
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009 569

Energy–Delay Optimization of 64-Bit
Carry-Lookahead Adders With a 240 ps

90 nm CMOS Design Example
Radu Zlatanovici, Member, IEEE, Sean Kao, and Borivoje Nikolić, Senior Member, IEEE

Abstract—A methodology for energy–delay optimization of dig-
ital circuits is presented. This methodology is applied to minimizing
the delay of representative carry-lookahead adders under energy
constraints. Impact of various design choices, including the carry-
lookahead tree structure and logic style, are analyzed in the en-
ergy–delay space and verified through optimization. The result of
the optimization is demonstrated on a design of the fastest adder
found, a 240-ps Ling sparse domino adder in 1 V, 90 nm CMOS.
The optimality of the results is assessed against the impact of tech-
nology scaling.

Index Terms—Adder, carry-lookahead, CMOS, high perfor-
mance, low power, power–performance optimization.

I. INTRODUCTION

F AST and energy-efficient single-cycle 64-bit addition
is essential for today’s high-performance micropro-

cessor execution cores. Wide adders are a part of the highest
power-density processor blocks, creating thermal hotspots
and sharp temperature gradients [1]. The presence of multiple
ALUs in modern superscalar processors [2], [3] and of multiple
execution cores on the same chip [3]–[5] further aggravates the
problem, impacting circuit reliability and increasing cooling
costs. At the same time, wide adders are also critical for
performance, and appear inside the ALUs, AGUs and FPUs
of microprocessor datapaths. Ideally, a datapath adder would
achieve the highest performance using the least amount of
power and have a small layout footprint in order to minimize
interconnect delays in the core [1]. These contradictory re-
quirements pose a challenging problem in choosing the optimal
adder architecture and circuit implementation. Designers have

Manuscript received December 21, 2007; revised September 11, 2008. Cur-
rent version published January 27, 2009. This work was supported in part by
NSF Award #0238572, NSF Research Infrastructure Grant 0403427, Intel Cor-
poration through a UC Micro grant. ST Microelectronics donated the test chip
fabrication. This work was performed while the authors were with the Univer-
sity of California at Berkeley.

R. Zlatanovici was with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley. He is now with the
Cadence Research Laboratories, Berkeley, CA 94704 USA (e-mail: zradu@ca-
dence.com).

S. Kao was with the Department of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley. He is now with Newport Media, Inc.,
Lake Forest, CA 92630 USA.

B. Nikolić is with the Department of Electrical Engineering and Com-
puter Sciences, University of California Berkeley, CA 94720 USA (e-mail:
bora@eecs.berkeley.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2008.2010795

several degrees of freedom to optimize the adder for perfor-
mance and power. Fast adders are commonly implemented
as carry-lookahead. Within the carry-lookahead family there
is a wide array of choices that include: tree topologies, full
or sparse implementation of the trees, conventional or Ling’s
carry-lookahead equations, and the circuit design style.

Although there are many publications written about adder de-
sign, fundamental understanding of the impact of the various
design choices on the performance and power of a particular
design is still incomplete. Traditionally, Kogge–Stone parallel
prefix trees [6], characterized by their minimum logic depth,
regular structure, and uniform fanout are used when very high
performance is needed. Their main disadvantage is the large
number of gates and wires, which leads to high power consump-
tion. An implementation of a 64-bit adder using a Kogge–Stone
tree has been reported in [7]. The number of nodes and con-
nections in the tree can be reduced by trading it off for in-
creased logic depth, such as the sparse Han-Carlson tree [8].
Many sparse tree implementations have been reported in recent
years, with sparseness of two [9], [10], four [11], [12], or vari-
able [1].

An alternate logic design investigates different implementa-
tions of the carry equations. Ling’s equations can lead to a sim-
plification of parallel prefix nodes and reduced transistor stack
heights [13], [14].

To fairly compare different adder designs it is necessary to
establish a common baseline. Existing adder comparisons can
be classified into two categories:

• Comparisons without using optimization:
— simulation-based study of the impact of wires on the

adder delay with fixed gate sizes [15];
— logic manipulation-based study of the impact of carry

tree topology on the logic depth [16];
• Comparisons using optimization:

— optimal transistor sizing for minimum delay using log-
ical effort [17];

— optimal transistor sizing in the energy–delay space using
a combination of logical effort and net load assignments
for static adders [18];

— optimal transistor sizing in the energy–delay space using
logical effort on adders implemented in various logic
families [29], [30].

— optimal transistor sizing in the energy–delay space using
continuous transistor sizing, supply and threshold volt-
ages [27], [32].

0018-9200/$25.00 © 2009 IEEE

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

570 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009

This paper presents a thorough analysis of the design trade-
offs for 64-bit carry-lookahead adders in a typical high-perfor-
mance microprocessor environment and a practical design of
an optimal adder in a general purpose 90 nm CMOS process.
It builds upon our previous work on optimal transistor sizing
in the energy–delay space using convex and tabulated models
[19]. The impact in the power–performance space is analyzed
for design choices in six categories: 1) set of equations; 2) logic
family; 3) radix of the carry tree; 4) lateral fanout of the carry
tree; 5) sparseness of the carry tree; and 6) sizing strategy. We
generalize the results by normalizing them against general pa-
rameters that characterize a technology. The detailed implemen-
tation example is a design of an energy-optimized 64-bit carry
lookahead adder using Ling’s equations, that achieves 240 ps
delay [10].

Section II presents a brief description of the circuit optimiza-
tion framework used to perform the analysis and to design the
example adder. Section III analyzes each of the various adder
design choices and their impact in the energy–delay space for a
90 nm CMOS process. Section III-A defines the design choices
and establishes a common set of notations. Section III-B shows
the actual analysis, highlighting the resulting design rules.
Section III-C extends the analysis for different processes and
environments. Section IV presents the design of the optimal
64-bit adder in a general purpose 90 nm CMOS with imple-
mentation details and measured results. Section V concludes
the paper.

II. CIRCUIT OPTIMIZATION FRAMEWORK

This section briefly describes the circuit optimization used to
size the gates in all the 64-bit adders discussed in this paper; a
more detailed description can be found in [20].

The framework is built around a versatile optimization core
consisting of a static timer in the loop of a mathematical opti-
mizer. The circuit is defined using a SPICE-like netlist and the
static timer employs user-specified models in order to compute
delays, cycle times, power, signal slopes and node loads.

