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Abstract— Integrating multiple power converters on-chip
improves energy efficiency of manycore architectures. Switched-
capacitor (SC) dc–dc converters are compatible with conventional
CMOS processes, but traditional implementations suffer from
limited conversion efficiency. We propose a dynamic voltage and
frequency scaling scheme with SC converters that achieves high
converter efficiency by allowing the output voltage to ripple and
having the processor core frequency track the ripple. Minimum
core energy is achieved by hopping between different converter
modes and tuning body-bias voltages. A multicore processor
model based on a 28-nm technology shows conversion efficiencies
of 90% along with over 25% improvement in the overall chip
energy efficiency.

Index Terms— Dynamic voltage and frequency scaling (DVFS),
multicore processors, switched capacitor (SC).

I. INTRODUCTION

THE growing need for energy efficiency while utilizing
increased transistor densities has led to the develop-

ment of manycore architectures. To maximize the energy
efficiency of a processor when using dynamic voltage and
frequency scaling (DVFS) [1], it is highly desirable to inde-
pendently control the supply and the clock frequency for each
core [2], [3].
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As the number of cores grows, fine-grained DVFS
schemes become prohibitively challenging to implement using
off-chip inductor-based converters. In contrast, reconfigurable
switched-capacitor (SC) dc–dc converters can be completely
integrated, while offering reduced switch V –A stress and
reduced overshoot [4]. Their primary disadvantage lies in the
inherent SC loss caused by voltage ripple across the flying
capacitors and the fact that a conventional digital system is
operated based on minimum supply voltage [5]. In this paper,
we show that by adapting the clock waveform to the rippling
supply voltage through the use of adaptive clock schemes [6],
the voltage ripple can be turned into additional performance,
resulting in conversion efficiencies of 90% across a wide range
of conversion ratios. In addition, by paying a modest penalty in
efficiency, and operating the converters with high power den-
sities, the area overhead can be reduced by an additional order
of magnitude, thus enabling their practical implementation in
fine-grained DVFS schemes with many cores.

Traditional system energy analysis assumes fixed supply
voltage. We introduce the analysis of the manycore system
energy when operated under changing supply voltage. The
analysis helps us to perform a global optimization to find
the minimum-energy operating point of a processor core for a
desired application performance level. To overcome the limi-
tation of the finite number of conversion ratios in an SC dc–dc
converter, we introduce a combined technique exploiting the
body-bias voltage tuning applicable to fully depleted silicon-
on-insulator (FDSOI) technology [8] together with dc–dc state
hopping. This technique reduces the energy per core by up to
25% compared with DVFS schemes with traditional on-chip
SC voltage regulators.

II. OPTIMIZED SC DC–DC CONVERTER DESIGN

Switched power converter circuits have an inherent voltage
ripple at their output, on top of which are superimposed unpre-
dictable large voltage droops caused by switching activity
of dynamic load elements, which are usually largest at the
beginning of every clock cycle [7]. Because digital circuits
must function correctly at the minimum possible voltage, there
is often significant clock period margin added to allow for this
supply noise, substantially reducing system energy efficiency.

Adaptive clocking has recently been proposed to cope with
both static and dynamic variations by scaling performance with
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Fig. 1. Output of the converter and adaptive clock for digital circuits.

Fig. 2. 2:1 step-down converter and the operational waveforms.

supply [6]. In this paper, we introduce an aggressive form of
adaptive clocking that tracks voltage ripple at the converter’s
output (Fig. 1), allowing greater converter efficiency and
improving energy efficiency of the entire system. Unlike [6],
our adaptive clock is dynamically tracking changes in the
supply within each clock cycle, and not with one clock cycle
of latency.

A. Loss Optimization in Conventional DC–DC Converter

Our design is built around a reconfigurable SC dc–dc
converter using MOS capacitors in a 28-nm FDSOI technology
[8], [9], and it has three different configurations: 2–1 and
3–2 topologies operating off a 1 V input and a 2–1 topol-
ogy operating off a 1.8 V input. To elucidate the key loss
mechanisms, we begin by examining the operation of 2:1 step-
down reconfigurable converter shown in Fig. 2. The specific
details of the SC circuit design are provided in Section II-C.
For the 2:1 conversion, the switch S3 is always OFF. The
converter operates in two nonoverlapping phases φ1 and φ2.
The equivalent waveforms on the capacitor and at the output
are shown in the same figure.

