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Abstract. For non-Gaussian distributed random displacement, which is common
in restricted diffusion, a second-order diffusion tensor is incapable of fully charac-
terizing the diffusion process. The insufficiency of a second-order tensor is evident
in the limited capability of diffusion tensor imaging (DTI) in resolving multiple fiber
orientations within one voxel of human white matter. A generalized diffusion tensor
imaging (GDTI) method was recently proposed to solve this problem by generaliz-
ing Fick’s law to a higher-order partial differential equation (PDE). The relationship
between the higher-order tensor coefficients of the PDE and the higher-order
cumulants of the random displacement can be derived. The statistical property of the
diffusion process was fully characterized via the higher-order tensor coefficients by
reconstructing the probability density function (PDF) of the molecular random
displacement. Those higher-order tensor coefficients can be measured using conven-
tional diffusion-weighted imaging or spectroscopy techniques. Simulations demon-
strated that this method was capable of quantitatively characterizing non-Gaussian
diffusion and accurately resolving multiple fiber orientations. It can be shown that
this method is consistent with the q-space approach. The second-order approxima-
tion of GDTI was shown to be DTI.

INTRODUCTION
In an isotropic medium, the molecular self-diffusion
causes the logarithm of the spin echo magnitude to
decay linearly as the square of the magnitude of the
magnetic field gradient increases.1 The slope is propor-
tional to the scalar self-diffusion coefficient, D, and has
orientational independence. In contrast, a significant
angular dependence of self-diffusion has been observed
in various anisotropic media, such as liquid crystals,2

porous structures,3 and cat central nervous system.4 A
second-order tensor D has been used to characterize this
orientational dependence.5

The effect of molecular diffusion provides a unique
contrast mechanism for magnetic resonance imaging
(MRI).6 Diffusion tensor imaging (DTI) based on the
evaluation of the second-order diffusion tensor has be-
come an established imaging modality for studying the
microstructure and physiological properties of biologi-

cal tissues, especially the brain white matter.7 The
physical basis of DTI is the assumption of the Gaussian
distribution of water molecules’ random displacement.
However, studies have suggested that the molecular
random displacement in human brain white matter is no
longer Gaussian, and a second-order diffusion tensor is
not sufficient to characterize the underlying diffusion
process in biological tissues.8

In a heterogeneous structure, such as the brain white
matter and other porous structures, the translational mo-
tion of molecules will be influenced by the confining
boundaries. The spatial restriction imposed on the diffu-
sion process means that the probability density function
(PDF) of the molecular random displacement may no
longer be Gaussian. Consequently, the covariance
matrix of the random displacement that depends linearly
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on the diffusion tensor is no longer sufficient to charac-
terize the random process, and hence higher-order sta-
tistics becomes necessary.

Recently, a generalized diffusion tensor imaging
(GDTI) method was proposed for reconstructing the
PDF of spin displacement by using its higher-order
tensor statistics (HOT), obtainable through conven-
tional diffusion-weighted imaging (DWI) or spectros-
copy techniques.9 In this newly proposed method, a
relationship was derived between the complex magnetic
resonance signal and the higher-order statistics of the
spin displacement. The relationship was then used to
reconstruct the PDF of the spin displacement. A second-
order approximation of this method has been shown to
be equivalent to DTI.

In this article, the capability of the GDTI in charac-
terizing non-Gaussian diffusion is further investigated.
The relationship between GDTI and q-space imaging is
discussed. Some potential experimental difficulties are
also pointed out and discussed.

THEORY

Generalized Diffusion Equation
The macroscopic theory of Gaussian diffusion is

based upon the hypothesis of Fick’s first law, which
states that the flux of the diffusing substances is propor-
tional to the concentration gradient,10 i.e.,

(1)

where  is the i1-th component of the flux vector, C is
the concentration,  is the i2-th coordinate, and  is
the element of the second-order self-diffusion tensor.
Index notation follows Einstein’s summation rule: If an
index appears twice in an expression, then summation
over that index is implied, as shown in eq 1. The same
convention is assumed throughout this manuscript un-
less the summation is written out explicitly.