In this work, the optimization framework is configured to
solve the following optimization problem:

(1)

where is the delay of the circuit, is the size of gate ,
is the total energy of the circuit, is the signal slope at node

and is the input capacitance at primary input .
By solving this problem for different values of the energy

constraint, the optimal energy–delay tradeoff curve for that cir-
cuit is obtained. Critical 64-bit adders in microprocessor cores
are usually designed close to the minimum achievable delay
point, and their power consumption can be reduced with a small
performance penalty because the energy–delay tradeoff curve is
very steep in that region [31].

Fig. 1. Generic 64-bit adder block diagram and optimization setup.

III. OPTIMIZATION OF ADDERS IN THE ENERGY-DELAY SPACE

In order to determine an optimal design and make a fair
comparison between various implementations, a generic 64-bit
adder structure is constructed, as shown in Fig. 1. It is a con-
ventional architecture, featuring a carry tree, a sum-precompute
block and a sum-select multiplexer.

The carry tree is composed of two sub-trees: a generate
sub-tree, implementing the AND-OR equations of the generate
terms and a propagate sub-tree implementing the AND
equations of the propagate terms . The sum-precompute
block precomputes the sums at each bit assuming incoming
carries of 0 and 1 for the two conditional sums, and ,
respectively. The final multiplexer selects the appropriate sums
based on the carry signals computed by the carry block. In most
cases, the carry tree and the sum-select multiplexer are in the
critical path, while the sum-precompute block is non-critical.

In the subsequent Sections III-A–C, this generic architecture
is implemented in a general-purpose 90 nm CMOS process by
varying the set of equations, logic family, carry tree architecture,
sizing strategy and technology parameters. The optimization
problem (1) is solved for different energy constraints for each
architecture and a corresponding optimal energy–delay tradeoff
curve is plotted in order to analyze the impact of these choices
in the energy–delay space. The surrounding environment, as
shown in Fig. 1, is the same for all the adders optimized in
the subsequent subsections. In a high-performance integer ex-
ecution unit, the microarchitecture sets the constraints for the
adder design. The selected bitslice height of 24 metal tracks ac-
commodates a wide-issue architecture. The bitslice height and
adder topology determine the length of the long carry wires in
the tree. Unless specified otherwise, the long wires are routed
with double-width and double-spacing. In this study, the input
capacitance per bitslice is limited to 27 fF, which is approxi-
mately equivalent to the capacitance of 25 minimum-size in-
verters. The output loading capacitance of the adder is chosen
to equal its input capacitance, assuming that a buffer would be
used to efficiently drive the local loop-back bus. The output ca-
pacitance and bitslice height are changed only in the analysis
in Section III-C to reflect different adder environments. The

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

ZLATANOVICI et al.: ENERGY–DELAY OPTIMIZATION OF 64-BIT CARRY-LOOKAHEAD ADDERS WITH A 240 PS 90 NM CMOS DESIGN EXAMPLE 571

10%–90% rise/fall times in the circuit are constrained to 100
ps, to maintain signal integrity.

A. Design Choices

1) Set of Logic Equations: The conventional implementation
of the carry-lookahead adder uses the traditional generate-prop-
agate equations [22]. If and are the input operands, then
propagate and generate signals, and , and the sum bits, ,
can be computed using the following recursive equations:

(2)

where denotes the generate signal for a group of bits from
position 0 to .

The quantity that is propagated to the next stage is the
carry-out at bit . Ling’s equations [13] are an alternative to the
classical CLA. By identifying that , the generate term

, can be reformulated as

(3)

In Ling’s adder, the pseudo-carry is propagated, and com-
bined with the remaining terms in the final sum:

(4)
The advantage of using Ling’s equations comes after

unrolling the recursions [14]. For instance, unrolling the recur-
sions (2) and (3) for a group of 4 bits results in

(5)

The term has fewer factors than the , which in CMOS
requires fewer transistors in the stack of the first gate. However,
the sum computation when using Ling’s pseudo-carry equations
is more complex. For a conventional CLA, the sum-precompute
block from Fig. 1 must implement

(6)

where is the precomputed value of the sum for an incoming
carry of zero and for an incoming carry of one. If a
Ling-CLA scheme is used, changes to

(7)

which is more complex to implement. Ling’s equations effec-
tively move complexity from the carry tree into the sum-pre-
compute block.

2) Logic Family: A set of logic family choices that we ex-
amine include static CMOS, domino, compound domino and
compound domino with stack height reduction. In this context,
the term “domino logic” is used for a family in which a dy-
namic gate is always followed by a static inverter. By contrast,
in “compound domino logic” a dynamic gate can be followed by
an arbitrary static gate, such as an AND-OR-INV that can merge
several carry signals. In both cases, the sizing of static gates is

skewed, having the pull-up strength larger than the pull-down. In
this analysis, we are using footless domino logic in every stage,
which is enabled by the fact that all inputs are monotonic. Since
the monotonicity of the input signals cannot be guaranteed in
general, the first stage is implemented using footed domino.

It is possible to reduce the transistor stack height by two in
the gates by reformulating the logic equations using the absorp-
tion property [7], which transforms the unrolled carry lookahead
equation (4) into

(8)

These equations can be implemented by two parallel dynamic
gates followed by a (skewed) static NOR2 gate. Such an im-
plementation is further referred to as “compound domino with
stack height reduction”.

3) Carry Tree Radix: The focus of this paper is on 64-bit
adders; however, all carry trees in Figs. 2 and 3 are for 16-bit
trees, for simplicity. Carry-in and carry-out signals are omitted
from the figures for the same reason, although they are included
in the optimization. The common legend for all carry tree draw-
ings (similar to [15]) is:

• white square: generate/propagate gate;
• black circle: carry merge gate;
• white rhomboid: sum select multiplexer.
The radix (also known as the valency, [26]) of a carry tree is

defined as the number of carries merged in each step. A radix-2
(R2) carry tree is shown in Fig. 2(a) and a radix-4 (R4) tree
in Fig. 2(e). The radix determines the number of stages needed
in a tree in order to compute all the required carries. A 64-bit
adder requires three R4 stages or six R2 stages. Mixed-radix
trees can also be used; for instance a 64-bit carry tree can be
implemented in four stages using a radix 4-3-3-2 scheme, where
radix decreases from the output toward the input. In addition
to the radix, lateral fanout inside the tree fully determines its
topology.