In a fully integrated SC dc–dc converter, multiple switching
phases are used to reduce the output ripple [5], [14]. We are
referring to this type of converter as the conventional inter-
leaved or just conventional converter.

Optimizing the converter requires selecting the capaci-
tor size Cfly, the switch size Wsw, and the switching fre-
quency fsw. The capacitor size is usually fixed by the chosen
power density. Power density represents the ratio between the
converter output power and its area, and is a useful metric
for calculating converter area overhead for a given processor
power.

The two remaining design parameters are obtained through
the optimization of four major loss components [5]:

1) intrinsic SC loss PCfly , proportional to f −1
sw , and inde-

pendent of the switch size Wsw;
2) bottom plate Pbott proportional to fsw and independent

of the switch size Wsw;
3) switching loss Pgate, proportional to fsw and Wsw;

TABLE I

POWER BREAKDOWN IN CONVENTIONAL AND PROPOSED CONVERTERS

Fig. 3. Reconfigurable SC dc–dc converter.

4) conduction loss Pcond, independent of fsw and propor-
tional to W−1

sw .

To optimize fsw and Wsw, the sum of loss terms that are
directly or inversely proportional to fsw and Wsw is minimized.

B. Loss Optimization in Rippled DC–DC Converter

The SC loss is a consequence of charging and discharging
the flying capacitor and is manifested in the ripple at the
output. The performance of traditional circuits is typically set
by the minimum voltage Vmin of the supply rail. Any voltage
above that will result in power loss since this additional
power does not contribute to the increase in performance.
By eliminating the SC loss, the converter can operate at
the minimum switching frequency necessary to guarantee a
maximum allowable ripple at the output (which is typically
set by transistor reliability concerns) since the remaining loss
terms are either directly proportional or independent of fsw.
This results in a much higher converter efficiency.

To illustrate the idea, the breakdown of power losses when
the SC converter is optimized for maximum efficiency is
presented in Table I for a conventional interleaved converter
and the proposed approach. Both converters are assumed
to have the same power density of 0.4 W/mm2 (i.e., same
flying capacitor area and the same load power), and we use
16 interleaved switching phases for the conventional converter.
Loss components, inversely proportional to fsw, dominate in
interleaved converters. Once the ripple constraint is relaxed,
fsw can be scaled down in the proposed approach, resulting
in substantially smaller bottom plate and switching losses.
Furthermore, smaller switching losses allow for the switches to
be larger, resulting also in smaller conduction loss and overall
efficiency above 90%.

C. DC–DC Circuit Design

To achieve reconfigurability, we embed two identical sub-
converter unit cells into one, as shown in [5]. Two sets of
switches are used for better energy efficiency: one set for the
configurations operating off a 1 V (set 1) and the other set
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TABLE II

EMPLOYED SWITCHES FOR EACH CONFIGURATION

Fig. 4. Simulation waveforms for three dc–dc configurations.

for the configuration operating off a 1.8 V (set 2). A more
detailed dc–dc converter circuit diagram is shown in Fig. 3.

The switches employed for each of the configuration are
given in Table II. Instead of single transistors, pass gates
are used for some of the switches (B1, D1, F1, and H1)
to decrease their ON resistance when the output voltage
is low (i.e., configuration 3). All three configurations are
achieved by switching the converter in two clock phases,
as explained in Section II-A. To illustrate the operation of
a representative SC converter, detailed simulation waveforms
for all configurations are shown in Fig. 4. The waveforms
were generated by choosing 0.36 mm2 as available area for
the flying capacitor and microprocessor power consumption
of 150 mW at 1 V. For these settings, we found that the
ripple size varies from 100 mV for configuration 3 (bottom
waveform) to 300 mV for configuration 1 (top waveform),
while the switching frequency varies from 10 MHz for con-
figuration 3 to 100 MHz for configuration 1. Small droop
in voltage observed in configuration 3 is due to slower turn-
ON time of pMOS switch A1 (E1) with respect to pass-gate
switch D1 (H1) and occurs when the converter switches from
phase φ2 to φ1.

