
TinyML: Meta-data for Wireless Networks

Nathan Ota
Berkeley Manufacturing Institute

University of California at Berkeley
Email: nota@kingkong.me.berkeley.edu

William T.C. Kramer
Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley, CS 94720
Phone: 510-486-7577

Email: kramer@nersc.gov

Abstract

The growing number of deployed heterogeneous networks
and applications is resulting in a sporadic isolated
embedded sensor network environment. The TinyML
project addresses the need for an embedded sensor
network standardized “markup language” for intra-
network, as well as inter-network, communication. The
GML-based SensorML (SML) markup language provides a
sensor-centric approach for satellite-based sensor
coordination for global location services. However, SML
relies on characteristics that differ from embedded
wireless sensor networks, such as scale, hardware, energy,
and infrastructure. TinyML focuses exclusively on
embedded sensor network features, constraints, and
capabilities. TinyML is capable of leveraging the
flexibility of XML data structures with embedded sensor
network reprogrammability. We present the concept of
virtual sensors and actuators and implemented the
necessary components to overcome the SML deficiencies.
TinyML is a step forward in making sensor networks more
accessible to the non-expert user and for archiving data
retrieved from senor networks in a self-documenting
manner.

Introduction

Embedded sensor networks are rapidly becoming a
mainstay in many areas. Currently, these networks are
custom assembled for specific applications. The
applications entail complicated software, one of a kind
combinations of hardware and unique deployment details.
But take a moment to imagine the future.

A new homeowner wants to instrument his home to
monitor and control temperature and manage the locks on
his doors and windows. He determines the best value
temperature control sensor network system is from
RadioHut, while the best solution for this locking system is
from HomeDump. Of course these two sensor systems,
from different vendors, and are implemented with entirely
different technology.

Now, Mr. Homeowner tries to integrate the two systems
because he wants locking system to be able to react if the
temperature system detects the presence of people in the
room. He method is to have the temperature readings
approximate the presence of a warm body. If a person is
detected in a room at the proper times, the locks on the
windows and doors open. In order to do this, he has to
interface to both systems, then integrate the data from the two
systems and generate commands to the locking system.
Rather than deal with two different interfaces, data
definitions and infrastructures, our Homeowner decides to
use TinyML for this integration and control task since it has
the capability to provide a generalize interface to any sensor
network. Fortunately, both manufacturers support TinyML
in addition to their proprietary interfaces. Because TinyML is
based on XML, our Homeowner also has the ability to use
many other tools manipulate, transform and manage his data,
including translation to Web data and databases.

As sensor networks become more prolific, the need for
methods to retrieve the data save the data in understandable
formats, set aspects of the network and understand the
parameters of the network will grow. Furthermore, today,
each sensor network has its owns way to interface and
retrieve data values. In the future, it will become critical for
sensor networks to have simple ways to interface to standard
web methods. This will enable many users to access data in a
sensor net. Access should be archived or real time with the
same methods as accessing archive data.

In the future, it will be imperative to be able to exchange and
manage data from multiple sensor nets. Since it is likely
most serious applications will have multiple sensor networks
involved in their deployment, it is key to have the ability to
easily interface between networks, and to facilitate the ability
for data to flow between the components of the networks.

Figure 1 shows what a user (person or program) of a
sensor network desires in the future. In essence they
want to make a simple query of the sensor network in
terms they can understand and receive back the
information in the format they requested.

Markup Languages

Markup Languages have benefits of generalizing how
information is organized and interpreted. This is most
widely shown in the HyperText Markup Language
(HTML) that is the lingua franca of the Web. Now there
are new, improved markup languages defined that extend
the concept of HTML and improve many features. These
new ML’s are the underlying basis for “Web Services” just
as HTML was the basis for the browsers of the first
generation Web.

A major goal of this work is to make use of this new
technology to access and store data from embedded sensor
networks, as well as controlling them as well.

XML

The Extensible Markup Language (XML)1 is designed to
organize working with and exchanging data in a structured
manner on the Web. It is a standard set by the World Wide
Web Consortium (W3C). “Extensible” means that the
standard is very simple, but very flexible. It is designed to
create tree relationships with data, originally for document
descriptions. Because XML is ext ensible and flexible, it is
being used in many ways, well beyond its original goal of
describing written documents.

XML files have to be well formed and valid2. An XML
file definition is called an XMLSchema (or the older style
Document Type Definition - DTD). The XMLSchema
describes how data is organized and what is allowable for
valid data. It defines elements that can have attributes,
default values, data types, and other features. Elements
can be simple, or consist of other elements and attributes –
therefore becoming complex. Applications are created by

defining an XML Schema, and then using either common
tools or custom code to transform the data. Using standard
API's for XML, it is possible to use the Simple API for XML
(SAX) for sequential one time parsing of XML or the
Document Object Model (DOM) for random access parsing.
XML is designed with the future in mind. Thus many of the
evolving Web Services, such as 6h4 Simple Object Access
Protocol (SOAP)3, can use XML as their underlying
descriptions.

GML

The Geographic Mark Language (GML)4 is an XML based
schema focused on the defining geographic and graphical
information. This is a building block of other Markup
Languages, including SensorML

GML is designed for modeling, exchanging , and storing
geographic information by providing a the ability to describe
geography including features, coordinate reference systems,
geometry, topology, time, units of measure and generalized
values.5 GML support complex geometries, spatial and
temporal reference systems, topology, units of measure,
metadata, gridded data, and default styles for feature and
coverage visualization. There are also packaging tools to
create custom GML Schemas from the core XMLschemas.

Sensor Markup Languages

SensorML

SensorML6 was created to handle data dissemination for
satellite and other sensor networks. It defines a data schema
that describes the geometric, motion characteristics and
observations of a sensor7 and is one of the first attempts to
make a generalized sensor oriented Markup Language
implementation using GML. SensorML is primarily
designed for complex sensor platforms with a relatively few
sensors but the sensors have a relatively large data flow.
SensorML is also oriented on platforms that have complex
positioning characteristics, such as satellites. Finally,
SensorML is oriented to provide a structure for archived
sensor data- including data in databases.