4) Lateral Fanout: Ladner and Fischer introduced the
minimum-depth prefix graph [24] based on earlier theoretical
work [25]. The lateral fanout of a stage is defined as the max-
imum number of nodes driven by a node in the current stage.
The longest lateral spanning wires in a Ladner–Fischer tree
go from one node in the tree to other nodes. Branching
loads become particularly large for later stages in the graph,
as increasing logical fanout combines with the increasing
span of the wires. Kogge and Stone [6] addressed this fanout
issue by introducing the “recursive doubling” algorithm. Using
the idempotency property, the lateral fanout at each node is
limited to one, at the cost of an increase in the number of
lateral wires and logic gates at each level. Knowles, by in-
dicating lateral fanouts, has introduced a unique notation for
the minimum-depth adders [23] that spans all the range from
Ladner–Fischer to Kogge–Stone. Several terms have been
used for “lateral fanout” in the literature, among which are
“branching” [16] and simply “fanout” [26], [28]. In this paper
the term “lateral fanout” is used with the same meaning as in
[23], in order to avoid confusion with the electrical fanout of
the gate.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

572 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009

Fig. 2. 16-bit full trees: (a) radix-2 1-1-1-1 (Kogge–Stone); (b) radix-2 8-4-2-1 (Ladner–Fischer); (c) radix-2 4-4-2-1; (d) radix-2 2-2-2-1; (e) radix-4 1-1
(Kogge–Stone).

A sample of the Knowles’s family of R2 minimum depth
trees are shown in Fig. 2(b)–(d) (R2: 8-4-2-1 -the original
Ladner–Fischer tree, R2: 4-4-2-1, and R2: 2-2-2-1). The lateral
fanouts are indicated from the stage nearest to the outputs, back
toward the inputs. The tree in Fig. 2(a) is a R2: 1-1-1-1 tree
(Kogge–Stone). Knowles’s labeling can be extended to higher
radix trees as well—for instance the R4 tree from Fig. 2(e) is
an R4: 1-1 tree, hence a Kogge–Stone tree.

5) Tree Sparseness: All the carry trees discussed so far are
“full” trees because they compute the final carry at every bit. It
is possible to compute only some of the carries and select the
sum based only on the available carry bits. For instance, one
can compute only the even carries in
the CLA block and use them to select the multiplexers in the
sum-select stage. The gates and wires corresponding to the elim-
inated carries are pruned down, dramatically reducing the com-

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

ZLATANOVICI et al.: ENERGY–DELAY OPTIMIZATION OF 64-BIT CARRY-LOOKAHEAD ADDERS WITH A 240 PS 90 NM CMOS DESIGN EXAMPLE 573

Fig. 3. 16-bit radix-2 sparse trees: (a) 1-1-1-1 sparse-2; (b) 1-1-1-1 sparse-4; (c) 8-4-2-1 sparse-2; (d) 8-4-2-1 sparse-4.

plexity of the tree. The resulting tree is sparse, with a sparseness
of 2, as exemplified in Fig. 3(a).

The sum-precompute block is more complex in sparse trees,
but still can be removed from the critical path. Even-order pre-

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

574 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009

computed values for the sum are given by (6) for Ling’s carry
scheme, but odd-order sums must be pre-computed by unrolling
the carry recursion (3) once:

(9)

Sparseness can be larger than two and can be applied to any
carry tree. A sparse-4 version of the tree in Fig. 2(a) is shown
in Fig. 3(b). In this case, the carry recursion must be unrolled
once, twice and three times repeatedly for every four bitslices
in the sum precompute block. In this case, the logic depth of
the sum-precompute block matches the logic depth of the carry
tree.

The sparse-2 (SP2) and sparse-4 (SP4) versions of the
Ladner–Fischer tree are shown in Fig. 3(c)–(d). It should be
noted that sparseness reduces the actual lateral branching in
the tree: the third stage has a branching of 8 in the full tree,
4 in the SP2 tree, and 2 in the SP4 tree. However, in order to
uniquely identify the tree and keep sparseness as an indepen-
dent variable, the lateral fanout notation corresponding to the
full tree is used for all its sparse versions. Therefore, although
the tree from Fig. 3(d) has lateral branching of 2, 2, 1, and 1, it
is labeled as “R2: 8-4-2-1 SP4” because it is a sparse-4 version
of the full R2: 8-4-2-1 tree (from Fig. 2). The design from [1]
is an implementation of a 64-bit version of this tree (Fig. 3(d)).

By using this notation, the space of minimum-depth carry
trees can be represented in a space with three independent di-
mensions: radix, lateral fanout and sparseness [26].

6) Sizing Strategy: An adder is a regular structure that is
suited for bit-sliced implementations. A common sizing strategy
is to group all identical gates in a stage such that they have the
same size. Gate grouping speeds up the design process by re-
ducing the number of variables in the optimization and by al-
lowing layout reuse. The size and distribution of groups can be
varied. For example, to reduce the timing window in footless
domino implementation, some of the lower bits in higher stages
can be downsized or footed. Ultimately, each gate could be in-
dividually sized (flat sizing).

B. Analysis of Design Choices

1) Set of Logic Equations: Fig. 4 shows the energy–delay
tradeoff curves for R4 and R2 domino adders using conventional
CLA and Ling equations. For high speeds, where the carry tree
is in the critical path, using Ling’s equations is advantageous:
by lowering the stack height in the first stage, Ling’s equations
allow the first gate in the carry tree to be larger for the same
input capacitance. When driving the same load (next stage and
the subsequent interconnect), the delay decreases. At longer de-
lays with most gates minimum sized, the sum-precompute block
appears in the critical path and the conventional CLA equations
offer lower energy.

2) Logic Style: Fig. 5 presents the optimal energy–delay
tradeoff curves for 64-bit adders for the architecture from
Fig. 1 in the four logic families from Section III-A2: R2 and
R4 domino. For long cycle times a static implementation is
preferred due to its low power consumption. Due to their high

Fig. 4. Energy–delay tradeoff curves for domino adders implemented using
classical CLA and Ling equations, with Kogge–Stone trees and grouped sizing
strategy.

Fig. 5. Energy–delay tradeoff curves for adders implemented in various logic
styles, Kogge–Stone trees, grouped sizing strategy.

activity factors, dynamic circuits cannot translate the extra slack
into power savings for cycle times beyond 9 FO4. However,
static R2: 1-1-1-1-1-1 adders can only achieve the minimum
of 12.5 FO4 delays. If the required delay is shorter than 12.5
FO4, a dynamic design is required. We did not explore further
optimization of static adders.