As a generalization of Fick’s first law, one can write
the mathematical relationship as

                           (2)

to an arbitrarily high-order partial differentiation of the
concentration without opposing the linearity constraint.
Here the coefficient is an n-th order tensor, where
the super-index n in the parenthesis indicates the order
of the tensor, and the sub-index indicates the coordinate.

Those coefficients relate the flux to the n-th order partial
differentiation of the particle concentration. Higher-
order coefficients become necessary when the diffusion
is non-Gaussian, which will be shown. For Gaussian
diffusion processes, the higher-order coefficients are
zero, i.e.,

 (for n ≥ 3)

Under this condition, eq 2 reduces to the usual form
of Fick’s first law. By using the following standard
mathematical notation,

eq 2 can be written as

(3)

After applying the continuity theorem, one obtains
the following generalized partial differential equation
for diffusion:

(4)

which is basically a generalization of Fick’s second law.
In obtaining the last equality,  tensors are as-
sumed to be spatially invariant for a given voxel of
interest. Equation 4 can be derived formally assuming a
Markov property of the diffusion process by generaliz-
ing the Kramers–Moyal expansion to a multivariate
case.11,16

The macroscopic nuclear magnetization density vec-
tor  is proportional to the spin concentration, so
considering the spin diffusion, one can write the Bloch
equation in the rotating frame as

(5)

Here, B(x,t) is the applied magnetic field strength,
ei’s are a set of orthogonal unit vectors that spans the 3D
real space, and Mi (i = 1, 2, 3) is the component of
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 along ei. For the sequence depicted in Fig. 1, by
solving the above equation the transverse magnetization
was found to be9

(6)

where m(0) is the transverse magnetization measured at
TE (echo time) in the absence of diffusion gradient, and
j is the square root of –1. The elements of tensor  are
defined as9

 ×

(7)

where k(t) and κ(t) are defined as

(8)

κ (9)

Here, t1
– and t1

+ are the starting and ending times,
respectively, for the first diffusion gradient lobe. t2

– and
t2

+ are defined similarly, as shown in Fig. 1.
If the diffusion gradients are constant over time, it

can be shown that9

(10)

Notice that for n = 2, eq 10 becomes the familiar b
matrix.7

(11)

Equation 6 shows that even-order tensors only affect
the magnitude of the signal whereas odd-order tensors
only affect the phase of the signal.

The Relationship Between D(n) Tensors and Higher-
Order Statistics

Consider a spin echo sequence with narrow diffusion
gradient pulses, i.e., the q-space approach.3 Define

, then the signal intensity as a function of q can
be written as3

(12)

where  is the PDF of the spin displacement r
during the gradient separation time interval ∆. Hence,

 is the characteristic function of the random
displacement vector r, i.e., the Fourier transformation of
the PDF. In general, the characteristic function can be
expanded as an exponential function of a series of
cumulants as12

   m(q)
m(0) =

(13)

where qi is the i-th component of the vector q. The
expansion coefficient  is defined as the n-th order
cumulant of the random variable r(∆). By comparing
eq 13 to eq 6,  was found to be proportional to

9

(14)

Fig. 1. Time diagram for a spin echo sequence with diffusion encoding gradients.
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where ∆ is the separation time of the two diffusion
gradients, and δ is the duration of each gradient lobe.

