/> 
    <xs:element name="HowDetermined" type="xs:string" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="FieldSensor"> 
  <xs:annotation> 
   <xs:documentation>A virtual sensor that incorporatessensors across the 
entire field</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Get" type="xs:boolean" default="false" 
minOccurs="0"/> 
    <xs:element ref="Query" minOccurs="0"/> 
    <xs:element ref="Datavalues" minOccurs="0"/> 
    <xs:element ref="Type" minOccurs="0"/> 
    <xs:element ref="Function"/> 
    <xs:element ref="Range" minOccurs="0"/> 
    <xs:element ref="Accuracy" minOccurs="0"/> 
    <xs:element ref="SpanofMembers" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="FieldActuator"> 
  <xs:annotation> 
   <xs:documentation>A virtual actuator that incorporatessensors across the 
entire field</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="SetFlag"/> 
    <xs:element ref="Setvalues" minOccurs="0"/> 
    <xs:element ref="Type" minOccurs="0"/> 
    <xs:element ref="Function"/> 
    <xs:element ref="Range" minOccurs="0"/> 
    <xs:element ref="Accuracy" minOccurs="0"/> 
    <xs:element ref="SpanofMembers" minOccurs="0"/> 
    <xs:element name="Coordinated" type="xs:boolean" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <!-- ======================================================================= 
    Sensor and Actuator Models  
 ========================================================================== --> 
 <xs:element name="BasicSensor" abstract="false"> 
  <xs:annotation> 
   <xs:documentation>Physical Sensor object</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="Query" minOccurs="0"/> 
    <xs:element ref="Datavalues" minOccurs="0"/> 
    <xs:element ref="Orientation" minOccurs="0"/> 



    <xs:element ref="BasicActuator" minOccurs="0"/> 
    <xs:element name="SensorCharacteristics" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element ref="Query" minOccurs="0"/> 
       <xs:element name="Vendor" type="xs:string" 
minOccurs="0"/> 
       <xs:element ref="Type" minOccurs="0"/> 
       <xs:element ref="Accuracy" minOccurs="0"/> 
       <xs:element ref="Range" minOccurs="0"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="BasicActuator"> 
  <xs:annotation> 
   <xs:documentation>Physical Actuator object</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="Query" minOccurs="0"/> 
    <xs:element ref="Setvalues"/> 
    <xs:element ref="Orientation" minOccurs="0"/> 
    <xs:element name="AcutatorCharacterisitcs" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element ref="Query" minOccurs="0"/> 
       <xs:element ref="Vendor" minOccurs="0"/> 
       <xs:element ref="Type" minOccurs="0"/> 
       <xs:element ref="Accuracy" minOccurs="0"/> 
       <xs:element ref="Range" minOccurs="0"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element ref="SetFlag" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="VirtualSensor"> 
  <xs:annotation> 
   <xs:documentation>A combination of Sensor objects </xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="Query"/> 
    <xs:element ref="Datavalues" minOccurs="0"/> 
    <xs:element ref="Function"/> 
    <xs:element ref="SpanofMembers" minOccurs="0"/> 
    <xs:element name="SensorCharacteristics" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element ref="Query" minOccurs="0"/> 
       <xs:element name="Vendor" type="xs:string" 
minOccurs="0"/> 
       <xs:element ref="Type" minOccurs="0"/> 



       <xs:element ref="Accuracy" minOccurs="0"/> 
       <xs:element ref="Range" minOccurs="0"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element ref="SetFlag" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="VirtualActuator"> 
  <xs:annotation> 
   <xs:documentation>A combination of Actuator objects</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="Setvalues" minOccurs="0"/> 
    <xs:element ref="Type" minOccurs="0"/> 
    <xs:element ref="Function"/> 
    <xs:element ref="Range" minOccurs="0"/> 
    <xs:element ref="Accuracy" minOccurs="0"/> 
    <xs:element ref="SpanofMembers" minOccurs="0"/> 
    <xs:element name="Coordinated" type="xs:boolean" minOccurs="0"/> 
    <xs:element ref="SetFlag" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <!-- ======================================================================= 
 Boolean Flags  
 ========================================================================== --> 
 <xs:element name="SetFlag"> 
  <xs:annotation> 
   <xs:documentation>A binary flag that if true - sets the value or 
funciton</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="SFlag" type="xs:boolean" default="false"/> 
    <xs:element name="StartTime" type="xs:time" minOccurs="0"/> 
    <xs:element name="Duration" type="xs:duration" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Query"> 
  <xs:annotation> 
   <xs:documentation>This si a generalized flag for a query</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="QFlag" type="xs:boolean" default="false"/> 
    <xs:element name="StartTime" type="xs:dateTime" minOccurs="0"/> 
    <xs:element name="Duration" type="xs:duration" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <!-- ======================================================================= 
 General Global Elements  
 ========================================================================== --> 