III. SYSTEM MODELING

Detailed analysis of the entire system’s energy is important
to determine the method that will be used to optimize the
energy efficiency and serve as a guideline for the DVFS
hardware implementation. A block diagram of a four-core
processor where each core has its own DVFS scheme is shown
in Fig. 5. We use MATLAB as the modeling environment to
describe the behavior of each DVFS element: the processor
core frequency, leakage and dynamic energy, the converter
efficiency, and the clock frequency of the adaptive clock
scheme. The goal of these models is to quickly analyze the

Fig. 5. DVFS on a manycore processor.

Fig. 6. Flow diagram for power and timing information extraction.

system energy for different performance targets, power supply
values, ripple sizes, and converter configurations.

A. DC–DC Converter Model

The efficiencies for both our rippled and the conventional
interleaved approaches are obtained using a previously pre-
sented analysis that was shown to calculate efficiencies to
within a few percent compared with the measured efficien-
cies [5]. The rippled approach has three loss terms instead of
four. The efficiencies are modeled as a function of the refer-
ence voltage, Vref (marked in Fig. 1), for a particular load Iload

η = f (Vref , Iload). (1)

We also model the output waveform of the converter for
a given configuration and Vref to match the transistor-level
schematic simulation. Equivalent RC circuits for converter
switching phases are modeled with differential equations.

B. CPU Energy and Frequency Model

We use a vector processor core based on a Reduced
Instruction Set Computing – V (RISC-V) Instruction Set
Architecture [10] implemented in a 28-nm FDSOI technology.
Using Synopsys PrimeTime (PT), we obtain power and timing
reports for the core (Fig. 6).

We model the CPU frequency and CPU dynamic and
leakage energies per cycle as a function of supply voltage
VDD [0.4 V–1.3 V], body-bias voltage VBB [0–1.5 V], and
temperature T [−40 °C–125 °C] by fitting PT results into a
set of analytical equations. Frequency is modeled as

fcpu = k f
(VDD − V th)α

VDD

+ kTc(VDD, V th)(1 + kT f T ) (2)
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where k f is a proportionality constant and α is the velocity
saturation term that models short-channel effects. Coefficients
kT f and kT c are introduced to model the frequency’s depen-
dence on temperature. For a fixed temperature, this frequency
model follows the well-known alpha power law. Drain current
Id has a positive temperature coefficient for near-threshold
operation and a negative temperature coefficient for strong
saturation [11]. PT simulations confirmed that the CPU per-
formance follows the same temperature behavior.

Dynamic switching energy is given by

Edyn = CswV β
DD

(1 + kbb VBB)(1 + kT dynT ) (3)

where Csw is the total effective switched capacitance and β is
a constant close to two, but is left as a fitting knob in the
equation to achieve better fitting results. In addition, two more
constants kbb and kT dyn are introduced to model how back bias
and temperature influence the dynamic energy.

Leakage power is modeled as

Pleak = I0VDD T γ exp

(
− Vth

(
VDD, VBB , T

)
nVthermln10

)
(4)

where Vtherm is the thermal voltage, n is the subthreshold
swing coefficient, and I0 is a constant. We introduce the
power supply and temperature dependence through factors
VDD and T γ . While γ usually has a value of two [15], we found
that better fitting results for this technology can be obtained
by setting it to 1.8. Leakage energy per cycle is obtained as
Pleak/ fcpu.

C. Adaptive Clock Model

As Fig. 1 shows, the clock period changes dynamically with
the rippling supply voltage. A tunable replica circuit models
the critical path of the processor to produce the dynamic CPU
frequency given by (2), similar to [6]. To obtain an accurate
estimate of the per-cycle energy, we model this adaptive clock
on cycle-by-cycle basis.