The R4 domino design has the best energy–delay per-
formance at high speeds, in the typical design environment
selected for this exploration, Fig. 5. R2 compound domino de-
sign approaches the R4 domino design in speed, but has higher
energy. R2 compound domino adders can be implemented in
the same number of stages as a R4 domino. However, they
suffer from an increased impact of the wires: compound domino
adders have dynamic wires that traverse multiple bitslices and
prudent design practices require that such wires be shielded.
In this example, all dynamic wires longer than the height of
a bitslice are shielded on both sides with power and ground
tracks at the minimum spacing allowed in the routing layer. All
adders are optimized for the exact same conditions, including
wires; however, the shields required by compound domino
consume routing resources, increasing the actual length of the
wires. This added capacitance is in the critical path, leading

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

ZLATANOVICI et al.: ENERGY–DELAY OPTIMIZATION OF 64-BIT CARRY-LOOKAHEAD ADDERS WITH A 240 PS 90 NM CMOS DESIGN EXAMPLE 575

to an increase in delay and power consumption. This reduces
the performance of compound domino adders and is taken into
account in Fig. 5. The same factors limit the performance of
higher-radix compound domino adders.

If the extra loading due to shielding is ignored and
all dynamic wires are routed in the same “double-width,
double-space” style, the delay of compound domino adders can
be reduced by approximately 1 FO4, making them slightly faster
than their domino counterparts. A similar result is obtained by
the authors of [29] using logical effort minimum-delay sizing
with an Elmore-based delay formula for the wires in a 130
nm technology with consistent wire loading across all logic
families.

The logic design of the adder that uses stack height limiting,
implemented in compound domino, recuperates the speed loss
due to extra wiring capacitance because all long wires are driven
by static gates. However, these long wires must be driven by a
stack of 2 PMOS transistors in the NOR2 gates characteristic
for this logic implementation. While providing relatively short
delays due to a small number of stages and reduced stack height,
the large PMOS transistors in the NOR2 gates and the high count
of transistors and clocked gates increase the power consumption
of this logic family.

3) Radix of the Carry Tree: Fig. 6 shows the optimal en-
ergy–delay tradeoff curves for 64-bit domino adders imple-
mented with carry trees with different radices. For the chosen
loading conditions, R4 trees are closer to the optimal number
of stages [21] and achieve the best performance and lowest
power. Using the logical effort formalism from [21] it can be
easily shown that if wire loads and stack effects are ignored,
all minimum depth carry trees have the same branching effort
and the same logical effort. For the same external loading con-
ditions (i.e., the same electrical effort), the overall effort of the
carry tree is a constant regardless of the chosen architecture;
in this case the overall fanout is 1, branching factor is 64 and
the optimal stage effort is 3 for a domino stage (composed of a
dynamic gate followed by a static gate). Therefore, the optimal
number of stages is . With wires included, the
optimal number of stages increases to between 4 and 5. The
R4 trees have 4 domino stages—three in the actual carry tree
and one in the sum select multiplexer. As shown in Fig. 6, R2
adders (6 stages) are the slowest, mixed-radix 4-3-3-2 adders
(4 stages) have significantly better performance and R4 adders
(3 stages) are the fastest. The result holds for larger loads as
well: if the optimal number of stages increases, it is always
better to drive high loads with buffers (inverters) rather than
with the last gates of the adder (complex AOI gates or multi-
plexers).

The assumptions that limit the validity of the effort analysis
are: the effect of the wire loads and correct accounting for tran-
sistor stacks.

• Higher radix trees will have longer wires closer to the in-
puts: the first stage of a R4 tree needs to drive wires span-
ning 12 bitslices; the first stage of a mixed radix 4-3-3-2
tree drives wires spanning 8 bitslices; the first stage of a R2
tree drives wires spanning just 2 bitslices. The advantage
of a high-radix tree is eroded in processes with increased
relative wire capacitance and resistance.

Fig. 6. Energy–delay tradeoff curves for adders implemented with
Kogge–Stone trees of various radices, grouped sizing strategy.

• The maximum transistor stack height in a carry tree is usu-
ally equal to the radix of the stage. However, the tallest
stack that can be used is effectively limited by the re-
duced ratio of deep submicron technologies. A
tall stack can cause a slowdown beyond the simple log-
ical effort calculations, along with significant signal slope
degradation, as in the case of higher radix trees (R6 and
R8). In such situations, stack height limiting in compound
domino can help maintain an adequate performance for the
adder.

4) Lateral Fanout: The optimal energy–delay tradeoff
curves for R2 trees with increasing lateral fanouts are pre-
sented in Fig. 7(a)–(c), for full, SP2 and SP4 trees. Trees
with high fanout have low degrees of redundancy, with the
Ladner–Fischer tree computing the minimum number of carries
and having the highest loading along the critical path. At the
other extreme, the Kogge–Stone tree computes all the carries
needed to reduce the fanout, offering the lowest loading along
the critical path. Consequently, the tradeoff along the fanout
axis in the carry tree space is between the length of wires and
gate fanout versus number of gates. Fig. 7(a) shows that for full
trees, the lower the fanout, the higher the maximum speed. At
the other end of the curves, the higher the fanout, the lower the
minimum achievable energy. Figs. 7(b) and (c) show the same
effect for SP2 and SP4 trees, but with progressively smaller
differences. Although the order is maintained throughout the
whole spectrum of designs, the differences in performance and
power among SP4 trees are negligible across the fanout range.
The reduced impact of lateral fanout on very sparse trees is due
to the sparseness, which reduces the effective fanout of the tree.
As the trees are pruned to SP4, their critical paths become sim-
ilar, with differences only in the branching factors at the input
(lower) and output (higher), hence the similar delays. Although
the number of gates is reduced, the increased output branching
requires the remaining gates to be upsized by roughly an equal
factor, resulting in similar energy consumption as well.

Wire loading is kept at the same capacitance per unit length
for all the experiments in Fig. 7(a)–(c). Higher lateral fanout
trees, however, can have less capacitance because fewer parallel

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

576 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009

Fig. 7. Energy–delay tradeoff curves for Ling domino adders implemented
using radix-2 trees with different lateral fanouts and grouped sizing strategy:
(a) full trees; (b) sparse-2 trees; (c) sparse-4 trees.

wiring tracks are required. This allows the remaining carry sig-
nals to be routed with increased spacing between the wires, thus
reducing the overall capacitive load. In an experiment with the
exact same conditions as in Fig. 7(a)–(c), except with wire load-
ings reduced by 25%, Ladner–Fischer trees gain approximately
0.2 FO4 in speed. This change does not modify the ordering of
trees in Fig. 7(a) and (b); however, tradeoff curves in Fig. 7(c)
get even closer together, and their differences fall within the
model tolerances.