For the case that r is a zero mean Gaussian random
variable, all but the second-order cumulants are zero.12

This result can be easily obtained based on the observa-
tion that the Fourier transformation of a Gaussian func-
tion remains Gaussian.13 Under this condition, eq 6
reduces to the familiar ordinary signal equation in DTI,

(15)

PDF Reconstruction
Two methods are commonly used to obtain the prob-

ability density function of a random variable via its
higher-order statistics: Edgeworth series expansion and
Gram–Charlier series expansion.12 Edgeworth series
does not have a closed form Fourier transformation, but
Gram–Charlier series does.12 In fact, Gram–Charlier se-
ries is the Fourier expansion of the PDF. As mentioned
in the previous section, the MR signal measured is the
Fourier transformation of the PDF. Hence, it is more
convenient to use the Gram–Charlier series to represent
the PDF in this context. Using higher-order cumulants,
the PDF of the spin displacement r can be reconstructed
via the Gram–Charlier series12,14 as follows:

 ×

  (16)

where   N 0,Qi1i2

(2) is the normal distribution with zero
mean and covariance matrix , and (r) is the
n-th order Hermite tensor.12,14 The third and fourth
Hermite tensor are reproduced here as a matter of
completeness. Let  be the component of   N 0,Qi1i2

(2) –1,
i.e., the inverse of the covariance matrix. If we set

, then the components of the third and fourth
Hermite tensor may be written15

(17)

                          (18)

where indices in parentheses designate that the term is to
be averaged over all permutations of those indices that
produce different terms, remembering that 
and , as illustrated for (r) in eq 17.

For example, , hence this permu-
tation does not produce a different term. Although
cumulants  are not directly MR-measurable quan-
tities, they can be indirectly determined from MR-mea-
surable quantities  via eq 14. The shape of the
reconstructed PDF can then be used to infer the micro-
structure of the media.

A well-documented problem of this approach is that
the reconstructed PDF is not always non-negative.16,17

There are two issues related to this problem. First, in
practice, for the purpose of tractability, the infinite se-
ries in eq 4 has to be truncated to a finite order. This
truncation assumes that terms above a given order are
zero. However, Pawula has shown that this assumption
implies that all terms above second order are zero.16 If
one ignores the difficulties of the mathematical justifi-
cation of the truncation process, the truncated version of
eq 4 can be solved given the boundary condition and the
solution can be used to approximate the true PDF. How-
ever, the approximation may not always be non-nega-
tive.16 Second, the Gram–Charlier series of finite num-
ber of terms may not always be non-negative at certain
areas, even if the higher-order cumulants are of their
true values.17 The negative region usually appears at
places far away from the mean position of the random
displacement. The result usually is tolerable, as demon-
strated later by computer simulations, since one usually
is only interested in the region close to the mean value of
the displacement. Nevertheless, one has to consider the
possible error in the reconstructed PDF when interpolat-
ing the experimental result.

Despite the difficulty discussed above, the method of
using higher-order statistics to reconstruct a non-
Gaussian PDF has been a common practice in various
fields of physical sciences. For example, Johnson has
introduced the higher cumulants to interpret X-ray diffrac-
tion data in crystallography.17a He found that the non-
Gaussian motion in crystals can be characterized by the
higher-order cumulants.17 Applications can also be found
in the field of astronomy and astrophysics, where higher-
order statistics is used for studying cosmic microwave
background anisotropies,18 and for analyzing the velocity
distributions and fine structure in elliptical galaxies.18

EXPERIMENTAL

Computer Simulation
A series of MR experiments was simulated on four synthetic

phantoms that have simple structures. The four phantoms are
(Fig. 2): (a) an isotropic phantom, (b) a single tube, (c) an X-
shaped tube, and (d) a Y-shaped tube. All the tubes have square
cross sections with a width of 40 µm, which is roughly on the
order of the diameter of larger-sized human nerve fibers.19 The
boundaries of the tubes were assumed to be impermeable.
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Imaging sequence parameters were chosen to be compa-
rable to those used in real in vivo experiments, and were kept
the same throughout all the simulations. The duration δ =
20.2 ms and the separation time ∆ = 100.5 ms. The separation
time is slightly larger than what was normally used in most
sequences,20 in order to assure that ∆ was much larger than δ
and to increase the likelihood that spins experience motional
restriction due to the confining vessel walls. This yielded an
effective diffusion time of 93.8 ms. The maximum diffusion
gradient strength used was 40 mT/m, which was roughly the

maximum value currently offered by most whole body sys-
tems. For free diffusion, the diffusion coefficient D was set to
be 2.02 × 10–3 mm2/s, which is comparable to the free self-
diffusion coefficient of water at about 20  ºC.