We start with the output voltage waveform VDD(t), by sim-
ulating the operation of dc–dc converter, as described in
Section III-A. The load for the converter is obtained using
the processor model at VBB = 0 and 25 °C, as described
in Section III-B. Detailed steps for obtaining the voltage
waveform are given in Section III-D. At a time ti , the CPU
clock period Tcpu(ti ) is calculated from the reciprocal of (2)
evaluated at VDD(ti ). Then, the next CPU clock period should
be evaluated at a time ti+1 = ti + Tcpu(ti ). To account for a
CPU frequency change with the supply voltage, we split the
clock period into 100 time steps and calculate the incremental
delay at each step following the same methodology. Averaging
the incremental delays gives the total CPU clock period.

D. Per-Core DVFS Model

Given a target speed for the processor core, the com-
plete model calculates the energy per cycle for a system
that contains one processor core, the reconfigurable dc–dc
converter, and the adaptive clock generator. The energy–delay
(E–D) curves for the proposed approach are shown in Fig. 7.

The temperature is set to the room temperature of 25 °C, which
corresponds to the temperature value that was used for dc–dc
converter model characterization. Each point on the E–D curve
for a particular configuration is obtained as follows.

1) First, we model the CPU as a voltage-controlled cur-
rent source at the output of the converter. The current
dependence on voltage is calculated using (2)–(4)

Iload =
(
Edyn fcpu + Pleak

)
VDD

. (5)

2) Then, a reference voltage value is chosen. This sets the
ripple size and the switching frequency of the converter
for a given load. Approximate voltage waveforms are
computed based on the chosen converter configuration,
Vref , and Iload, as described in Section III-A.

3) The adaptive clock model is applied, and by knowing
the voltage waveform, the processor’s core energy is
computed in each varying clock cycle. The results are
averaged over time to obtain the energy per cycle and
average clock period.

4) We divide the core energy per cycle by the converter
efficiency for that particular setting, and obtain the
energy per cycle of the entire system. This allows us to
model many different real-world scenarios and analyze
the behavior of the proposed system in a short time.

IV. OPTIMIZED DVFS SCHEME

Due to the nonlinearities of processor energy and frequency,
there is a small energy overhead when the processor is supplied
by a variable voltage compared with the processor supplied
by a flat voltage for the same target performance. Still, this
penalty is ripple size dependent and is negligible for the
converter’s most efficient operating point.

This loss can be described by a simple model. We
assume that the CPU frequency is linearly dependent on
the supply voltage and that the energy is dominated by the
dynamic energy (i.e., it follows CV 2 law). We also assume
a constant current load. With these assumptions, the inter-
leaved approach has the same performance as the proposed
approach if its output voltage is Vavg = (Vmax + Vref)/2
(Fig. 1). The energy of the interleaved approach is then
Einterleaved = CV 2

avg, while the energy of the rippled approach

is Erippled = 1/(Vmax − Vref)
∫ Vmax

Vref
CV 2dV . Simplifying the

previous equations gives an energy difference of �E =
Erippled − Einterleaved = C(Vmax − Vref)

2/12, which is only
around 1% of the interleaved energy, assuming, for example,
a 300 mV ripple for Vavg = 0.9 (configuration 1).

A. Energy Optimization Algorithm: VDD Hopping

System software schedules tasks onto the cores and applies
two different constraints to each of the DVFS blocks: the total
clock cycles required to execute the task N and the desired
run time for the task execution Td.

Minimum system energy is usually found using the opti-
mal dc–dc configuration that still meets the target fre-
quency (e.g., the curve for configuration 3 for a 6 ns delay
constraint in Fig. 7). However, a more energy-optimized
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Fig. 7. E–D curves for three converter configurations and illustration of
hopping between two configurations.

execution is possible by hopping between two different
configurations.

