
Power – Performance Optimal
64-Bit Carry-Lookahead Adders

Radu Zlatanovici, Borivoje Nikolic

Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley, CA 94720
{zradu,bora}@eecs.berkeley.edu

Abstract

A circuit sizing tool that minimizes the delay under
energy constraints has been developed using
optimisation software, tabulated delay models and
analytical energy models. The tool is used to generate
energy–delay (E-D) tradeoff curves for selected high-
performance 64-bit carry-lookahead domino adders. The
optimisation indicates that the sparse radix-4 carry-
lookahead adder with sparseness factor of 2 has optimal
performance in the energy-delay space.

1. Introduction

Carry-lookahead adders are frequently used in high-
performance microprocessor datapaths. With the
constant increase in clock frequencies, together with
reduced logic depths, the timing constraints on basic
building blocks are tighter. Power increases as well, and
integer execution units typically are among the blocks
with the highest power density on a microprocessor chip.
Carry computation is the critical component of wide
carry-lookahead (CLA) adders and is usually
implemented as a parallel prefix tree. Among all trees,
the Kogge-Stone tree [1] is the most commonly used
parallel prefix computation topology in high-
performance datapaths. Its main features are minimum
logic depth, regular structure and uniform fanout. Its
main disadvantages are large number of wires and high
power dissipation. A recent implementation of the
Kogge-Stone tree in a 64-bit adder is reported in [2]. The
number of nodes and connections in the tree can be
reduced by trading it off for increased logic depth by
making the tree sparse; an example of a tree with
sparseness of 2 is the Han-Carlson tree [3]. Sparse-tree
adder implementations have been recently reported, with
sparseness of 2 [4] and sparseness of 4 [5].
An alternate logic optimisation investigates different
implementations of carry equations. Ling’s equations can
lead to the simplification of parallel prefix nodes [6], [7].
Although adder design is a well-researched area,
fundamental understanding of adder performance in the
energy-delay space is still largely unexplored. There is
no definitive answer on which implementation leads to
the fastest possible adder, or which one has the smallest
delay for given energy consumption. Existing
comparisons of delay deal with the impact of wires with
fixed sizing [8], impact of carry tree topology on logic
depth [9] and optimal transistor sizing using logical
effort [10].
This work presents a unified framework for optimal
sizing of parallel prefix adders in the energy - delay
space. To determine which adder performs best in a
specific system, each of the candidate designs has to be
optimally sized. In this paper, power-performance

tradeoffs are analysed for various 64-bit carry-lookahead
(CLA) adders using optimisation software and accurate
tabulated delay models. A number of selected parallel
prefix adders is evaluated in a typical integer execution
unit environment. Transistor sizing for each of these
adders is optimised to achieve minimum delay under
maximum energy constraints. The sizing accounts for
internal capacitive wire parasitics based on a sketch of
the floorplan. The present evaluation is restricted to 64-
bit adders but the methodology itself is general and can
be applied to other structured circuits as well.

2. Optimisation Framework for Gate Sizing

Optimisation framework. The optimisation framework is
built around a mathematical optimiser with a static timer
in its loop, as shown in Figure 1.
The problem is formulated as a minimization of the
circuit block delay under maximum energy constraints
by continuously tuning individual gate sizes. Each gate is
characterised only by its size. Additional constraints are
set to the problem, such as maximum internal slopes and
maximum gate pin capacitances.
All circuit-related calculations are performed by a static
timer using the classical depth first search algorithm. Its
inputs are a gate-level netlist that includes wire loads, a
set of input assertions (input arrival times and slopes), a
set of output assertions (loads on the output nodes) and
the models for the delay and the energy of each gate. The
timer computes the delay and energy of the circuit under
optimisation as well as some other values such as the
pincaps and the signal slopes of the internal nodes of the
circuit.
In the main optimisation loop, the optimiser passes a
vector of gate sizes (W) to the timer and gets the
resulting delay and energy of the circuit. The process is
repeated until it converges to a set of optimal gate sizes.

NETLIST

STATIC TIMER
(C++)

OPTIMIZER
(MATLAB)

INITIAL W

MODELS,
INPUT

ASSERTIONS,
OUTPUT

ASSERTIONS

OUTPUT

W

DELAY, ENERGY

Figure1: Architecture of the optimisation framework.