SensorML does not really have the concept of an actuator in
the context of we use them in sensor networks. Rather it it
has the concept of “Sensor Planning Services” who defines a
way for a user to exrpress the desire to reserve and
manipulate a sensor platform. An example of this is a
scientist making a request to have a satellite positioned in a
certain way

It is possible to consider using SensorML for sensor
networks, but the resulting system may be overly complex

SensorNet

What is the
temperature of node 1?

Node 1 has a
temperature reading of
21? Celsius.

for current sensor networks. Further, SensorML is not yet
released for general use until it is approved as a standard.
Currently there are only reference implementations out for
comment.

SensorML does not have the full concept of in-network
processing. Rather, it has element definitions “Sensor
Collection Services” that provide collected (observed)
values. The Sensor Planning Service is a way for a
acquisition request to be indicted. Once requested, there is
a Web Notification Service that is used to alert requestors
and other things from the Sensor Planning Service

Cougar

Cougar8 is a method of handling queries for sensor
networks. The major aspects of this are that queries are
processed with a “query optimizer” that generates a query
that is efficient on the particular network, reducing the use
of network resources. Cougar introduces the idea of
declarative queries as the manner to specify queries. The
query optimizer determines how data flows between nodes
and establishes aggregation filters that allow an
optimization between computation and communication.

TinyDB

TinyDB9 is an query processing architecture for TinyOS
sensor networks. It is an SQL like interface that is
distribute in natural, with a front end interface for users
and the functionality to respond to the queries distributed
in the network. It has the ability to efficiently use network
resources and to perform limited operations on the data
values – either with in network or at the interface.

Overview of TinyML

TinyML is a lightweight implementation following some
of the SensorML ideas that are built on XML. Appendix A
has a complete description of the elements defined for
TinyML, and Appendix B gives the XMLSchema for
TinyML. This section provides a basic overview of its
structure. The basic platform components relate to
physical devices, such as the Mica2 platform.

There are a few fundamental elements for TinyML. The
first is the concept of a Platform. A platform consists of a
basic infrastructure with some type of processor, an energy
source and a radio or other communication device. In
addition to the infrastructure, platforms have sensors
and/or actuators. Basic sensors are such things a
thermistors for temperature readings and microphones for
sound detection.

A sensor field (TinyML’s term for a collection of sensor
nodes) is made up of a collection of platforms. The
platforms may be uniform or different in their capabilities
and attributes. A sensor network also has elements that could
provide data to link the field to an external reference points.
An example is a sensor field that has platforms with self
organizing location data and a field reference description
that has a link to GPS data at one or more points. It is
possible to have multiple sensor fields grouped together into
what is called a “super sensor field”. This allows the ability
for independent sensor networks to be joined and share data.
In our first example, the homeowner is attempting to create a
superSensorField from two sensor fields that have their own
purpose and implementation.

All the elements mentioned above, as well as the virtual
sensors and actuators mentioned below, have sub elements
that provide detailed descriptions and additional information.
This means descriptions of components in a field can be
stored and queried. Thus if a user needs to know the details
of a themistor’s manufacturer or model number, it is possible
to retrieve it.

There is a query flag, that when set, means the XML file is
requesting a response from the component. A query
indicator can also have an associated start time and duration.
Many components also have a Set flag. For actuators, this
means the XML file has values that set the actuator in some
way, maybe positioning it. Set flags also are used to define
the functions of a virtual sensor described below.

Table 1 provides a high level summary of the attributes and
goals for SensorML, TinyDB, Cougar and TinyML.
Essentially, each is different and provides unique features.
TinyML is unique in it focus with embedded sensor networks
while dealing with both basic sensors and actuators as well as
virtual sensors and actuators. Figure 2 shows the potential
interaction among the four systems. TinyML is capable of
providing an interface between TinyDB, Cougar and
SensorML. TinyML can also be used to archive sensor
network data, just as SensorML does.

Virtual Devices

TinyML has the important concept of virtualizing physical
components. Virtualization provides the ability to do several
things. First, when associated with a platform, a virtual
sensor or actuator can be created from physical devices. For
example, if a platform has a thermistor that provides voltage
readings as an output, a virtual sensor could be defined that
would use the platform’s processor to take thermistor output
and, using calibration information, transform it to Celsius or
Fahrenheit responses. Virtual devices can also be a
collection of sensor outputs or actuator actions.

There are two major types of virtual sensors/actuators:
those focused on platforms and those focused on sensor
fields. Platform virtual sensors/actuators are associated
only with basic sensors and/or actuators on a physical
platform. For example, sensor field can have a virtual
sensor or actuator associated with it. A field virtual sensor
is an aggregate virtual sensor that can take readings from
all the same sensors in the field and use a function such as
Average, Maximum, or Minimum as possible virtual
sensor output. Virtual sensors can also be associated with
groups of sensors in the sensor field. This creates
subgroups of platforms that use a function to develop a
composite value. For instance, consider a sensor field
throughout a building. A field virtual sensor could be the
temperature sensors in a room providing a single
temperature reading for the room. A more sophisticated
virtual sensor function might use temperature differences
to determine whether there is a person in the room.

Virtual sensors have a function associated with them. The
function defines how a virtual sensor takes data from basic
physical sensors and transforms it to become output of the
virtual sensor. These functions have basic operators, such
as add subtract, divide and multiply, as well as boolean
operators for And, Or, Not, etc.. Further, it is possible for
a virtual sensor to support intrinsic functions such as
MAX, AVERAGE, etc.

The operators and functions can be performed by the
physical platform or by the sensor network proxy that
provides external network connectivity for the sensor
network. The actual implementation details will vary for
operators and functions and could be a predefined list that
the sensor network supports, a set of library calls or, in
more complex functions, over the net programming. The
implementation is independent of TinyML since it is a
feature of the network specific part of the TinyML Proxy.
In this case, it is TinyDB

Consider a sensor network made up of platforms that have
two sensors on them – represented in the diagrams below
as a triangle and a circle. Figure 2a. shows a single
platform with two sensors. Figure 2b shows a platform
where a Virtual sensor is made by combining the output of
two sensors. This would be a virtual sensor. The platform
virtual sensor would have a function and a list of members
– in this case the types of sensors that make up the virtual
sensor.