Assume that N1 clock cycles are spent in the first and
N2 cycles in the second configuration. Many different average
CPU delays ti (i = 1, 2) are achieved by sweeping Vref for
each of the configurations. The following must be true:

a) N1 + N2 = N; b) N1 · t1 + N2 · t2 = Td . (6)

The total system energy is

E = N1 · E1(t1) + N2 · E2(t2). (7)

To find the minimum energy, the derivatives of (7) with
respect to N1 and N2 are set equal to zero, resulting in

d E1

dt1
= d E2

dt2
= E1(t1) − E2(t2)

t1 − t2
. (8)

The first equality forces the same slope for the tangents at
t1 and t2, while the second one positions them on the same line.
Thus, minimum energy is achieved if the system is hopping
between two states of two different configurations that lie on
the common tangent of both E–D curves (Fig. 7). This narrows
down the design-space exploration, since there are only two
Vref values in each configuration that need to be considered
(one for each tangent toward adjacent configurations).

Similarly, it can be proved that the energy for hopping
between three or more configurations is larger than the two-
state hopping energy and should not be considered. Hopping
between states incurs an energy loss during the actual state
transition, but it is negligible with a large total time Td.
We found that the highest energy difference occurs when
switching from configuration 3 to configuration 1 and is equal
to the energy spent by the processor in eight cycles. Since we
assume that the applications running on cores contain millions
of cycles, this energy overhead is not significant.

B. Combined Use of Hopping and Body Biasing

The optimal point for a given workload can be reached by
properly tuning all variables that are available to a designer.
State-of-the-art FDSOI technology enables a much wider
body-bias range and better leakage-performance tradeoffs
compared with bulk CMOS because of the buried oxide that
isolates the channel from the backside of the transistor [9] and
a body factor of around 80 mV/V. In this paper, body bias is
considered together with VDD hopping to perform a sensitivity
analysis [12], [13] to reach the minimum energy point.

Fig. 8. Body bias and hopping for minimum energy point.

Fig. 9. Analytical prediction of optimized power density versus efficiency
tradeoff for both approaches for a 2:1 SC converter.

Our modeling framework is able to calculate hopping ratios
and body-bias values for any given temperature and any
performance demand to reach the minimum energy point. An
example of an E–D curve for different configurations and
different VBB s is shown in Fig. 8. The light shaded region
indicates a target performance range where hopping should be
applied, while the dark shaded region shows where changing
the body bias will give a more optimized design. As expected,
body bias has greater influence in lower dc–dc states, where a
small energy loss can be traded for a huge speed improvement.

V. RESULTS

First, we evaluate the accuracy of the proposed dc–dc
converter, and then we evaluate the models proposed in
Section III and calculate the energy savings of the proposed
DVFS technique using the modeling framework.

A. DC–DC Converter Evaluation

The efficiency was analytically computed for two converter
types: 1) one with 16 interleaved phases and 2) the proposed
converter with a rippling output.

The efficiency versus power density is shown in Fig. 9.
The curve for the rippled approach has a more moderate
slope, resulting in a better efficiency–power density tradeoff.
By paying a small penalty in efficiency, e.g., 5%, the power
density of the rippled approach can be increased by a factor
of two (i.e., the area of the rippled converter is half the area of
the interleaved converter). Thus, the proposed converter is a
better solution, particularly for manycore processors where the
area overhead of the per-core dc–dc converter is an important
constraint.
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Fig. 10. Relative errors for energy and frequency models.

Fig. 11. E–D curves for lower power density optimization point.

B. DVFS Evaluation

1) Model Evaluation: Relative fitting errors for CPU fre-
quency, CPU dynamic energy per cycle, and CPU leakage
power at −40 °C and 125 °C are shown in Fig. 10, in the
first, second, and third columns, respectively. Dynamic energy
and frequency models are highly accurate with most of the
relative errors below 10%. Although relative errors for leakage
power go slightly above 30% for some points at −40 °C, their
impact on the total energy is very small, since leakage energy
accounts for less than 5% of the total CPU energy at −40 °C.

