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Abstract 

A circuit sizing tool that minimizes the delay under 
energy constraints has been developed using 
optimisation software, tabulated delay models and 
analytical energy models. The tool is used to generate 
energy–delay (E-D) tradeoff curves for selected high-
performance 64-bit carry-lookahead domino adders. The 
optimisation indicates that the sparse radix-4 carry-
lookahead adder with sparseness factor of 2 has optimal 
performance in the energy-delay space. 
 
1. Introduction 
 
Carry-lookahead adders are frequently used in high-
performance microprocessor datapaths. With the 
constant increase in clock frequencies, together with 
reduced logic depths, the timing constraints on basic 
building blocks are tighter. Power increases as well, and 
integer execution units typically are among the blocks 
with the highest power density on a microprocessor chip.  
Carry computation is the critical component of wide 
carry-lookahead (CLA) adders and is usually 
implemented as a parallel prefix tree. Among all trees, 
the Kogge-Stone tree [1] is the most commonly used 
parallel prefix computation topology in high-
performance datapaths.  Its main features are minimum 
logic depth, regular structure and uniform fanout. Its 
main disadvantages are large number of wires and high 
power dissipation. A recent implementation of the 
Kogge-Stone tree in a 64-bit adder is reported in [2]. The 
number of nodes and connections in the tree can be 
reduced by trading it off for increased logic depth by 
making the tree sparse; an example of a tree with 
sparseness of 2 is the Han-Carlson tree [3]. Sparse-tree 
adder implementations have been recently reported, with 
sparseness of 2 [4] and sparseness of 4 [5]. 
An alternate logic optimisation investigates different 
implementations of carry equations. Ling’s equations can 
lead to the simplification of parallel prefix nodes [6], [7]. 
Although adder design is a well-researched area, 
fundamental understanding of adder performance in the 
energy-delay space is still largely unexplored. There is 
no definitive answer on which implementation leads to 
the fastest possible adder, or which one has the smallest 
delay for given energy consumption. Existing 
comparisons of delay deal with the impact of wires with 
fixed sizing [8], impact of carry tree topology on logic 
depth [9] and optimal transistor sizing using logical 
effort [10]. 
This work presents a unified framework for optimal 
sizing of parallel prefix adders in the energy - delay 
space.  To determine which adder performs best in a 
specific system, each of the candidate designs has to be 
optimally sized. In this paper, power-performance 

tradeoffs are analysed for various 64-bit carry-lookahead 
(CLA) adders using optimisation software and accurate 
tabulated delay models. A number of selected parallel 
prefix adders is evaluated in a typical integer execution 
unit environment. Transistor sizing for each of these 
adders is optimised to achieve minimum delay under 
maximum energy constraints. The sizing accounts for 
internal capacitive wire parasitics based on a sketch of 
the floorplan. The present evaluation is restricted to 64-
bit adders but the methodology itself is general and can 
be applied to other structured circuits as well.  
 
2. Optimisation Framework for Gate Sizing 
 
Optimisation framework. The optimisation framework is 
built around a mathematical optimiser with a static timer 
in its loop, as shown in Figure 1. 
The problem is formulated as a minimization of the 
circuit block delay under maximum energy constraints 
by continuously tuning individual gate sizes. Each gate is 
characterised only by its size. Additional constraints are 
set to the problem, such as maximum internal slopes and 
maximum gate pin capacitances. 
All circuit-related calculations are performed by a static 
timer using the classical depth first search algorithm. Its 
inputs are a gate-level netlist that includes wire loads, a 
set of input assertions (input arrival times and slopes), a 
set of output assertions (loads on the output nodes) and 
the models for the delay and the energy of each gate. The 
timer computes the delay and energy of the circuit under 
optimisation as well as some other values such as the 
pincaps and the signal slopes of the internal nodes of the 
circuit. 
In the main optimisation loop, the optimiser passes a 
vector of gate sizes (W) to the timer and gets the 
resulting delay and energy of the circuit. The process is 
repeated until it converges to a set of optimal gate sizes. 
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Figure1: Architecture of the optimisation framework. 