Field sensors are also virtual sensors, but a more comp lex
type. They are collections of sensors that exist on different
platforms, but may not be all the platforms. Consider that
a virtual sensor made up of the same sensor on a set of
platforms – shown in Figure 2c. This would be a sensor
field virtual sensor. Likewise, A sensor field virtual sensor
could be created from a set of non-uniform sensors on

collection of platforms as shown in figure 2d. Finally, as
shown in Figure 2e, a field sensor may be a collection of
virtual sensors on different platforms.

 Physical Sensor 1

– PS1

Physical Sensor 2
– PS2

Virtual
Sensor - VS

Figure 2a – all
physical Sensors

Figure 2b – two physical sensors made into
a virtual sensor

Field Sensor
- FS

Platform 1

Platform 2

Platform 3

Platform N

Field Sensor

Figure 2e – a field virtual sensor made up of virtual sensors on different nodes. This
requires a list of node ids and the type of sensors to be associated with the virtual
sensor

Platform 1

Platform 2

Platform 3

Platform N

Field Sensor

Figure 2c – a field virtual sensor made up of homogeneous physical sensors on
different nodes. This requires a list of node ids to be associated with the field senssor

Platform 1

Platform 2

Platform 3

Platform N

Figure 2d – a field virtual sensor made up of heterogeneous physical sensors on
different nodes. This requires a list of node ids, and the sensor types on each node to
be associated with the field sensor

Field Sensor

 SensorML TinyDB/
TinySchema

Cougar TinyML

Objective “Functional
Description …
not detail”

Application
Specific
Implementations

Application Specific
Implementations

General Sensornet
descriptions

Focus Small number of
platforms and
sensors

Single networks
with large numbers
of platforms and
sensors

Single networks with large
numbers of platforms and
sensors

Multiple networks
with large numbers of
platforms and sensors

Actuators Sensor Planning
Service

No No Yes

Aggregation Sensor
Collection
Service

Yes Within network Virtual Sensors,
Actuators and Fields

SensorNets
Data
Exchange

Yes No No Yes

Routing No Some Query specific routing No
Query
Structure

XML Declarative – SQL
like

Simple - “declarative
query” details left for the
future

XML

Location External to
sensors
distributed in
servers and
www

Distributed
between nodes and
front-end

Distributed between nodes
and front-end

External to a sensor
network

Query
Processing

Off nodes Distributed
between front end
and www

Front end Interfaced to the
Sensor Network by a
Proxy

Permanent Yes – focus on
archive data

No method for
permanent storage
– but does have a
basic schema

No Yes – data definitions
are usable for archived
data

Table 1- A comparison of different interfaces for sensor networks. This high level comparison explinas what is similar
and different about TinyML.

Figure 2 Positions TinyML and some other components discussed above in a typical sensor network. It shows two sensor
networks, each with a different software implementation being linked by TinyML. It shows Cougar and TinyDB as

components of the sensor networks, with the function of providing an interface to get data into and out of the network.
TinyML can also describe data in a permanent archive just as SensorML can.

TinyML Implementation

Unfortunately, it is not possible to create sensor network
interfaces that accommodate the simple model presented in
Figure 1. Implementing the transparent solution requires
placing XML into the sensor network itself, which means
each platform must have the capability to parse, interpret,
respond and formulate XML. In other words, creating a
DOM on each node. This is not practical with current
sensor/node limitations. Furthermore there would be
significant increases in network traffic and power
utilization in the implementation – which is counter to the
dising gols of most embedded networks..

Placing an interface that translates XML to and from the
application specific sensor network format is a workable
solution and one we use to implement our proof of
concept. Such an implementation uses sensor network
resources efficiently and also is more straightforward to
implement. Until, the Sensor/Platforms are sufficiently
powerful ,sensor networks will have at least one gateway
to the outside that is a more standard system (and more
powerful). This is likely to continue for some time. So, the
implementation of using the application or sensor net
specific interface is sustainable. It is on this external
interface that we implement the sensor field Proxy. In our
case, we chose to use TinyDB as the interface.

Figure 3 shows a more complicated interaction where
XML travels over the network to a sensor Net interface, is
changed and then the corresponding sensor net specific

format is used with the network. Thi replaces the simple t
concept in Figure 1.

Figure 3 – The actual TinyML implementation of a
query.

Network Setup and Assumptions

Sensor networks commonly consist of hundreds of spatially
non-uniformly distributed nodes. All sensor nodes have the
same core platform and energy reserves, but may be
heterogeneous in the sensors contained on each node. Each
sensor node has a library set of standard operators,
mathematical and logical, that are publicly accessible. For
example, a node can compute the sum given one or more
arguments.

SensorNet

What is the
temperature of node 1?

Node 1 has a
temperature reading of
21? Celsius.

XML

SensorNet
Proxy

Internet

Dir

Sensor Net Sensor Net

SensorML

Archive

 Cougar TinyDB
Bcast TinyML Dir Dif

The routing and MAC layers are arbitrary however the
network is assumed fully connected, as shown below in by
the inter-node lines. Communication between nodes is
symmetrical. Post-deployment, all nodes initially
constitute a single sensor field, or a collection of
collaborating nodes, and identify themselves with that
default sensor field. As shown in Figure 4, all nodes are
initially elements of sensor field SF1.

Figure 4 – A simple schematic of a sensor field.