2) E–D Comparison: For this set of experiments, we chose
two different power densities for the converter optimization:
1) 0.4 W/mm2, the point where the efficiency versus power
density curve in Fig. 9 saturates, resulting in a very high
efficiency for the dc–dc converter and 2) 4 W/mm2, where
the area of the converter becomes a small overhead compared
with the area of the processor. For each power density, we
plot the E–D curves for both the interleaved and the proposed
approach for all three dc–dc configurations using the modeling
framework presented in Section III.

E–D curves for the 0.4 W/mm2 optimization point are
shown in Fig. 11. The area overhead for this point is
around 25%. We assume that VBB equals to 0 V and tempera-
ture equals to 25 °C. The dashed and dash-dotted curve repre-
sent the minimum energy curves that are achieved through VDD
hopping for the rippled and interleaved approach, respectively.

The energy savings of the proposed approach for the lower
configurations (i.e., 2 and 3) vary between 5% and 25% when
compared with the DVFS scheme based on the interleaved
approach. Due to the larger ripple size in configuration 1, the
nonlinear effects described in Section IV-A are responsible
for up to 8% worse energy efficiency of the rippled approach

Fig. 12. E–D curves for high power density optimization point.

in this case. However, this can be mitigated using linear
regulators at the input of the rippled converter that will cause
the E–D curves for the proposed approach to shift toward
lower energy and higher delay values (i.e., they will shift down
and to the right in the figure). Therefore, more moderate slope
on the VDD hopping curve will create a smaller difference in
the energy of both approaches.

Fig. 12 shows E–D curves for the 10× greater power density
optimization point. The area overhead of the dc–dc converter
is reduced to 2.5% by paying a 6% penalty in efficiency
decrease for the proposed converter, as opposed to 12% for
the interleaved converter. The energy savings of the proposed
approach are between 0.1% and 12% when compared with
the interleaved approach over a whole range of performance
constraints. At high power densities, the switching frequency
of the converter increases as well. However, the increase is
less for the rippled approach than for the interleaved approach
verifying the analysis from Section II (e.g., 30% difference
for high target speed, as shown in Fig. 12). In addition, high
switching frequencies are easier to achieve for the rippled
converter, since the voltage regulation scheme can be much
simpler when there is no need for the reduction of the
voltage ripple at the output of the converter. This makes
the proposed approach extremely suitable for the fine-grained
DVFS schemes.

VI. CONCLUSION

We have presented a novel fine-grained DVFS technique
with integrated SC converters for manycore processors. The
extra power due to charging and discharging the flying capac-
itors is turned into additional performance, allowing extreme
optimization of the SC converters that results in efficiencies
over 90% for a wide range of conversion ratios. The overall
system energy minima are obtained through a combined tech-
nique of body-bias voltage tuning and dc–dc state hopping,
resulting in energy savings between 5% and 25% over a wide
range of possible performance constraints. The approach is
fully compatible with CMOS processes and can have the area
overhead as low as 2.5%, which makes it suitable for practical
use in manycore systems.
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JEVTIĆ et al.: PER-CORE DVFS WITH SC CONVERTERS 729

and would also like to thank the students, faculty, and sponsors
of the Berkeley Wireless Research Center for their contribu-
tions.

REFERENCES

[1] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen,
“A dynamic voltage scaled microprocessor system,” IEEE J. Solid-State
Circuits, vol. 35, no. 11, pp. 1571–1580, Nov. 2000.

[2] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core DVFS using on-chip switching regulators,” in Proc.
IEEE 14th Int. Symp. HPCA, Feb. 2008, pp. 123–134.

[3] J. Lee and N. S. Kim, “Optimizing total power of many-core processors
considering voltage scaling limit and process variations,” in Proc. 14th
ACM/IEEE ISLPED, Aug. 2009, pp. 201–206.

[4] S. Sanders, E. Alon, H.-P. Le, M. D. Seeman, M. John, and
V. W. Ng, “The road to fully integrated DC–DC conversion via the
switched-capacitor approach,” IEEE Trans. Power Electron., vol. 28,
no. 9, pp. 4146–4155, Sep. 2013.

[5] H.-P. Le, S. R. Sanders, and E. Alon, “Design techniques for fully
integrated switched-capacitor DC-DC converters,” IEEE J. Solid-State
Circuits, vol. 46, no. 9, pp. 2120–2131, Sep. 2011.