Ordering of optimal designs is different for shorter
wordlengths. Recent work [27] shows that for 32-bit adders,
where the lateral fanouts are smaller, Ladner–Fischer trees are
the best choice for both performance and power. Ladner–Fis-
cher trees have also been the choice in recent practical
implementations of adder designs in high-performance micro-
processor datapaths that support 16- and 32-bit operations [33].

5) Tree Sparseness: Fig. 8(a)–(d), show the impact of
tree sparseness along the fanout dimension of the carry tree
space (for lateral fanouts of 1-1-1-1-1-1, 4-4-4-4-2-1, and
32-16-8-4-2-1) for domino and compound domino adders.
Fig. 9 shows the impact of sparseness along the radix dimen-
sion of the space (for R2 and R4 trees).

Adders with sparse trees differ from full trees in three ways:
• the gates and connections in the carry tree are pruned down,

reducing the size of the tree;
• the sum-precompute block becomes more complex be-

cause of the unrolling of the carry iteration at bit indexes
where carries are not directly available;

• the branching at the output of the carry tree increases.
These differences have several consequences in the power–per-
formance space:

1) a smaller carry tree with less gates and less wires can be up-
sized for better performance with the same power budget;

2) reduced input loading for the carry block: a sparse tree has
fewer gates in the first stage and therefore the load on the
input is smaller; thus, for the same input capacitance, the
input gates on the critical path can be made larger, resulting
in a faster adder; also, as a result, larger gates will drive the
internal wiring;

3) larger output load for the carry tree: one carry output must
drive a number of gates equal to the sparseness factor of
the tree, thus slowing down the circuit. Optimal delay is
obtained through upsizing the critical path;

4) reduced internal branching due to gate pruning speeds up
the adder; the effect is more pronounced in high fanout
trees and nonexistent in Kogge–Stone derivatives (which
have a constant fanout);

5) more complex sum-precompute blocks slow down the crit-
ical path through additional branching from the input and
extra power consumption.

The overall result is a balance of all of the above factors, de-
pending on the topology of the original tree and the technology.
Factor 1 is dominant for large trees, with many gates and many
wires, such as R2 but less important for the smaller R4 trees, as
shown by Fig. 9. Factor 2 is generally small and benefits mostly
higher radix trees, where long wires start to appear already after
the first stage. Factor 3 mostly affects higher-radix trees with
fewer stages available to drive the extra load, such as R4 or
compound domino R2, as shown in Figs. 8(d) and 9. Pruning
these trees down to SP4 tips the balance of the above factors,
resulting in a slower and less energy-efficient adder. Factor 4 is
dominant for high-fanout trees, where sparseness provides dra-
matic speed improvements and power reductions, as shown in
Fig. 8(b)–(c). Factor 5 has influence on all trees, but its impact is
particularly pronounced for highly sparse trees. All the figures
in this subsection reflect a decrease of the power/performance
gain at the sparse-2 to sparse-4 transition when compared to

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

ZLATANOVICI et al.: ENERGY–DELAY OPTIMIZATION OF 64-BIT CARRY-LOOKAHEAD ADDERS WITH A 240 PS 90 NM CMOS DESIGN EXAMPLE 577

Fig. 8. Energy–delay tradeoff curves for radix-2 Ling adders with different sparseness factors and grouped sizing strategy: (a) domino 1-1-1-1-1-1; (b) domino
4-4-4-4-2-1; (c) domino 32-16-8-4-2-1; (d) compound domino 1-1-1-1-1-1.

Fig. 9. Energy—delay tradeoff curves for Ling domino adders implemented
using 1-1-1-1-1-1 trees with different sparseness factors and grouped sizing
strategy.

the full to sparse-2 transition. With Ling’s equations, pruning
a carry tree in order to make it sparse effectively moves com-
plexity from the carry tree to the sum-precompute block. As

long as the carry tree remains in the critical path, this move is
advantageous.

It should be noted that the complexities in the carry tree and
sum-precompute block scale differently with the sparseness
factor: for a sparseness factor of , the carry tree is gener-
ally times smaller than the full tree. However, since the
simple ripple-carry design is not fast enough, the sum-pre-
compute block has to repeatedly unroll the carry iteration
for each bitslice: if and are available, the carry
iteration needs to be unrolled once at bit index , twice
at , and up to times at . In bitslices
of a sparse- tree, the carry iteration needs to be unrolled

times. Therefore, a
decrease in the complexity of the carry tree leads to a
increase in the complexity of the sum-precompute block. Ling
adders have more complex sum precompute blocks, with a
larger constant for the growth. Thus, the effectiveness
of using Ling’s equations decreases with higher sparseness
factors, compared to the conventional CLA.

6) Sizing Strategy: All the energy–delay tradeoff curves pre-
sented in this paper so far use the grouped sizing strategy. While
convenient for the implementation, gate grouping negatively im-
pacts the performance and power consumption of the adder.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

578 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009

Fig. 10. Energy–delay tradeoffs for various adder trees when using a flat versus grouped sizing strategies.

Fig. 10 shows the impact in the energy–delay space of using
a flat sizing strategy as opposed to a grouped sizing strategy for
several representative adder topologies. Structures with regular
fanout (such as the radix-2 and radix-4 Kogge–Stone trees de-
picted in Fig. 10) marginally benefit from a flat sizing strategy
(3.6% delay improvement). On the other hand, structures with
irregular fanout (such as the Ladner–Fischer tree) can be sig-
nificantly sped up by ungrouping the gates. In such a situation,
high fanout gates can be upsized without increasing the power
consumption and input loading of lower fanout gates, resulting
in an 18% speed increase for the radix-2 Ladner–Fischer tree.
The radix-4 Ladner–Fischer tree requires additional buffers in
the critical path in order to meet the slope constraint even with
the flat sizing strategy.

On the low-power end of the curves, flat sizing offers power
savings in similar percentages because ungrouping allows more
non-critical gates to be downsized without violating the max-
imum slew constraints.

Flattening the design and customizing gate sizes will increase
the design effort considerably, but will always help the timing
in the circuit by aligning the arrival times at the outputs of
each stage. However, this makes the circuit more susceptible
to process variations due to the degradation of the statistics of
the arrival times [28]. The increase in design effort is less pro-
nounced in irregular structures such as the Ladner–Fischer trees
where similar fanout gates in the same stage can be grouped
together.

C. Fastest Adder Across Different Technologies and
Environments

All the adders optimized so far use a reference 90 nm general
purpose bulk CMOS process under the environment specified in
the beginning of this section. While the design guidelines for-
mulated in the previous subsections are general, the conclusions
on which adder architecture is fastest in a given environment are
dependent on the parameters of the particular process used for
the analysis and the particular environment of the adder.