 The network has at least one gateway node,
depicted as the grayed node 1, which provides inter-
network connections, specifically via the Internet. The
gateway node consists of a sensor node and a
computationally-superior unlimited-energy hardware
platform, commonly a PC. The gateway maintains a list of
sensor node ID’s contained in the sensor network. The
sensor network and gateway communicate through a
predetermined syntax and semantics. The arrangement
between the TinyDB API and TinyOS TinyDBApp10
exemplifies this type of design. The gateway node utilizes
a sensor network interface, such as TinyDB, to format
packets into to the predetermined syntax. The proxy could
manages message transmission, particularly for messages
that exceed the data payload limits of one packet. The
proxy may also contain a query generator that translates
queries to the proper syntax and semantic meaning
understood by a sensor node. Again, TinyDB exemplifies
this functionality. Importantly, the sensor network, by
definition, includes the proxy and query generator software
modules.

Applying TinyML

Core Functions

A common procedure exists for querying a TinyML-
enabled sensor network, independent of the type and
specific knowledge of the sensor network. A query is
initiated by a remote user, either a human or external

network, via a proxy. Despite the details of the remote user,
any remotely-initiated query is first translated by the user’s
Proxy-to-DOM translator into a Document Object Model
(DOM) following the TinyML schema. The Proxy -to-DOM
translator converts the remote user’s syntax and semantics to
a generic DOM. The Proxy -to-DOM translator is proxy-
specific and, if applicable, query-generator-specific. The
proxy and Proxy -to-DOM translator must provide methods
for handling and translating, respectively, all valid TinyML
elements (simple and complex) and applicable attributes.
Our prototype utilized the org.w3c.dom package in the
J2SE1.4.2 API to parse a set of input strings (“light”, “temp”,
etc…) from the prototype GUI to the correct TinyML-based
DOM elements. In this case, the remote user proxy is the
GUI since it translates queries.

Once the DOM is created, it is exported as an XML file with
an XML-to-DOM parser and validated with the TinyML and
GML schemas. The conversion to XML file format is a
generic process and can be performed by any common utility.
Our prototype utilized the standard java and javax packages
in the J2SE1.4.2 API. If the validation fails, the query will
fail back to the Proxy -to-DOM translator and requires
modification. Else, the query is transferred to the destination
gateway node.

Note that in all the components, the direction of translation is
reversible. Hence, there is a Proxy -to-DOM interfaced with
both the GUI Proxy and the sensor network Proxy. The GUI
Proxy parses and prepares requests from an entity such as a
person. On the outbound, the Proxy -to-DOM converts the
GUI Proxy format into a DOM. At the sensor network, the
process is inbound where the Proxy -to-DOM converts DOM
to the particular format needed by the sensor network proxy.
This reverses when the sensor network replies to the query.
Then the sensor network Proxy -to-DOM is processing an
outbound message and the GUI Proxy -to-DOM is processing
an inbound message. Thus, there is a great deal of similarity
in the code for either the GUI or Sensor network Proxy -to-
DOM.

The means for transport of the TinyML formatted document
are application specific. The prototype utilizes a generic
TCP client/server connection implemented through the
java.net package of the J2SE1.4.2 API. Our example utilizes
a persistent server connection, though other approaches are
viable. File transfer reliability and quality of service are left
to the underlying protocols of the transport methods.

Once the transfer completes, the gateway node follows the
reverse process as at the remote user. The figure below
shows the local gateway node modules and sensor nodes.

4

5

7

6

2

3

1

SF1

Figure 5 – The architecture of the sensor network side
of TinyML. A sensor network is defined by a collection
of sensor nodes and their proxy/query generator. The
XML-to-DOM component is generic – that is it is only
implemented once. The Proxy-to-DOM component
needs to be specific to the sensor network proxy.

The XML file is parsed into a DOM structure via a generic
XML-to-DOM parser. The DOM is then converted to the
proxy/query-generator-specific structures and
representations using a Proxy -to-DOM translator,
referencing the TinyML and GML schemas. This Proxy -
to-DOM translator may be different from the originating
translator if the networks are from separate vendors or
have different query-generators, such as Cougar and
TinyDB.

At this point, the query is at the edge of the sensor
network, by definition. In response to the query, the local
proxy must return a valid response. At the time of this
writing, valid responses are: null (rejection of query) or a
returned value in the data type specified by the TinyML
schema. The null response is utilized by a local proxy in
the situation a query can not be completed any further,
such as a query destination that does not exist in the sensor
network. If the query can proceed, then the three cases
below describe the following events.

Back to the Homeowner

Notice that there is a relatively simple way for our
homeowner to set up his system. If the two manufactures
provide a TinyML interface to their gateways, all is well
land the homeowner creates a simple control program to
send XML queries and actions. If not, then the homeowner
only has to implement one TinyML component, a customer
Proxy-to-DOM for the sensor network proxy. The XML-
to-DOM component in Figure 6 is generic and will work
with any interface. However, because there are standard
tools available, this should be relative straight forward.

Scenarios

In order to better understand how a facility such as TinyML
would work, it is instructive to think of some typical uses of
such a system. Below are three use cases that demonstrate
how a user might gather data from a sensor that support
TinyML.

Scenario 1: Basic Sensor Request in a
Standard Identity Network

The standard identity is the minimal sensor node state
configuration that a TinyML-enabled network can possess.
The node must have a default sensor field to which it is a
member. Each node must also contain valid values for the
required Platform sub-elements: PlatformCharacteristics,
BasicSensor(s), and BasicActuator(s) and all the respective
required sub-elements as defined by the TinyML schema. By
definition, a Standard Initial Identity does not contain any
FieldSensors, FieldActuators, VirtualSensors, or
VirtualActuators.

In this simplest case, the remote user queries the thermistor
basic sensor at node 4 in sensor field 1 by setting the basic
sensor subelement QFlag (see TinyML schema) under the.
Following the core procedures, the query is at the edge of the
sensor network at the gateway node 1. The gateway injects
the query into the network since the destination is a valid
sensor node.

Upon reception, node 4 processes the query as per the
predetermined syntax and semantics with the gateway. In
this case, node 4 knows which ADC channel to poll for the
“thermistor” since the standard identity mandates defining
this information. Node 4 returns to the gateway the Qflag tag
as true and the value as ADC reading; subsequently the
message returns to the remote user through the established
socket connection.