[6] K. Bowman et al., “All-digital circuit-level dynamic variation monitor
for silicon debug and adaptive clock control,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 58, no. 9, pp. 2017–2025, Sep. 2011.

[7] T. Rahal-Arabi, G. Taylor, J. Barkatullah, K. L. Wong, and M. Ma,
“Enhancing microprocessor immunity to power supply noise with
clock/data compensation,” in Symp. VLSI Circuits, Dig. Tech. Papers,
Jun. 2005, pp. 16–19.

[8] P. Magarshack, P. Flatresse, and G. Cesana, “UTBB FD-SOI:
A process/design symbiosis for breakthrough energy-efficiency,” in Proc.
DATE, Mar. 2013, pp. 952–957.

[9] B. Pelloux-Prayer et al., “Planar fully depleted SOI technology: The
convergence of high performance and low power towards multimedia
mobile applications,” in Proc. IEEE FTFC, Jun. 2012, pp. 1–4.

[10] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-V
instruction set manual, volume I: Base user-level ISA,” Dept. EECS,
Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2011-62,
2011.

[11] H. H. Chen, S. H. Tseng, and J. Gong, “The temperature-dependence of
threshold voltage of N-MOSFETs with nonuniform substrate doping,”
Solid-State Electron., vol. 42, no. 10, pp. 1799–1805, 1998.

[12] R. W. Brodersen, M. A. Horowitz, D. Markovic, B. Nikolic, and
V. Stojanovic, “Methods for true power minimization,” in Proc. Int.
Conf. Comput.-Aided Des., Nov. 2002, pp. 35–42.

[13] V. Zyuban and P. Strenski, “Unified methodology for resolving
power-performance tradeoffs at the microarchitectural and circuit levels,”
in Proc. Int. Symp. Low Power Electron. Des., 2002, pp. 166–171.

[14] D. Somasekhar et al., “Multi-phase 1 GHz voltage doubler charge pump
in 32 nm logic process,” IEEE J. Solid-State Circuits, vol. 45, no. 4,
pp. 751–758, Apr. 2010.

[15] K. Roy S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage
current mechanisms and leakage reduction techniques in deep-
submicrometer CMOS circuits,” Proc. IEEE, vol. 91, no. 2, pp. 305–327,
Feb. 2003.
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Dr. Asanović is an ACM Distinguished Scientist.



730 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 4, APRIL 2015

Elad Alon (SM’12) received the B.S., M.S., and
Ph.D. degrees in electrical engineering from Stan-
ford University, Stanford, CA, USA, in 2001, 2002,
and 2006, respectively.

He joined the University of California, Berkeley,
CA, USA, in 2007, where he is currently an Asso-
ciate Professor of Electrical Engineering and Com-
puter Sciences and the Co-Director of the Berkeley
Wireless Research Center. He has held consulting or
visiting positions at Wilocity, Sunnyvale, CA, USA,
Cadence, San Jose, CA, USA, Xilinx, San Jose,

Oracle, Redwood City, CA, USA, Intel, Santa Clara, CA, USA, Advanced
Micro Devices, Sunnyvale, Rambus, Inc., Sunnyvale, Hewlett Packard, Palo
Alto, CA, USA, and IBM Research, Armonk, NY, USA, where he was
involved in digital, analog, and mixed-signal integrated circuits for computing,
test and measurement, and high-speed communications. His current research
interests include energy-efficient integrated systems, including the circuit,
device, communications, and optimization techniques used to design them.

Dr. Alon was a recipient of the 2008 IBM Faculty Award, the 2009 Hellman
Family Faculty Fund Award, and the 2010 UC Berkeley Electrical Engineering
Outstanding Teaching Award, and has co-authored papers that received the
2010 ISSCC Jack Raper Award for Outstanding Technology Directions Paper,
the 2011 Symposium on VLSI Circuits Best Student Paper Award, and the
2012 Custom Integrated Circuits Conference Best Student Paper Award.
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