The optimization framework from Section II can be used to
investigate the influence of certain technology parameters on the
behavior of digital circuits in the power–performance space. In

the case of 64-bit adders, two technology parameters can signif-
icantly influence the design choices:

• Wire capacitance ratio, defined as the ratio of the lumped
capacitance of 1 m of carry wires to the capacitance of
1 m of minimum length transistor gate;

• Self-loading ratio, defined as the ratio of the drain capaci-
tance, including Miller-multiplication, of a 1 m minimum
length transistor to its gate capacitance. The self-loading
ratio is directly linked to the normalized intrinsic delay
in the logical effort formalism [21].

The environment of the adder is usually reflected in the height
of the bitslice. This, in turn, determines the wire capacitances as
well as the output capacitance of the adder. A taller bitslice will
increase the wire loads on the internal nodes of the adder but will
decrease the output load because the layout will be narrower.
The effect of the bitslice height can be presented in the same
coordinate space as the technology (wire capacitance ratio, self-
loading ratio) by simple scaling operations:

• a taller bitslice is equivalent to a technology with a propor-
tionally higher wire capacitance ratio;

• a smaller output load is equivalent to a technology with
a smaller self-loading ratio that will yield the same delay
when resized for the new load.

Fig. 11 shows a partition of the wire capacitance ratio, the
self-loading ratio space, highlighting the architecture of the
fastest adder in each region. In this figure, the delays corre-
sponding to the minimum adder delay are compared across
processes with different wire capacitance and self-loading ratios
and for different bitslice heights using the above equivalency.
The graph in Fig. 11 is normalized to the parameters of the 90
nm process used in this analysis, such that its corresponding
normalized wire capacitance and self-loading ratios are both
equal to 1. All adders in Fig. 11 use Ling’s equations and are
implemented in domino logic. For the 90 nm process used in
this analysis, the fastest architecture is R4 SP2. This adder has
been built in 90 nm CMOS and Section IV presents the design
details and measurement results.

Fig. 11 highlights the historical trend for the four bulk CMOS
processes from the same foundry. While the optimal architec-
ture is the same in the older three processes, scaling trend points

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

ZLATANOVICI et al.: ENERGY–DELAY OPTIMIZATION OF 64-BIT CARRY-LOOKAHEAD ADDERS WITH A 240 PS 90 NM CMOS DESIGN EXAMPLE 579

Fig. 11. Fastest adder across different processes and environments.

towards a change in 65 nm technology and beyond. An increased
self-loading ratio decreases the driving capability of a gate, de-
grades the rise/fall times in the circuit and reduces the tallest
acceptable transistor stack. Consequently, the highest feasible
radix of the carry tree is also reduced, and radix-2 architecture
becomes optimal. With a taller stack, the increased self-loading
of the gates penalizes architectures with higher radix due to their
longer wires and higher branching. The impact of this param-
eter on 64-bit adder performance is predicted by the analysis
from Section III-B3: as shown in Fig. 11, for processes with
self-loading ratios 10% greater than the reference process, R2
architectures become faster than R4.

Interconnect parameters can also influence the architecture
of the optimal 64-bit adder. If wire capacitance is significant,
factor 1 in Section III-B5 becomes dominant and tips the bal-
ance toward sparse architectures. Taller datapaths (exemplified
by the 36 track example in Fig. 11), or lower input capacitance
limits will tend to favor designs with high sparseness and many
stages for appropriate tapering (R2). Fig. 11 shows that R2 SP4
adders offer the best performance in very aggressive processes
with high wire capacitance and self-loading ratios. At that point,
adders with good energy efficiency can be obtained by using
designs with high lateral fanout: as shown in Section III-B4
sparse trees with high fanout achieve speeds very close to the
low fanout trees but with lower power consumption. By ana-
lyzing the self-loading and wire capacitance ratios it should be
possible to determine an optimal adder for a given technology
foundry.

Finally, the presented analysis is based on conservative and
robust design practices for dynamic logic. It is possible to trade
off robustness for improvements in energy–delay. For example,
reduced shielding requirements favor compound domino logic
styles, while the relaxed transition time constraints favor higher
fanout trees, like Ladner–Fischer, which may alter Fig. 11.

IV. DESIGN EXAMPLE IN 90 NM CMOS

A test chip implementing the adder with the fastest archi-
tecture has been fabricated in a general purpose 90 nm bulk
CMOS process using standard transistors. The chip con-
tains eight 64-bit adder cores and the corresponding testing cir-
cuitry (Fig. 12), and is 1.6 1.7 in size. The size of an

Fig. 12. Test chip micrograph.

actual adder core is 417 75 m . The chip is fully custom de-
signed (the only standard cells used are the pin pads) and uses
only standard threshold (SVT) devices.

A. Implementation Details

As concluded in Section III, for this process the fastest 64-bit
adder architecture uses a R4: 1-1-1-1-1-1 SP2 carry tree imple-
menting Ling’s equations in domino logic and the sum-precom-
pute block in static CMOS. A sizing strategy with gate grouping
has been used for this adder. Fig. 13(a) shows the block diagram
of the adder and on-chip testing circuitry, highlighting the logic
families used in the core, and the corresponding timing diagram
is shown in Fig. 13(b).

Delayed-precharge domino logic is used in the carry tree in
order to hide the precharge phase from the overall cycle time.
Most stages in the critical path use footless domino logic with
stack node precharging when needed. Since the monotonicity of
the global inputs and cannot be guaranteed,
the first stage is implemented using footed domino logic. The
inputs of the sum-select mux, , , are outputs
of a static block and non-monotonic thus psel must be a hard
clock edge (Fig. 13(b)). Critical timing edge arrivals can be fine
tuned through the chip’s scan chain in order to ensure correct
functionality and best performance.

Using footless domino logic where possible increases the
speed of the adder and reduces stack heights and transistors
counts. All the gates are sized using the optimization frame-
work described in Section II. Dynamic gates have a minimum
sized PMOS keeper.