The situation may occur where node 4 does not contain this
basic sensor. Since the gateway only manages the sensor
node ID’s and not the basic sensor(s) or virtual component(s)
on each node, it is plausible that the gateway forward a query
that can not be fulfilled. It is the responsibility of each
TinyML-enabled sensor node to provide a null response in
the event of such a query. Specifically, the sensor node
returns the Qflag value as true, since the query was accepted,
but the value is set to null.

Scenario 2: Virtual Sensor Query in a
Virtualized Identity Network

A virtualized identity contains virtual components in addition
to the standard identity. As an example, the remote user

Sensor Nodes

XML
to
DOM

Proxy
to
DOM

Sensor
Network
Proxy

Sensor Network

Gateway Node

Query
Generator

queries an “occupancy” virtual sensor at node 4 in sensor
field 1 by setting the “get” element. Assume node 4 has a
pyroelectric basic sensor (a pyroelectric sensor is a
specialized infrared sensor) in addition to the thermistor.
Assume the “occupancy” virtual sensor function calculates
the value of this virtual sensor by performing a set of
logical operations on the two basic sensor values.
Following the core procedures, the query is at the edge of
the sensor network at the gateway node 1. The gateway
injects the query into the network since the destination is a
valid sensor node.

Upon reception, node 4 processes the query as per the
predetermined syntax and semantics with the gateway.
Again, node 4 knows which ADC channels to sample.
Node 4 also knows the logical mathematical operations to
perform as defined by the virtual sensor function. The
“occupancy” value is returned to the gateway, and
subsequently returned to the remote user through the
established socket connection. Like the basic sensor query,
the Qflag is also returned true.

Like the previous case, the situation may occur where node
4 does not contain this virtual sensor. Again, it is the
responsibility of each TinyML-enabled sensor node to
provide a response in the event of such a query, the null
response. Unlike the basic sensor query, the gateway has a
second option to obtain the virtual sensor sample as
described in the next scenario.

Scenario 3: Virtual Sensor Query in a
Standard Identity Network

The problem was presented in the previous scenario that a
node is queried for a non-existent virtual sensor. Assume
that the “occupancy” virtual sensor is not defined at node
4. The first valid response by the node is a null return
value with a true Qflag. Null responses allow a node to
communicate to the gateway that although the query was
received, the virtual sensor does not exist.

When the null value and true Qflag tuple is received at the
gateway, the gateway can elect to initiate a virtualization
with the sensor node if the virtual sensor function is
defined at the gateway. The gateway node first queries the
sensor node for permission to initiate a virtualization. To
do so, the gateway sends virtual sensor query again, but
with the Sflag subelement set instead of the Qflag and the
number of operations to send in the function subelement.
If the sensor node does not permit virtualization, the Sflag
is returned false. Otherwise, the sensor node returns a true
Sflag signifying it is willing and ready to accept
virtualization.
To virtualize the sensor node, the gateway passes the
virtual sensor function (see TinyML schema) operations

and operation number (from the total number of operations)
to the sensor node, who then defines a new function
appropriately. For example, the “occupancy” virtual sensor
function initially needs to compute the temperature in
degrees Fahrenheit from the thermistor voltage value.
Assuming a linear relationship between the voltage and
temperature, the gateway passes the instruction to the sensor
node as a new variable name (temperature), a tuple of
arguments (thermistor and a coefficient) and the
multiplication operator. The sensor node defines and assigns,
utilizing its library of mathematical operators, the
temperature variable to the product of the thermistor voltage
reading and the coeffiecient. This process continues until the
total number of operations are received and the new
“occupancy” virtual sensor function is complete. After
receiving the last instruction, the sensor node returns a true
Sflag signifying the completed virtual component. Finally,
the gateway can again query node 4 for the “occupancy”
virtual sensor.

A second situation may arise where “occupancy” virtual
sensor is not defined at the gateway. Here, the initial null
response passes through the gateway to the remote user.
Identical to the gateway-initiated virtualization, the remote
user can virtualize the sensor node using the same process of
sending instructions.

This virutalization process can be repeated an arbitrary
number of times for virtualized nodes that lack a specific
virtual sensor. In this manner, virtual components enable a
sensor network to evolve in a piecewise fashion, bounded
only by the basic sensors and library of operators on each
node.

Proof of Concept Implementation

In order to prove the concepts discussed in the paper, a
simple version of a TinyML based query/response system
was created. The system used the XML Schema presented in
Appendix B as the description of TinyML. The sensor
network consisted of Mica2 platforms running Tiny OS
version 1.1. Each platform had a basic thermistor and
photosensor on it. The sensor network used TinyDB, from
that TinyOS release as the sensor network proxy and query
generator. The TinyML components were created using
Java, in the details are discussed above.

This prototype had the GUI query generator running on one
PC, and transferred XML across the Internet to a PC running
TinyDB, the TinyML XML-to-DOM, and Proxy -to-DOM
components. Simple queries were demonstrated. The code
for the components, along with the TinyML schema are
available on the project web site.

Summary

The goal of this project is to investigate the issues involved
with the creating a general interface, TinyML, that
facilitates two way interaction between an internet users
and a set of sensors, as well as interactions between sensor
networks themselves. The project surveyed likely existing
systems that partially met these goals, and determined none
were sufficient for sensor networks.

TinyML was conceived and created in order to explore the
interface between sensor nets and the internet services in a
way the appropriately partitions and assigns data synthesis
and control to the network and the standard servers in the
most effective manner.

GML and GML-based SensorML markup languages
schemas currently have a focus for satellite-based sensor
coordination for global location services. These interfaces
rely on certain characteristics/needs that differ in the
following ways from mote-centric wireless sensor
networks.

The project addressed the need for such an embedded
sensor network standardized “markup language” for intra-
network, as well as inter-network, communication is
apparent as more systems are deployed.