For each phantom, a corresponding distribution of the spin
displacement ri was generated by using an algorithm similar to
that of Balinov et al.21 Assuming a spin echo sequence, the
accumulated phase and corresponding signal can be computed
as follows:3,21

(19)

Fig. 2. A cross-sectional view in the XY plane of four 3D synthetic phantoms. The dots are simulated random spin displacements
with initial position at the origin.  (a) Phantom 1, isotropic; (b) Phantom 2, single tube; (c) Phantom 3, X-shaped tube; (d)
Phantom 4, Y-shaped tube. In Phantom 1, spins are allowed to diffuse freely. Phantoms 2–4 are confined by the boundaries
drawn as solid lines.
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where G is the diffusion gradient vector and is assumed con-
stant, ri is the generated i-th spin displacement, Φi is the
corresponding accumulated phase due to diffusion, N is the
total number of generated spin displacements (N = 240,000 in
this simulation), and S is the complex signal. Notice that the
signal attenuation due to T1 and T2 decay has been neglected.

Since the complex signal S is not only a function of the
magnitude of the diffusion gradient but also a function of its
direction, with the gradient timing fixed, a sound estimation of
the tensor elements will therefore require variations of both
the magnitude and direction of the gradients over a sufficiently
wide range. In this simulation, 200 gradient directions were
used and they were evenly distributed on the surface of a
sphere. At each orientation, the gradient strength was varied
from 0–40 mT/m in 10 uniform steps.

Data Analysis
The  tensors were estimated by combining a series of

experiments with different diffusion gradient vectors and solv-
ing the following set of linear equations derived from eq 6 (see
eq 21 at bottom of page).

Note that S/S0 is a complex number in general. In principle,
the  tensors can then be determined to an arbitrarily high
order by truncating the series summation to the desired order
number.

The symmetry property of the  tensors could greatly
reduce the complexity of the estimation problem. By defini-
tion,  is a symmetric tensor, which means that the order
of the subscripts will not affect the values of the tensor ele-
ments. From eq 21 it is evident that  is also a symmetric
tensor. In general, a symmetric tensor in 3D real space of order
n has  independent elements out of the total 3n

elements.14 Hence, due to the symmetry, the number of tensor
elements that needs to be estimated is greatly reduced. For
example, to determine a tensor of order 4, only its 15 indepen-
dent elements instead of its total number of elements, 81, need
to be estimated. Although the symmetry constraint reduces the
number of independent elements for each tensor, the total
number of independent tensor elements (the total free param-
eters) that needs to be estimated grows fairly rapidly with the
order of the approximation. Table 1 lists the total number of
independent tensor elements that needs to be estimated for
order 1 to 6 approximations of the cumulant expansion.

For the simulation, a total of 2000 (200 gradient directions
× 10 gradient strengths) linear equations were obtained. The

Table 1. Total number of independent tensor elements to esti-
mate for each order approximation of the cumulant expansion*

order of the total number of
cumulant expansion independent tensor elements

1   1
2   6
3 16
4 31
5 52
6 80

*The first-order approximation corresponds to an isotropic
Gaussian diffusion model; in this approximation only the diffu-
sion coefficient D needs to estimate. The second-order approxi-
mation corresponds to the DTI Gaussian model, where a second-
order tensor needs to be estimated. In the third-order approxima-
tion, where non-Gaussian diffusion is assumed, both the second-
order (with 6 independent elements) and the third-order tensors
(with 10 independent elements) need to be estimated with a total
number of independent elements of 16, and so on.

 tensors up to order 4 were estimated using the singular

value decomposition (SVD) method22 by rewriting the series
of linear equations in a matrix format.