Since the timer is in the optimisation loop, it is
implemented in C++ to accelerate computation. It is
coupled with Matlab’s non-linear large-scale optimiser.
The speed-critical optimisation loop is highlighted in
Figure 1.
Delay and Energy Models. The static timer is modular
and can use various delay and energy models. Simple
analytical models such as Elmore-based RC delay lead to
convex optimisation problems that can be solved very
efficiently. However, such models have limited accuracy
and have difficulties incorporating second order delay
dependencies, such as signal slopes.
In this work tabulated delay models are used in order to
obtain high accuracy. The gate delay model is
represented as a set of tables of simulation data, one table
for each input. Simulation data is tabulated over a wide
range of fanouts (CL/Cin), and input slopes. Keepers in
dynamic gates are additionally modelled by adding a
column with the ratio of the size of the keeper transistor
to the size of the pull-down network. Linear interpolation
between neighbouring points is used to calculate the
actual delay and output slope. Apart from the delay
tables, gate models also include data about input
capacitances, worst-case leakage power for 0 and 1
outputs, and the implemented logic function.
The energy model is analytical and separates the
switching component from the leakage component:

∑ ∑+α=
nodesall gatesall

jleakDDii fPVCE
_ _

,
2 (1)

Node capacitances are computed by the timer using the
input capacitance and wire data. Node activities are
computed by logic simulation: a large number of random
input vectors is passed through the circuit and the
number of zeroes and ones is recorded at each node.
Logic simulation was preferred over a probability
propagation algorithm because of its simplicity. Leakage
power is computed as the weighted average of the worst
case 0 and 1 leakage powers from the gate model, using
the logic level probabilities as weights.
The energy model has two main limitations: (1) it does
not account for the crowbar current; however, by
enforcing reasonable slope constraints, this power
component is negligible; (2) the worst-case leakage
model is pessimistic; since the analysed circuits are high-
activity datapath blocks, leakage accounts for only a
small percentage of the overall energy.

3. Selected 64-Bit Adders

We selected a set of representative carry-lookahead
adder topologies for optimisation and comparison: radix
4 Kogge-Stone tree [2], radix 4 tree with sparseness of 4
[11], [5], radix-2 tree with sparseness of 2 [4] and 4 [12].
Radix-2 Kogge-Stone tree is included as a reference
design. Ultimate performance under power constraints
usually dictates the use of single rail domino logic.
In order to fairly compare these carry-lookahead
schemes, a generic 64-bit adder structure is constructed,
shown in Figure 2. It corresponds to a 64-bit integer
execution unit, in a high-performance microprocessor,
similar to [4] and [11].
As previously analyzed in [6] and [7], Ling’s carry
equations can lead to a simplification of parallel prefix
nodes compared to the conventional CLA equations. A
simple optimisation run reveals that adders based on
Ling’s equations always outperform conventional CLA,
except for very tight area constraints. Therefore, all
adders in this analysis implement Ling’s equations:

Carry
Tree

Sum
Precomp.

Sum Select Sum [0:63]

a [0:63]
b [0:63]

Figure 2: Generic 64-bit adder block diagram.

(a
0,

 b
0)

(a
1,

 b
1)

(a
2,

 b
2)

(a
3,

 b
3)

(a
4,

 b
4)

(a
5,

 b
5)

(a
6,

 b
6)

(a
7,

 b
7)

(a
8,

 b
8)

(a
9,

 b
9)

(a
10

, b
10

)

(a
11

, b
11

)

(a
12

, b
12

)

(a
13

, b
13

)

(a
14

, b
14

)

(a
15

, b
15

)

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
13

S
14

S
15

Figure 3: 16-bit radix-2 Kogge-Stone tree.

(a
0,

 b
0)

(a
1,

 b
1)

(a
2,

 b
2)

(a
3,

 b
3)

(a
4,

 b
4)

(a
5,

 b
5)

(a
6,

 b
6)

(a
7,

 b
7)

(a
8,

 b
8)

(a
9,

 b
9)

(a
10

,
b

10
)

(a
11

,
b

11
)

(a
12

,
b

12
)

(a
13

,
b

13
)

(a
14

,
b

14
)

(a
15

,
b

15
)

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
13

S
14

S
15

Figure 4: 16-bit radix-4 Kogge-Stone tree.