The project created the TinyML schema including the
concept of virtual sensors and actuators and implemented
the necessary components to enable a working prototype.
Future work is to full evaluate the TinyML schema for
robustness by implementing one or more really application
interfaces using TinyML. Additionally, performance study
and optimization are needed, as is the inclusion of more
advanced XML and Web Services functions. Nonetheless,
TinyML is a significant step forward in making sensor
networks more accessible to the non-expert user and for
archiving the data retrieved from senor networks in a self
documenting manner.

Appendix A Table of Elements

Element Description
superSensorField A collection of sensor fields.
SensorField A basic sensor network – consisting of platforms, sensors and actuators and reference data
Platform The basic physical platform in a sensor field, which contains processing and communication

elements. It may also contain on or more sensors and actuators. An example is the MICA ‘mote”
BasicSensor A basic physical sensor that is attached to a platform. It is identified by type.
BasicActuator A basic physical actuator that is attached to a platform. It is identified by type.
FieldReference Appearing once in a Sensor Field, this is location information that may be used to connect the

sensor information to the real world reference. An example would be a node with GPS location
ability.

FieldDescription A description of a sensor field consisting of routing description, a field description and other
information

FieldSensor This is a virtual sensor associated with a set of sensors on different platforms in a sensor field.
These could be basic sensors or virtual sensors. An example is getting the average temperature
value for an entire sensor field.

FieldActuator This is a virtual actuator associated with a set of actuators on different platforms in a sensor field.
These could be basic actuators or virtual actuators.

VirtualSensor A virtual physical sensor that is associated with one or more basic sensors on a platform. The
virtual sensor performs a transformation on physical sensor data according to a function. An
example is a virtual sensor that transforms a thermistor value (with calibration) into a reading in
Celsius.

VirtualActuator A virtual physical actuator that is associated with one or more basic actuators on a platform. The
virtual actuator performs a transformation on physical actuator according to a function. An
example is a virtual actuator that ????

Query A complex flag that is associated with a number of elements. If set to TRUE, then the fields
associated with the flag are returned. This allows any element in the sensor field to be queried.
Query has an optional start and duration time.

SetFlag A complex Boolean flag that is associated with a number of elements. If set to TRUE, and the
element is settable, then the fields associated with the flag are set to the provided value(s).
Examples of use are setting the function associated with a virtual sensor or setting the values of an
actuator. SetFlag also has a start time and duration.

Type A general element the definition for the type of a component or element. This could be a
manufacturers part number or a specification that indicates the type of a photo sensor.

Vendor A general element describing the vendor of the component. This element consists of Vendor
Description and a Universal Resource Indicator (URI).

Range A description of the range or a sensor or actuator. It is composed of a distance measure and the
units used.

Accuracy Describes the accuracy of a component.
Location The location of the parent element. It can be either absolute or relative coordinates.
Orientation The orientation description for a platform, sensor or actuator. It is in one of several formats
Hardware An element that describes the hardware of a platform. It could consist of descriptions for

processor, radio and energy source.
Software The software associated with a platform. This includes the OS description and the version.
Function The function specification for a virtual sensor or actuator, including field sensors and actuators.

This function can be either preset or specified by a user if allowed.
SpanofMembers A list that is used to describe a virtual sensor actuators and other composite components.
Coordinates An element that describes coordinates for several other elements. It consists of an X and Y values,

and possibly a Z and timestamp.
Datavalues The element for any data values from a sensor or actuator. Data values can be integer, floating

point or string.
CurrentSettings The current setting of an actuator.
Timestamp A timestamp for data value readings and settings and for query responses

EnergySource The energy source of a platform. Components are the Power level and Source Description
ID The ID field for a component. This is used by sensor fields, and platforms primarily
ModelDecription The platform model as part of the description of the platform.
Absolute One of three types of orientation specifications. This is in absolute X, Y, Z values
Quatenion Quaternions extend the concept of rotation in three dimensions to rotation in four dimensions. This

avoids the problem of "gimbal-lock" and allows for the implementation of smooth and continuous
rotation. In effect, they may be considered to add a additional rotation angle to spherical
coordinates ie. Longitude, Latitude and Rotation angles that are calculated from the combination of
the three coordinates of the rotation axis and the rotation angle.

Euler An orientation specification in Eulian angles – Pitch, Roll and Yaw
Xvalue A value representing an X value
Yvalue A value representing an Y value
Zvalue A value representing an Z value
Svalue A value representing an S value for a quaterion description of the orientation
Pitch The angle relative to the X axis (e.g. on an aircraft the axis defined by the wings)
Roll The angle relative to the Y axis (e.g. on an aircraft the axis defined from tail to nose)
Yaw The angle relative to the Z axis (e.g. on an aircraft the axis defined by pointing up)
Value-int An integer value – a sub element of Datavalues
Value-flt A floating point value – a sub element of Datavalues
Value-string A string value – a sub element of Datavalues
Processor An element describing a processor on a platform – consisting of a description and speed

specification
ProcessorSpeed The clock rate of a processor
ProcessorDescription The description of a processor
Radio An element to describe a radio on a platform
Routing A description of the routing of a sensor field
Reference A reference description of a sensor field
OtherInformation A description of the other information related to a sensor field
Units A string describing the units of a range or value.
PowerLevel The power level of an energy source on a platform
SourceDescription A description of an energy source. Examples include battery or photo
OSDescription The operating systems description.
Version A string description of the version (for the software, hardware, etc.
RelativeLocation The relative location of a platform or other component
AbsoluteLocation An absolute location of a platform or other component
Distance The distance of a range specification
Qflag The Boolean flag associated with a query Request
StartTime The time a query is supposed to start (for a request) or time it did start (for a response).
Duration The duration of a query request
Date The date of a time stamp
Time The time of a time stamp
VendorDescription The string description of a vendor
URI A Universal Resource Indicator – the XML version of a URL.