The challenge of using footless domino with large grouping
can be seen in Fig. 13, where the precharge window shrinks
toward the last stage. Any dynamic gate (footless or footed)
must be in evaluation when its latest input arrives, in order to
ensure correct operation of the circuit. In contrast to a footed
gate, a footless gate must also be in evaluation when its earliest
inputs arrive. When moving further away from the inputs, the

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

580 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009

Fig. 13. Adder and testing circuitry: (a) block diagram and (b) corresponding timing diagram.

spread between the fastest and slowest path in the circuit in-
creases, thus increasing the time a footless domino gate must
stay in evaluation. Consequently, the precharge phase becomes
critical and requires large clock drivers. Footless domino gates
require bigger precharge transistors that slow down the evalua-
tion path through their drain capacitance and increase the power
consumption on the clock lines and in the clock distribution
network.

The sparse 2 carry tree computes only even-order carries and
each signal selects two sums (Fig. 14). The non-critical sum pre-
compute block has two types of paths: odd-order sums are pre-
computed using (6); even-order sums are a function of the carry
into the previous bit and are computed using (7). The layout
of critical and non-critical paths are interleaved such that the
more complex even-order sum-precompute gates fit in the space

opened up by the eliminated carry gates of the sparse tree, re-
sulting in a compact bit-sliced layout and straight clock lines, as
shown in Fig. 15.

B. Measured Results

Measured results are presented in Fig. 16(a) and (b). At the
nominal supply of 1 V the adder core runs at an average speed of
4.2 GHz (240 ps, approx. 7.7 FO4) for the slowest input vector
and consumes 260 mW for the maximum power input vector,
with 2.3 mW of leakage at room temperature. The power mea-
surements include the adder core and clock generation circuitry
but not the on-chip testing circuitry. By increasing the supply
voltage to 1.3 V the delay decreases to 180 ps with 606 mW of
active power and 4.9 mW of leakage.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

ZLATANOVICI et al.: ENERGY–DELAY OPTIMIZATION OF 64-BIT CARRY-LOOKAHEAD ADDERS WITH A 240 PS 90 NM CMOS DESIGN EXAMPLE 581

Fig. 14. 64-bit radix-4 1-1-1 sparse-2 carry tree.

Fig. 15. Sparse-2 adder floorplan for four bit slices.

Fig. 16. Measured results for the 90 nm testchip: (a) delay; (b) maximum power.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

582 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009

V. CONCLUSION

A circuit optimization framework is used to size the gates
in various 64-bit adders in a typical multi-issue high-perfor-
mance microprocessor environment. By analyzing the impact of
the main design choices on adder behavior in the energy–delay
space, a set of guidelines can be established to guide the de-
signer when choosing the architecture of a 64-bit adder:

• Ling’s equations have a speed advantage over conventional
CLA at very high speeds;

• for delay requirements longer than 12.5 FO4, static CMOS
consumes less power than domino;

• the highest feasible radix for the carry tree has the lowest
delay and energy;

• the lowest lateral fanout (Kogge–Stone trees) results in the
highest speed; the highest lateral fanout (Ladner–Fischer
trees) has lowest power;

• sparseness reduces the impact of lateral fanout;
• sparseness is most beneficial for adders with large carry

trees, high lateral fanout and relatively small sum-precom-
pute blocks;

• individual gate sizing is most beneficial for adders with
irregular structure and high fanout. Gate grouping has low
impact for regular adders.

The presented analysis is comprehensive, but by no means
complete as the explored space is virtually infinite. The optimal
adder depends on the design constraints, the environment, and
the parameters of the process. Several architectures are often
close to the optimum performance for the given design envi-
ronment. Process trends show a change in the optimal architec-
ture toward adders with a lower radix and a higher sparsness
factor. A testchip has been fabricated in a general purpose 90
nm bulk CMOS process to test the optimal adder for that partic-
ular process. Measurement results for the domino Ling R4 SP2
Kogge–Stone adder show a delay of 240 ps for 260 mW power
consumption at the nominal supply voltage of 1 V.

ACKNOWLEDGMENT

The authors acknowledge the contributions of the students,
faculty and sponsors of the Berkeley Wireless Research Center
and would like to particularly thank Young Yang for help in
the design of test circuitry, Ryan Roberts for the board design
and Brian Richards for tools support. Sanu Mathew and Ram
Krishnamurthy helped motivate this project through numerous
discussions. The authors also thank the anonymous reviewers
for their thoughtful comments that helped improve this paper.

REFERENCES

[1] S. Mathew, M. A. Anders, B. Bloechel, T. Nguyen, R. K. Krishna-
murthy, and S. Borkar, “A 4 GHz 300-mW 64-bit integer execution
ALU with dual supply voltages in 90 nm CMOS,” IEEE J. Solid-State
Circuits, vol. 40, no. 1, pp. 44–51, Jan. 2005.

[2] E. S. Fetzer, M. Gibson, A. Klein, N. Calick, Z. Chengyu, E. Busta,
and B. Mohammad, “A fully bypassed six-issue integer datapath and
register file on the Itanium-2 microprocessor,” IEEE J. Solid-State Cir-
cuits, vol. 37, no. 11, pp. 1433–1430, Nov. 2002.

[3] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai,
E. Alon, and M. Horowitz, “The implementation of a 2-core multi-
threaded itanium family processor,” IEEE J. Solid-State Circuits, vol.
41, no. 1, pp. 197–209, Jan. 2006.

[4] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang, “A dual-core
multi-threaded Xeon processor with 16 MB L3 cache,” in IEEE ISSCC
Dig. Tech. Papers, Feb. 2006, pp. 102–103.

[5] M. Golden, S. Arekapudi, G. Dabney, M. Haertel, S. Hale, L. Herlinger,
Y. Kim, K. McGrath, V. Palisetti, and M. Singh, “A 2.6 GHz dual-
core 64b � 86 microprocessor with DDR2 memory support,” in IEEE
ISSCC Dig. Tech. Papers, Feb. 2006, pp. 104–105.

[6] P. M. Kogge and H. S. Stone, “A parallel algorithm for efficient solu-
tion of a general class of recursive equations,” IEEE Trans. Computers,
vol. 22, no. 8, pp. 786–793, Aug. 1973.

[7] J. Park, H. C. Ngo, J. A. Silberman, and S. H. Dong, “470 ps 64 bit
parallel binary adder,” in Symp. VLSI Circuits, Jun. 2000, pp. 192–193.

[8] T. Han and D. A. Carlson, “Fast area efficient VLSI adders,” in Proc.
8th Symp. Computer Arithmetic, May 1987, pp. 49–56.

[9] S. Mathew, R. Krishnamurthy, M. Anders, R. Rios, K. Mistry, and K.
Soumyanath, “Sub-500 ps 64b ALUs in 0.18 �m SOI/bulk CMOS:
Design and scaling trends,” in IEEE ISSCC Dig. Tech. Papers, Feb.
2001, pp. 318–319.