11

111 ,

 ,

−−

−−−

+⊕=

=+=
+==

iiiiii

iiiiiii

iiiiii

HtgHtS

ttIHtgH

batbag

 (2)

Figures 3 and 4 show the carry trees for the reference
radix-2 and radix-4 designs (16-bit trees). For these trees,
the sum-precompute block implements eq. (3):

()11
10 , −− +⊕⊕=⊕= iiiiiiii babaSbaS (3)

where S0
i is the pre-computed value of the sum for an

incoming carry of 0 and S1
i for an incoming carry of 1 at

bit i.
The full trees in Figures 3 and 4 compute the
intermediate and final carry for every bit. However, it is
possible to compute only some of the carries and select
the sum based only on the available carry bits. For
instance, one can compute only the odd carries (H1, H3,
H5,…, H63) in the CLA block and use them to set the
multiplexers in the sum-select stage. The resulting tree is
sparse, with a sparseness of 2, as shown in Figure 5. The
sum-precompute block is more complex in sparse trees,
but still can be removed from the critical path. Even
order pre-computed values for the sum are given by eq.
(3), but odd order sums must be pre-computed using eq.
(4):

()
()()[]221111

1
11

0

−−−−−−

−−

+++⊕⊕=

⊕⊕=

iiiiiiiii

iiiii

babababaS

babaS
 (4)

(a
0,

 b
0)

(a
1,

 b
1)

(a
2,

 b
2)

(a
3,

 b
3)

(a
4,

 b
4)

(a
5,

 b
5)

(a
6,

 b
6)

(a
7,

 b
7)

(a
8,

 b
8)

(a
9,

 b
9)

(a
10

, b
10

)

(a
11

, b
11

)

(a
12

, b
12

)

(a
13

, b
13

)

(a
14

, b
14

)

(a
15

, b
15

)

S
1

S
3

S
5

S
7

S
9

S
11

S
13

S
15

S
0

S
2

S
4

S
6

S
8

S
10

S
12

S
14

 Figure 5: 16-bit radix-2 sparse tree, sparseness 2.

4. Results

Energy–delay (E-D) tradeoff curves are obtained for all
analysed adders using the presented framework and a
0.13µm 1.2V technology. All adders are optimised in the
same environment, with the same constraint on the input
capacitance and maximum internal slopes. The load at
the output was chosen 3 times the input capacitance. This
is a realistic value for an ALU [11] where additional
buffers are inserted to drive large loads. The height of a
bit slice is selected to be 18 metal pitches [11] and wire
lengths are estimated according to the number of
traversed bitslices.
Figure 6 shows the E-D tradeoff curves for the 2
reference designs – the radix 4 and radix 2 full trees. On
the x-axis the delay is normalized to the delay of a
fanout-of-4 (FO4) inverter. The y-axis shows the total
energy per transition, in pJ. On each curve, the point with
the lowest delay represents the best performance that can
be achieved by the respective structure regardless of the
power budget (unconstrained minimum delay). The
lowest energy point is determined by minimum size
constraints and slope constraints.

10

15

20

25

30

35

40

45

50

55

60

6 7 8 9 10 11

Delay [FO4]

E
ne

rg
y

[p
J]

Radix-4

Radix-2

Figure 6: E-D tradeoffs for radix-2 and radix-4 Kogge-

Stone trees.

It can be noted from the figure that in these loading
conditions, the radix-4 design is both faster and
consumes less power than radix-2. The critical path of
the radix-2 tree has 7 domino stages, which is larger than
what is optimally needed to drive a relatively small
overall fanout of the adder. The radix-4 tree has more
complex and slower gates, but their number is smaller
and the critical path has only 4 domino stages.

Figure 7 further compares the E-D tradeoff curves for all
radix-4 designs – full and sparse trees.

20

22

24

26

28

30

32

34

36

6 6.5 7 7.5 8 8.5 9

Delay [FO4]

E
n

er
g

y
[p

J]

Sparseness=2

Sparseness=4

Full tree

Figure 7: E-D tradeoffs for full and sparse radix 4 trees.