Appendix B TinyML XMLschema Listing

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Bill Kramer (UCB) -->
<?xmlspysps C:\Program Files\Altova\XMLSPY2004\Examples\ExampleSite\examplesite.sps?>
<xs:schema xmlns:gml="http://www.opengis.net/gml"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <!-- ===
 includes and imports
 == -->
 <xs:import namespace="http://www.w3.org/2001/XMLSchema"
schemaLocation="http://www.w3.org/2001/XMLSchema"/>
 <xs:import namespace="http://www.isotc211.org/iso19115/"
schemaLocation="D:\Data\School\CS 294-Embedded
Networks\Project\tinyML_files\iso19115\0.1.21\iso19115.xsd"/>
 <!-- ===
 The set of Sensor Fields
 == -->
 <xs:element name="superSensorField">
 <xs:annotation>
 <xs:documentation>A collection of sensor fields</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="SensorField" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- ===
 Funduamental set of platforms and fields
 == -->
 <xs:element name="SensorField">
 <xs:annotation>
 <xs:documentation>SensorField is the root element</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Platform" maxOccurs="unbounded"/>
 <xs:element name="FieldDescription" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Routing" type="xs:string"
minOccurs="0"/>
 <xs:element name="Reference" minOccurs="0"/>
 <xs:element name="OtherInformation"
type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ID"/>
 <xs:element ref="Query" minOccurs="0"/>
 <xs:element ref="FieldActuator" minOccurs="0"/>
 <xs:element ref="FieldSensor" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 </xs:element>
 <!-- ===
 Elements that make up a sensor field
 == -
->
 <xs:element name="Platform" abstract="false">
 <xs:annotation>
 <xs:documentation>Platform object </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Sensor" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="BasicSensor" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="VirtualSensor" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Actuator" minOccurs="0">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="BasicActuator"/>
 <xs:element ref="VirtualActuator"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element ref="Location" minOccurs="0"/>
 <xs:element ref="Orientation" minOccurs="0"/>
 <xs:element name="PlatformCharacteristics" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Vendor" minOccurs="0"/>
 <xs:element ref="Software" minOccurs="0"/>
 <xs:element name="ID" type="xs:string"
minOccurs="0"/>
 <xs:element ref="Hardware" minOccurs="0"/>
 <xs:element name="ModelDescription"
type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>A description of
model/attributes/version</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="Query" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element ref="Query" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="FieldReference" abstract="false">
 <xs:annotation>
 <xs:documentation>For providing geolocation models</xs:documentation>
 </xs:annotation>

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Location"/>
 <xs:element name="LinktoRealWorld" type="xs:string" minOccurs="0"/>
 <xs:element name="HowDetermined" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="FieldSensor">
 <xs:annotation>
 <xs:documentation>A virtual sensor that incorporatessensors across the
entire field</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Get" type="xs:boolean" default="false"
minOccurs="0"/>
 <xs:element ref="Query" minOccurs="0"/>
 <xs:element ref="Datavalues" minOccurs="0"/>
 <xs:element ref="Type" minOccurs="0"/>
 <xs:element ref="Function"/>
 <xs:element ref="Range" minOccurs="0"/>
 <xs:element ref="Accuracy" minOccurs="0"/>
 <xs:element ref="SpanofMembers" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="FieldActuator">
 <xs:annotation>
 <xs:documentation>A virtual actuator that incorporatessensors across the
entire field</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="SetFlag"/>
 <xs:element ref="Setvalues" minOccurs="0"/>
 <xs:element ref="Type" minOccurs="0"/>
 <xs:element ref="Function"/>
 <xs:element ref="Range" minOccurs="0"/>
 <xs:element ref="Accuracy" minOccurs="0"/>
 <xs:element ref="SpanofMembers" minOccurs="0"/>
 <xs:element name="Coordinated" type="xs:boolean" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- ===
 Sensor and Actuator Models
 == -->
 <xs:element name="BasicSensor" abstract="false">
 <xs:annotation>
 <xs:documentation>Physical Sensor object</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Query" minOccurs="0"/>
 <xs:element ref="Datavalues" minOccurs="0"/>
 <xs:element ref="Orientation" minOccurs="0"/>

 <xs:element ref="BasicActuator" minOccurs="0"/>
 <xs:element name="SensorCharacteristics" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Query" minOccurs="0"/>
 <xs:element name="Vendor" type="xs:string"
minOccurs="0"/>
 <xs:element ref="Type" minOccurs="0"/>
 <xs:element ref="Accuracy" minOccurs="0"/>
 <xs:element ref="Range" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="BasicActuator">
 <xs:annotation>
 <xs:documentation>Physical Actuator object</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Query" minOccurs="0"/>
 <xs:element ref="Setvalues"/>
 <xs:element ref="Orientation" minOccurs="0"/>
 <xs:element name="AcutatorCharacterisitcs" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Query" minOccurs="0"/>
 <xs:element ref="Vendor" minOccurs="0"/>
 <xs:element ref="Type" minOccurs="0"/>
 <xs:element ref="Accuracy" minOccurs="0"/>
 <xs:element ref="Range" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element ref="SetFlag" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="VirtualSensor">
 <xs:annotation>
 <xs:documentation>A combination of Sensor objects </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Query"/>
 <xs:element ref="Datavalues" minOccurs="0"/>
 <xs:element ref="Function"/>
 <xs:element ref="SpanofMembers" minOccurs="0"/>
 <xs:element name="SensorCharacteristics" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Query" minOccurs="0"/>
 <xs:element name="Vendor" type="xs:string"
minOccurs="0"/>
 <xs:element ref="Type" minOccurs="0"/>

 <xs:element ref="Accuracy" minOccurs="0"/>
 <xs:element ref="Range" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element ref="SetFlag" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="VirtualActuator">
 <xs:annotation>
 <xs:documentation>A combination of Actuator objects</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Setvalues" minOccurs="0"/>
 <xs:element ref="Type" minOccurs="0"/>
 <xs:element ref="Function"/>
 <xs:element ref="Range" minOccurs="0"/>
 <xs:element ref="Accuracy" minOccurs="0"/>
 <xs:element ref="SpanofMembers" minOccurs="0"/>
 <xs:element name="Coordinated" type="xs:boolean" minOccurs="0"/>
 <xs:element ref="SetFlag" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- ===
 Boolean Flags
 == -->
 <xs:element name="SetFlag">
 <xs:annotation>
 <xs:documentation>A binary flag that if true - sets the value or
funciton</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SFlag" type="xs:boolean" default="false"/>
 <xs:element name="StartTime" type="xs:time" minOccurs="0"/>
 <xs:element name="Duration" type="xs:duration" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Query">
 <xs:annotation>
 <xs:documentation>This si a generalized flag for a query</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="QFlag" type="xs:boolean" default="false"/>
 <xs:element name="StartTime" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="Duration" type="xs:duration" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- ===
 General Global Elements
 == -->