Since the timer is in the optimisation loop, it is 
implemented in C++ to accelerate computation. It is 
coupled with Matlab’s non-linear large-scale optimiser. 
The speed-critical optimisation loop is highlighted in 
Figure 1. 
Delay and Energy Models. The static timer is modular 
and can use various delay and energy models. Simple 
analytical models such as Elmore-based RC delay lead to 
convex optimisation problems that can be solved very 
efficiently. However, such models have limited accuracy 
and have difficulties incorporating second order delay 
dependencies, such as signal slopes. 
In this work tabulated delay models are used in order to 
obtain high accuracy. The gate delay model is 
represented as a set of tables of simulation data, one table 
for each input. Simulation data is tabulated over a wide 
range of fanouts (CL/Cin), and input slopes. Keepers in 
dynamic gates are additionally modelled by adding a 
column with the ratio of the size of the keeper transistor 
to the size of the pull-down network. Linear interpolation 
between neighbouring points is used to calculate the 
actual delay and output slope. Apart from the delay 
tables, gate models also include data about input 
capacitances, worst-case leakage power for 0 and 1 
outputs, and the implemented logic function. 
The energy model is analytical and separates the 
switching component from the leakage component: 
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Node capacitances are computed by the timer using the 
input capacitance and wire data. Node activities are 
computed by logic simulation: a large number of random 
input vectors is passed through the circuit and the 
number of zeroes and ones is recorded at each node. 
Logic simulation was preferred over a probability 
propagation algorithm because of its simplicity. Leakage 
power is computed as the weighted average of the worst 
case 0 and 1 leakage powers from the gate model, using 
the logic level probabilities as weights. 
The energy model has two main limitations: (1) it does 
not account for the crowbar current; however, by 
enforcing reasonable slope constraints, this power 
component is negligible; (2) the worst-case leakage 
model is pessimistic; since the analysed circuits are high-
activity datapath blocks, leakage accounts for only a 
small percentage of the overall energy. 
 
3. Selected 64-Bit Adders 
 
We selected a set of representative carry-lookahead 
adder topologies for optimisation and comparison: radix 
4 Kogge-Stone tree [2], radix 4 tree with sparseness of 4 
[11], [5], radix-2 tree with sparseness of 2 [4] and 4 [12]. 
Radix-2 Kogge-Stone tree is included as a reference 
design. Ultimate performance under power constraints 
usually dictates the use of single rail domino logic. 
In order to fairly compare these carry-lookahead 
schemes, a generic 64-bit adder structure is constructed, 
shown in Figure 2. It corresponds to a 64-bit integer 
execution unit, in a high-performance microprocessor, 
similar to [4] and [11]. 
As previously analyzed in [6] and [7], Ling’s carry 
equations can lead to a simplification of parallel prefix 
nodes compared to the conventional CLA equations. A 
simple optimisation run reveals that adders based on 
Ling’s equations always outperform conventional CLA, 
except for very tight area constraints. Therefore, all 
adders in this analysis implement Ling’s equations: 
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Figure 2: Generic 64-bit adder block diagram. 
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Figure 3: 16-bit radix-2 Kogge-Stone tree. 
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Figure 4: 16-bit radix-4 Kogge-Stone tree. 
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Figures 3 and 4 show the carry trees for the reference 
radix-2 and radix-4 designs (16-bit trees). For these trees, 
the sum-precompute block implements eq. (3): 

( )11
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where S0
i is the pre-computed value of the sum for an 

incoming carry of 0 and S1
i for an incoming carry of 1 at 

bit i. 
The full trees in Figures 3 and 4 compute the 
intermediate and final carry for every bit. However, it is 
possible to compute only some of the carries and select 
the sum based only on the available carry bits.  For 
instance, one can compute only the odd carries (H1, H3, 
H5,…, H63) in the CLA block and use them to set the 
multiplexers in the sum-select stage. The resulting tree is 
sparse, with a sparseness of 2, as shown in Figure 5. The 
sum-precompute block is more complex in sparse trees, 
but still can be removed from the critical path. Even 
order pre-computed values for the sum are given by eq. 
(3), but odd order sums must be pre-computed using eq. 
(4): 
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 Figure 5: 16-bit radix-2 sparse tree, sparseness 2. 
 