 <xs:element name="Type" type="gml:stringOrNull"> 
  <xs:annotation> 
   <xs:documentation>Generic type - a string identifier</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Vendor"> 
  <xs:annotation> 
   <xs:documentation>Vendor Decrtiption - a string 
identifier</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="VendorDescription" type="gml:stringOrNull" 
minOccurs="0"/> 
    <xs:element name="URI" type="xs:anyURI" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Location"> 
  <xs:annotation> 
   <xs:documentation>Location - relative and/or absolute</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="RelativeLocation"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element ref="Coordinates"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element name="AbsoluteLocation" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element ref="Coordinates"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Hardware"> 
  <xs:annotation> 
   <xs:documentation>Hardware description</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Radio" type="xs:string" minOccurs="0"/> 
    <xs:element name="Processor"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="ProcessorSpeed" type="xs:integer" 
minOccurs="0"/> 
       <xs:element name="ProcessorDescription" 
type="xs:string"/> 
      </xs:sequence> 
     </xs:complexType> 



    </xs:element> 
    <xs:element ref="EnergySource" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Software"> 
  <xs:annotation> 
   <xs:documentation>Software description</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="OSDescription" type="xs:string" minOccurs="0"/> 
    <xs:element ref="Version" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Version" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Version Number - a string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Accuracy" type="xs:float"> 
  <xs:annotation> 
   <xs:documentation>Accuracy - a number</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Function" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Function - a string descriptor</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="SpanofMembers"> 
  <xs:annotation> 
   <xs:documentation>Components of a virtual sensor or 
actuator</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Nodeslist" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="ID" type="xs:ID" 
maxOccurs="unbounded"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element name="Sensorlist"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="SensorType" type="xs:ID" 
maxOccurs="unbounded"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 



 <xs:element name="Coordinates"> 
  <xs:annotation> 
   <xs:documentation>X,Y,Z coodinate Values</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="Xvalue" type="xs:float"/> 
    <xs:element name="Yvalue" type="xs:float"/> 
    <xs:element name="Zvalue" type="xs:float" minOccurs="0"/> 
    <xs:element name="Units" type="xs:string" minOccurs="0"/> 
    <xs:element ref="Timestamp" minOccurs="0"/> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Datavalues"> 
  <xs:annotation> 
   <xs:documentation>Reading of a sensor Value</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Timestamp" type="xs:dateTime" minOccurs="0"/> 
    <xs:element name="Value-int" type="gml:integerOrNullList" 
minOccurs="0" maxOccurs="unbounded"/> 
    <xs:element name="Value-flt" type="gml:doubleOrNullList" 
minOccurs="0" maxOccurs="unbounded"/> 
    <xs:element name="Value-string" type="gml:stringOrNull" 
minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Setvalues"> 
  <xs:annotation> 
   <xs:documentation>Reading of a actuator seting </xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Timestamp" type="xs:dateTime" minOccurs="0"/> 
    <xs:element name="value-int" type="gml:integerList" minOccurs="0" 
maxOccurs="unbounded"/> 
    <xs:element name="value-flt" type="gml:doubleList" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Timestamp"> 
  <xs:annotation> 
   <xs:documentation>Time Stamp</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Date" type="xs:date" minOccurs="0"/> 
    <xs:element name="Time" type="xs:time"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="EnergySource"> 
  <xs:annotation> 



   <xs:documentation>The elements associated with power</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Units" type="xs:string" default="Joules" 
minOccurs="0"/> 
    <xs:element name="PowerLevel" type="xs:integer" minOccurs="0"/> 
    <xs:element name="SourceDescription" type="xs:string"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Orientation"> 
  <xs:annotation> 
   <xs:documentation>Orientation using Euler Coordinates X,Y,Z (Pitch, Yaw, 
Roll in Aeronautics terms</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Absolute" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="Xvalue" type="xs:integer"/> 
       <xs:element name="Yvalue" type="xs:integer"/> 
       <xs:element name="Zvalue" type="xs:integer"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element name="Quatenions" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="Xvalue" type="xs:integer"/> 
       <xs:element name="Yvalue" type="xs:integer"/> 
       <xs:element name="Zvalue" type="xs:integer"/> 
       <xs:element name="Svlaue" type="xs:integer"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element name="Euler" minOccurs="0"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="Pitch" type="xs:integer"/> 
       <xs:element name="Roll" type="xs:integer"/> 
       <xs:element name="Yaw" type="xs:integer"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element ref="Query" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Range"> 
  <xs:annotation> 
   <xs:documentation>Range of a Sensor</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="Unit" type="xs:string" minOccurs="0"/> 



    <xs:element name="Distance" type="xs:float" minOccurs="0"/> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
</xs:schema> 
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