Visualization
Using the estimated  tensors, the PDF of spin dis-

placement was reconstructed via eq 16. For visualization pur-
poses, two rendering techniques were used: (i) iso-surface plot
of the PDF, and (ii) iso-surface plot of the deviation of the
PDF from Gaussian PDF. The latter is called the skewness and
kurtosis map (skewness map for simplicity), which is deter-
mined via the following equation:

(22)

For easy recognition of the positive and negative values,
grayscale-coding is introduced in the skewness map where
silver represents positive values and dark represents negative
values.

(21)
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RESULTS AND DISCUSSION

Simulation Result
The resultant PDF iso-surface plots and the skewness

maps obtained from the four phantoms were plotted in
Fig. 3. The diffusion ellipsoid determined by DTI was
also shown in this figure as a side-by-side comparison.
The skewness map is plotted in two ways: in the first
plot, the negative part (dark) is made transparent while
the positive part (silver) is solid; in the other plot, both
parts are made solid. All the plots are 3D objects.

For the isotropic phantom 1, both methods produced
an almost identical result, which confirmed the orienta-
tional independence of isotropic diffusion. Phantom 2
contained a single rectangular tube. This feature was
fully conveyed in both the skewness map and PDF iso-

Fig. 3. Phantom simulation results. For the isotropic phantom, the skewness is negligible and not plotted here. In the PDF and
diffusion ellipsoid plots, the lines are x and y-axis. In the PDF skewness map, silver indicates positive skewness and dark
represents negative skewness. Note that the dark area is plotted transparent in the first column of the skewness maps and solid in
the second column. The PDF skewness maps and the PDF iso-surface plots are similar to the geometric shape of the respective
phantom. The diffusion ellipsoid fails to reveal the structure of phantom 3 and 4.

surface plot. The accuracy of the GDTI method was
well demonstrated by the square cross-section of the
skewness map. While DTI was capable of revealing the
fact that spin diffused faster along the tube, some subtle-
ties were lost because only the magnitude of the signal
can be utilized. Phantoms 3 and 4 had more complex
structures. Both had several diffusion branches, while
phantom 3 was symmetric and phantom 4 was asym-
metric. Nevertheless, both the skewness map and PDF
iso-surface plot were able to determine the shape of the
phantoms. Although the rectangular shape of the tube
and the symmetry of the structure were not reproduced
perfectly, the plots have been sufficient to represent the
overall geometrical structure of the phantom. The im-
perfection was caused by the intrinsic randomness of the
diffusion process, the insufficient diffusion exposure
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time, and the increasing complexity of the structure. On
the other hand, the diffusion ellipsoid, which only uti-
lized the second-order diffusion tensor, was unable to
correctly represent the diffusion anisotropy possessed
by the spin inside the tube.

Relationship Between GDTI and DTI
DTI uses a second-order diffusion tensor to charac-

terize the diffusion anisotropy by assuming Gaussian
diffusion. DTI has been successfully applied in clinical
settings and has become an important imaging modality.
The limitations of the DTI model, however, have been
generally neglected or were not widely known. When
the diffusion is of non-Gaussian type, a second-order
diffusion tensor is not the correct model to fit the experi-
mental data. Thus, the information obtained could be
inaccurate or even misleading, as demonstrated by the
simulation. More specifically, the second-order diffu-
sion tensor is symmetric; hence, it cannot fully represent
asymmetric structures. The second-order tensor has
only one orientational maximum, i.e., the major eigen-
value; hence, it cannot resolve multiple diffusion orien-
tations. In the presence of non-Gaussian diffusion, the
measured diffusion tensor will depend on the set of
direction of the diffusion gradients applied; hence, it
varies with diffusion gradient directions used. These
facts will set the limitations for the DTI method.