4. Results 
 
Energy–delay (E-D) tradeoff curves are obtained for all 
analysed adders using the presented framework and a 
0.13µm 1.2V technology. All adders are optimised in the 
same environment, with the same constraint on the input 
capacitance and maximum internal slopes. The load at 
the output was chosen 3 times the input capacitance. This 
is a realistic value for an ALU [11] where additional 
buffers are inserted to drive large loads. The height of a 
bit slice is selected to be 18 metal pitches [11] and wire 
lengths are estimated according to the number of 
traversed bitslices. 
Figure 6 shows the E-D tradeoff curves for the 2 
reference designs – the radix 4 and radix 2 full trees. On 
the x-axis the delay is normalized to the delay of a 
fanout-of-4 (FO4) inverter. The y-axis shows the total 
energy per transition, in pJ. On each curve, the point with 
the lowest delay represents the best performance that can 
be achieved by the respective structure regardless of the 
power budget (unconstrained minimum delay). The 
lowest energy point is determined by minimum size 
constraints and slope constraints. 
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Figure 6: E-D tradeoffs for radix-2 and radix-4 Kogge-

Stone trees. 
 

It can be noted from the figure that in these loading 
conditions, the radix-4 design is both faster and 
consumes less power than radix-2. The critical path of 
the radix-2 tree has 7 domino stages, which is larger than 
what is optimally needed to drive a relatively small 
overall fanout of the adder. The radix-4 tree has more 
complex and slower gates, but their number is smaller 
and the critical path has only 4 domino stages. 

Figure 7 further compares the E-D tradeoff curves for all 
radix-4 designs – full and sparse trees. 
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Figure 7: E-D tradeoffs for full and sparse radix 4 trees. 

 
The differences between a sparse and a full tree are 
reflected in the following ways: (1) Larger output load of 
the carry tree: one carry output of the CLA block must 
drive a number of gates that is equal to the sparseness 
factor of the tree, thus slowing down the circuit.  Optimal 
delay is achieved through upsizing the critical path (2) 
Reduced input loading for the CLA block: a sparse tree 
has fewer gates in the first stage and therefore the load 
on the input is smaller, thus for the same input 
capacitance, the input gates on the critical path can be 
made larger. (3) More complex sum-precompute blocks 
that slow down the critical path through additional 
branching. 
The overall result is a balance of all the above factors. 
The tree with a sparseness of 2 that computes even 
carries achieves the smallest unconstrained delay and 
therefore is the fastest in this context. Sparseness of the 
tree does not dramatically affect the energy of the adder.  
Although sparse designs have fewer gates, their critical 
paths are upsized proportionally to optimally drive larger 
loads. 
Trading off the delay for energy savings affects the 
internal signal slopes.  In highest performance designs, 
the slope constraint is usually active on fast non-critical 
paths, right before they merge into the critical path. The 
sum-precompute block is normally much faster than the 
CLA block and if no slope constraint is in effect, the 
optimiser will downsize all the gates in it, in order to 
save power. This results in a slow slope at the output of 
the sum-precompute block, because the sum-select 
multiplexer is on the critical path and is upsized in order 
to obtain the required performance. If slope constraints 
become tighter, gates in non-critical paths have to be 
either upsized or buffered in order to satisfy them. 
The detailed structure of the fastest adder is shown in 
Figure 8. The carry tree computes even-order carries and 
is implemented in domino logic. The hard clock edge is 
imposed on the final sum-select gate. All dynamic gates 
are footless, except those connected to the primary inputs 
or with hard clock edges, in order to improve 
performance and save power. 
Best performance is 6.8 FO4 inverter delays at an energy 
cost of 33.5 pJ per cycle. Stage-by-stage delays for the 
optimal design are shown in Figure 8. Increasing the 
delay by 3%, to 7 FO4s, saves almost 20% in energy (26 
pJ per cycle). 
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Figure 8: Fastest adder. 
 
 
 

 

5. Conclusions 
 
A circuit sizing tool is used to optimise the performance 
of carry-lookahead adders in the energy-delay space. 
Radix-4 carry-lookahead tree implemented in domino 
logic achieves the minimum of 6.8 fanout-of-4 delays.  
Full and sparse trees do not differ significantly in delay 
for the same energy constraints. 
This tool can be used for power-performance 
optimisation of any regular logic block. 
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