The differences between a sparse and a full tree are
reflected in the following ways: (1) Larger output load of
the carry tree: one carry output of the CLA block must
drive a number of gates that is equal to the sparseness
factor of the tree, thus slowing down the circuit. Optimal
delay is achieved through upsizing the critical path (2)
Reduced input loading for the CLA block: a sparse tree
has fewer gates in the first stage and therefore the load
on the input is smaller, thus for the same input
capacitance, the input gates on the critical path can be
made larger. (3) More complex sum-precompute blocks
that slow down the critical path through additional
branching.
The overall result is a balance of all the above factors.
The tree with a sparseness of 2 that computes even
carries achieves the smallest unconstrained delay and
therefore is the fastest in this context. Sparseness of the
tree does not dramatically affect the energy of the adder.
Although sparse designs have fewer gates, their critical
paths are upsized proportionally to optimally drive larger
loads.
Trading off the delay for energy savings affects the
internal signal slopes. In highest performance designs,
the slope constraint is usually active on fast non-critical
paths, right before they merge into the critical path. The
sum-precompute block is normally much faster than the
CLA block and if no slope constraint is in effect, the
optimiser will downsize all the gates in it, in order to
save power. This results in a slow slope at the output of
the sum-precompute block, because the sum-select
multiplexer is on the critical path and is upsized in order
to obtain the required performance. If slope constraints
become tighter, gates in non-critical paths have to be
either upsized or buffered in order to satisfy them.
The detailed structure of the fastest adder is shown in
Figure 8. The carry tree computes even-order carries and
is implemented in domino logic. The hard clock edge is
imposed on the final sum-select gate. All dynamic gates
are footless, except those connected to the primary inputs
or with hard clock edges, in order to improve
performance and save power.
Best performance is 6.8 FO4 inverter delays at an energy
cost of 33.5 pJ per cycle. Stage-by-stage delays for the
optimal design are shown in Figure 8. Increasing the
delay by 3%, to 7 FO4s, saves almost 20% in energy (26
pJ per cycle).

H4,I4 H16,I16 H64

Cin

Cout

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H4,I4

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H16,I16

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

H64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

ODD BITS

EVEN BITS

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

SUM PRECOMP - ODD

SUM PRECOMP - EVEN

0 1.88 2.91 4.51 6.81 time

[FO4]

Figure 8: Fastest adder.

5. Conclusions

A circuit sizing tool is used to optimise the performance
of carry-lookahead adders in the energy-delay space.
Radix-4 carry-lookahead tree implemented in domino
logic achieves the minimum of 6.8 fanout-of-4 delays.
Full and sparse trees do not differ significantly in delay
for the same energy constraints.
This tool can be used for power-performance
optimisation of any regular logic block.

6. References

[1] P.M. Kogge, H.S. Stone: A Parallel Algorithm for

Efficient Solution of a General Class of Recursive
Equations, IEEE Transactions on Computers pp.
786-793 August 1973

[2] J. Park, H.C. Ngo, J.A. Silberman, S.H. Dhong:
470ps 64bit Parallel Binary Adder, 2000
Symposium on VLSI Circuits p.192-193, 2000

[3] T. Han, D.A. Carlson: Fast Area Efficient VLSI
Adders, 8th Symposium on Computer Arithmetic,
p.49-56, 1987

[4] S. Mathew, R. Krishnamurthy, M. Anders, R.Rios,
K. Mistry, K. Soumyanath: Sub-500ps 64b ALUs in
0.18µm SOI/Bulk CMOS: Design & Scaling Trends,
International Solid-State Circuits Conference, p.318-
319, 2001

[5] S. Naffziger: A sub-nanosecond 0.5µm 64b adder
design, International Solid-State Circuits
Conference, p.210-211, 1996

[6] H. Ling: High Speed Binary Adder, IBM J. Res.
Develop, vol.25, no.3, p. 156-166, May 1981

[7] R.W. Doran: Variants of an improved carry look-
ahead adder, IEEE Transactions on Computers, vol.
37 9/1988 p.1110-1113

[8] Z. Huang, M.D. Ercegovac: Effect of Wire Delay on
the Design of Prefix Adders in Deep-Submicron
Technology, 34th Asilomar Conference on Signals,
Systems and Computers, vol. 2 p. 1713-1717, 2000

[9] A. Beaumont-Smith, C.C. Lim: Parallel Prefix
Adder Design, 15th Symposium on Computer
Arithmetic, p.218-225, 2001

[10] H.Q. Dao, V. Oklobdzija: Application of Logical
Effort Techniques for Speed Optimisation and
Analysis of Representative Adders, 35th Asilomar
Conference on Signals, Systems and Computers,
vol. 2 p. 1666-1669, 2001

[11] Y. Shimazaki, R. Zlatanovici, B. Nikolic: A Shared-
Well Dual-Supply-Voltage 64-bit ALU,
International Solid-State Circuits Conference, p.
104-105 2003

[12] S. Mathew, M. Anders, R. Krishnamurty, S. Borkar:
A 4GHz 130nm Address Generation Unit with 32-
Bit Sparse-Tree Adder Core, Symposium on VLSI
Circuits, p.126-127, 2002