The GDTI, as an extension to DTI, does not assume
any particular diffusion model. It utilizes the higher-
order statistics to characterize the random diffusion pro-
cess. Physically it is consistent with the q-space ap-
proach, as shown in the theory section. The PDF
obtained by using GDTI method is an approximation to
the true probability function, since in practice one has to
truncate the summation series in order to compute the
higher-order tensors. In principle, however, one could
make the approximation as accurate as desired by going
to higher-order tensors. Usually, tensors up to order 4
would make a good approximation.

The importance of using higher-order tensors to
probe the microstructure can be appreciated most from
the simulation results of phantom 4. In this case, the
PDF of the random spin displacement is not an even
function. Generally, every function can be written as the
combination of its even part and odd part.13 The even
part has a real and even Fourier transformation, whereas
the odd part has an imaginary and odd Fourier transfor-
mation.13 Hence, the signal is generally complex. As
shown in the theory section, DTI is a second-order
approximation of the GDTI method. In other words, it
utilizes only the quadratic part of the MR signal. The
inadequacy of this approximation is well seen in phan-
toms 3 and 4.

Relationship Between GDTI and q-space Imaging
The q-space imaging method does not assume a par-

ticular diffusion model and hence is principally accurate
in probing the complex microstructures. It has been
shown that the GDTI is consistent with q-space imag-
ing; however, the measurement of the higher-order dif-
fusion tensors, i.e., the  tensors, does not require
that the strict assumption of q-space imaging be satis-
fied. Only the estimation of the higher-order cumulants,
i.e., the  tensors, relies on the justification of q-
space imaging. Although there is concern regarding the
feasibility of q-space imaging,23 a few early studies have
reported that the q-space imaging can be performed prac-
tically.24 Anyhow, the accuracy of the reconstructed PDF
by GDTI will depend on how well the relationship be-
tween  and  holds. Nevertheless, the measure-
ment of the higher-order tensorial coefficients 
alone provides a unique method to quantitatively charac-
terize the non-Gaussianality of a diffusion process. Being
able to quantitatively characterize the non-Gaussianality is
one advantage of the GDTI method.

Many numerical quantities can be derived from the
higher-order tensors. For example, the full information
content of the higher-order tensors can be condensed to
provide single numbers for a discussion of the proper-
ties of the underlying diffusion process. A very useful
operation in this respect is tensor contraction.25 Full con-
traction of an even-order tensor of rank n is defined as

(23)

where gkl is the real-space metric tensor. For a Cartesian
coordinate, gkl is an identity matrix. The scalar invariant
I(n) is also called the trace of a tensor of rank n. For even-
order tensors of rank above 2, negative trace-values
indicate flatness of the PDF, while positive values indi-
cate peakedness of the PDF compared with a Gaussian
distribution with the same covariance matrix.

Because of the finite voxel size, the PDF imaged by
GDTI and q-space imaging is the PDF of the random
displacement averaged over all starting positions.3 In the
long time limit, i.e., ∆ → ºº, the PDF of the spin random
displacement is the autocorrelation function of the spin
density.3 Consequently, the measured MR signal, as the
Fourier transformation of the PDF (see eq 12), is an
even and real function. As a result, the odd-order tensors
are null in the long time limit, hence some information
of the underlying microstructures is lost. This is an
intrinsic disadvantage of the MR diffusion experiment,
whether one uses GDTI or q-space imaging.3

Some Practical Issues
In order to measure the higher-order tensors of both

even and odd rank, one has to collect the full complex
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MR signals instead of only the magnitude. Although
even-order tensors only affect the magnitude, and odd-
order tensors are only present in the phase of the signal,
the accuracy of the estimation for both types of tensors
is the same because of the particular estimation method
we used. In this estimation method, the full complex
signal is utilized instead of separating the magnitude
signal from the phase signal. By doing this, magnitude
and phase information are both present in the real and
imaginary parts of the signal, and the error of estimation
is therefore spread. Consequently, phase wrapping is
also not a problem, since the phase only appears in the
trigonometric functions.