 <xs:element name="Type" type="gml:stringOrNull">
 <xs:annotation>
 <xs:documentation>Generic type - a string identifier</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Vendor">
 <xs:annotation>
 <xs:documentation>Vendor Decrtiption - a string
identifier</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="VendorDescription" type="gml:stringOrNull"
minOccurs="0"/>
 <xs:element name="URI" type="xs:anyURI" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Location">
 <xs:annotation>
 <xs:documentation>Location - relative and/or absolute</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:all>
 <xs:element name="RelativeLocation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Coordinates"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="AbsoluteLocation" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Coordinates"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="Hardware">
 <xs:annotation>
 <xs:documentation>Hardware description</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Radio" type="xs:string" minOccurs="0"/>
 <xs:element name="Processor">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProcessorSpeed" type="xs:integer"
minOccurs="0"/>
 <xs:element name="ProcessorDescription"
type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 </xs:element>
 <xs:element ref="EnergySource" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Software">
 <xs:annotation>
 <xs:documentation>Software description</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OSDescription" type="xs:string" minOccurs="0"/>
 <xs:element ref="Version" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Version" type="xs:string">
 <xs:annotation>
 <xs:documentation>Version Number - a string</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Accuracy" type="xs:float">
 <xs:annotation>
 <xs:documentation>Accuracy - a number</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Function" type="xs:string">
 <xs:annotation>
 <xs:documentation>Function - a string descriptor</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="SpanofMembers">
 <xs:annotation>
 <xs:documentation>Components of a virtual sensor or
actuator</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Nodeslist" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ID" type="xs:ID"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Sensorlist">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SensorType" type="xs:ID"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Coordinates">
 <xs:annotation>
 <xs:documentation>X,Y,Z coodinate Values</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:all>
 <xs:element name="Xvalue" type="xs:float"/>
 <xs:element name="Yvalue" type="xs:float"/>
 <xs:element name="Zvalue" type="xs:float" minOccurs="0"/>
 <xs:element name="Units" type="xs:string" minOccurs="0"/>
 <xs:element ref="Timestamp" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="Datavalues">
 <xs:annotation>
 <xs:documentation>Reading of a sensor Value</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Timestamp" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="Value-int" type="gml:integerOrNullList"
minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Value-flt" type="gml:doubleOrNullList"
minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Value-string" type="gml:stringOrNull"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Setvalues">
 <xs:annotation>
 <xs:documentation>Reading of a actuator seting </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Timestamp" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="value-int" type="gml:integerList" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="value-flt" type="gml:doubleList" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Timestamp">
 <xs:annotation>
 <xs:documentation>Time Stamp</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Date" type="xs:date" minOccurs="0"/>
 <xs:element name="Time" type="xs:time"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="EnergySource">
 <xs:annotation>

 <xs:documentation>The elements associated with power</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Units" type="xs:string" default="Joules"
minOccurs="0"/>
 <xs:element name="PowerLevel" type="xs:integer" minOccurs="0"/>
 <xs:element name="SourceDescription" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Orientation">
 <xs:annotation>
 <xs:documentation>Orientation using Euler Coordinates X,Y,Z (Pitch, Yaw,
Roll in Aeronautics terms</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Absolute" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Xvalue" type="xs:integer"/>
 <xs:element name="Yvalue" type="xs:integer"/>
 <xs:element name="Zvalue" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Quatenions" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Xvalue" type="xs:integer"/>
 <xs:element name="Yvalue" type="xs:integer"/>
 <xs:element name="Zvalue" type="xs:integer"/>
 <xs:element name="Svlaue" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Euler" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Pitch" type="xs:integer"/>
 <xs:element name="Roll" type="xs:integer"/>
 <xs:element name="Yaw" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element ref="Query" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Range">
 <xs:annotation>
 <xs:documentation>Range of a Sensor</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:all>
 <xs:element name="Unit" type="xs:string" minOccurs="0"/>

 <xs:element name="Distance" type="xs:float" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

References

1 http://www.w3.org/XML/
2 Richard Wagner and Richard Mansfield, XML All-in-One Desk Reference for Dummies, Wiley Publishing, 2003
3 Grid Computing – Making the Global Infrastructure a Reality, Edited by Fran Berman, Geoffrey C. Fox and Anthony J.G. Hey,
John Wiley and Sons Publishers, 2003
4 http://www.gis -news.de/xml/gml.htm
5 OGC Announces OpenGIS Geography Markup Language Implementation Specification (GML 3). Version 3.0 for the OpenGIS
Geography Markup Language (GML) Implementation Specification.. Edited by Simon Cox, Paul Daisey, Ron Lake, Clemens
Portele, and Arliss Whiteside, At http://xml.coverpages.org/geographyML.html.
6 Sensor Model Language (SensorML) - http://vast.uah.edu/SensorML/
7 Sensor Model Language (SensorML)
for In-situ and Remote Sensors, Reference number of this OpenGIS © Project Document: OGC 02-026r4, Version: 0.7, Date:
2002-12-20, Editor: Mike Botts
8 The Cougar Approach to In-Network Query Processing in Sensor Networks. - http://cougar.cs.cornell.edu/
9 “Design and Evaluation of a Query Processing Architecture for Sensor Networks”, Thesis of Samuel Ross Madden, Fall 2003.
At http://www.cs.berkeley.edu/~madden/thesis.pdf)
10 TinyOS release 1.1 available at ….