An accurate estimation of the odd-order tensors re-
quires correct phase information of the signal. There are
various sources that could introduce phase error in an in
vivo experiment, such as eddy current and subject
movement. Eliminating or correcting those phase errors
is still a difficult task. To reduce the estimation error,
one should use more b-values. As seen in eq 21, the
signal is a smooth function of the b tensors, and phase
error introduced by subject movement is random. With
more b-values used, the random errors can be averaged
out. Thus, the effect of phase error can be reduced. Never-
theless, great care has to be exercised when interpreting
the odd-order tensors when phase error is significant.

Noise is always present in any MR measurement. This
noise is usually modeled as Gaussian distributed and addi-
tive. The effect of this additive noise on the estimation of
higher-order tensors can be analyzed analytically through
eq 6. In general, the presence of noise will degrade the
accuracy of the estimated higher-order tensors and hence
cause distortion in the PDF skewness map. A certain
level of SNR (ratio of signal amplitude to noise standard
deviation) has to be maintained in order to obtain a
reasonably accurate skewness map. Simulations show that
when SNR is higher than 7, all the phantom structures
used in this study can be reconstructed reasonably well.

Another aspect of designing a GDTI measurement is
the choice of b-values. When the diffusion time is short,
most spins do not experience the restriction imposed by
the boundaries. In this case, the measured displacement
distribution approaches a Gaussian function. Therefore,
in order to measure the higher-order tensors, one has to
ensure that the diffusion time is long enough so that
most spins would experience the boundary effect. A
rough guideline is that the resultant mean displacement
of the spin is on the order of the size of the capillary.
Because of the three-dimensional nature of the PDF, the
diffusion gradients have to be applied in a set of uni-
formly sampled 3D directions in the absence of a priori
information of the PDF. Unfortunately, this will neces-
sarily lengthen the data collection time. Our initial pro-

tocol for in vivo human brain study utilizes 58 gradient
directions and 4 b-values (maximum b = 4000 s/mm2)
for each direction. With TR = 4s, the total scan time is
approximately 15 minutes.

Potential Applications
Because of its ability to characterize non-Gaussian

diffusion, GDTI can potentially provide a useful tech-
nique for probing microstructures where restricted diffu-
sion is common. One application would be probing the
structures of porous media (nanotube bundles, foam, lung,
oil- and natural-gas-bearing reservoir rocks, etc.).3 By
reconstructing the probability distribution function of the
liquid or gas molecular random displacement, information
can be extracted not only about the molecular motion, but
also about the geometry of the boundaries and, hence,
about the pore morphology of the surrounding media.

A second application for GDTI is neuroimaging. The
water diffusion in the white matter is non-Gaussian
because of the restriction imposed by fiber boundaries,
as suggested by earlier reports.8 By imaging higher-
order tensors, one can obtain not only a more accurate
description of the underlying diffusion process, but also
better knowledge of the fiber connectivity information.
As a result, GDTI could considerably improve the abil-
ity of MRI to detect the intersecting fibers and, thus,
could potentially improve fiber tractography.26

CONCLUSIONS
In summary, a Gaussian random variable is completely
characterized by its covariance matrix; hence, a second-
order diffusion tensor is sufficient to represent a
Gaussian diffusion process. However, higher-order
statistics are required in order to fully characterize a
non-Gaussian random variable, hence higher-order
diffusion tensors are necessary for the characterization
of the diffusion anisotropy caused by a non-Gaussian
diffusion process. By relating the MR measurable
higher-order diffusion tensors and the higher-order
statistics, GDTI provides a means for quantitatively
characterizing non-Gaussian diffusion. Thus, GDTI
could potentially be a useful technique for studying
complex physical and biological microstructures.
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