[10] S. Kao, R. Zlatanovici, and B. Nikolić, “A 240 ps 64b carry-lookahead
adder in 90 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006,
pp. 438–439.

[11] S. Naffziger, “A sub-nanosecond 0.5 �m 64b adder design,” in IEEE
ISSCC Dig. Tech. Papers, Feb. 1996, pp. 210–211.

[12] Y. Shimazaki, R. Zlatanovici, and B. Nikolić, “A shared-well dual-
supply-voltage 64-bit ALU,” IEEE J. Solid-State Circuits, vol. 39, pp.
494–500, Mar. 2004.

[13] H. Ling, “High speed binary adder,” IBM J. Res. Develop., vol. 25, no.
3, pp. 156–166, May 1981.

[14] R. W. Doran, “Variants of an improved carry-lookahead adder,” IEEE
Trans. Computers, vol. 37, pp. 1110–1113, Sep. 1988.

[15] Z. Huang and M. D. Ercegovac, “Effect of wire delay on the de-
sign of prefix adders in deep-submicron technology,” in Proc. 34th
Asilomar Conf. Signals, Systems and Computers, Oct. 2000, vol. 2,
pp. 1713–1717.

[16] A. Beaumont-Smith and C. C. Lim, “Parallel prefix adder design,” in
Proc. 15th Symp. Computer Arithmetic, Jun. 2001, pp. 218–225.

[17] H. Q. Dao and V. Oklobdzija, “Application of logical effort techniques
for speed optimisation and analysis of representative adders,” in Proc.
35th Asilomar Conf. Signals, Systems and Computers, Nov. 2001, vol.
2, pp. 1666–1669.

[18] H. Q. Dao, B. R. Zeydel, and V. G. Oklobdzija, “Energy minimization
method for optimal energy—Delay extraction,” in Proc. 29th European
Solid State Circuits Conf., Sep. 2003, pp. 177–180.

[19] R. Zlatanovici and B. Nikolić, “Power—Performance optimal 64-bit
carry-lookahead adders,” in Proc. 29th European Solid State Circuits
Conf., Sep. 2003, pp. 321–324.

[20] R. Zlatanovici and B. Nikolić, “Power–performance optimization for
custom digital circuits,” J. Low Power Electron., vol. 2, no. 1, pp. 1–8,
Apr. 2006.

[21] I. Sutherland, R. Sproul, and D. Harris, Logical Effort. New York:
Morgan-Kaufmann, 1999.

[22] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated
Circuits: A Design Perspective, 2nd ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 2003.

[23] S. Knowles, “A family of adders,” in Proc. 15th Symp. Computer Arith-
metic, Jun. 2001, pp. 277–281.

[24] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, Oct. 1980.

[25] Y. Ofman, “On the algorithmic complexity of discrete functions,” So-
viet Physics—Doklady, vol. 7, no. 7, pp. 589–591, Jan. 1963.

[26] D. Harris, “A taxonomy of parallel prefix networks,” in Proc. 37th
Asilomar Conf. Computing, Circuits and Systems, Nov. 2003, pp.
2213–2217.

[27] D. Patil, O. Azizi, M. Horowitz, R. Ho, and R. Ananthraman, “Ro-
bust energy-efficient adder topologies,” in Proc. 18th IEEE Symp. Com-
puting Arithmetic, Jun. 2007, pp. 16–28.

[28] D. Patil, S. Yun, S. J. Kim, A. Cheung, M. Horowitz, and S. Boyd, “A
new method for design of robust digital circuits,” Proc. ISQED, pp.
676–681, Mar. 2005.

[29] V. G. Oklobdzija, B. R. Zeydel, H. Q. Dao, S. Mathew, and R. Krish-
namurthy, “Energy-delay estimation techniques for high-performance
microprocessor VLSI adders,” in 16th IEEE Symp. Computing Arith-
metic, Jun. 2003, pp. 272–279.

[30] V. G. Oklobdzija, B. R. Zeydel, H. Q. Dao, S. Mathew, and R. Kr-
ishnamurthy, “Comparison of high-performance VLSI adders in en-
ergy-delay space,” IEEE Trans. VLSI Syst., vol. 13, no. 6, pp. 754–758,
Jun. 2005.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

ZLATANOVICI et al.: ENERGY–DELAY OPTIMIZATION OF 64-BIT CARRY-LOOKAHEAD ADDERS WITH A 240 PS 90 NM CMOS DESIGN EXAMPLE 583

[31] D. Marković, V. Stojanović, B. Nikolić, M. Horowitz, and R. W.
Brodersen, “Methods for true energy performance optimization,”
IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1282–1293, Aug. 2004.

[32] R. Zlatanovici, “Power–performance tradeoffs in datapaths,” M.S.
thesis, University of California, Berkeley, 2002.

[33] S. Wijeratne, “A 9 GHz 65 nm Intel Pentium 4 processor integer
execution core,” in IEEE ISSCC. Dig. Tech Papers, Feb. 2006, pp.
353–365.

Radu Zlatanovici (S’00–M’06) received the B.S.
and M.S. degrees in electronics from Politehnica
University Bucharest, Romania, in 1999 and 2000
respectively, and the M.S. and Ph.D. degrees in
electrical engineering and computer sciences from
University of California at Berkeley in 2002 and
2006, respectively.

He was on the faculty of Politehnica University
Bucharest from 1999 to 2000. In 2002 and 2003, he
interned at IBM T. J. Watson Research Center, York-
town Heights, NY, working on power–performance

tradeoffs for pipelined digital circuits. Upon graduation in 2006, he joined Ca-
dence Research Laboratories, Berkeley, CA, as a Research Scientist. His re-
search interests include low-power techniques for digital circuits, arithmetic cir-
cuits, and clock distribution.

Sean Kao received the B.Sc. degree in engineering
from Harvey Mudd College, Claremont, CA, in 2002,
and the M.Sc. degree from the University of California
at Berkeley in 2004, where his research interests in-
cluded high-performance digitial circuits, arithmetic
archietectures, and energy–delay tradeoff analysis.

He worked as a research engineer at Xilinx from
2004 to 2006, where he was an inventor on over a
dozen issued and pending U.S. patents. He is cur-
rently with Newport Media Inc., where he leads de-
signs on mobile digital television baseband receivers.

Borivoje Nikolić (S’93–M’99–SM’05) received the
Dipl.Ing. and M.Sc. degrees in electrical engineering
from the University of Belgrade, Serbia, in 1992 and
1994, respectively, and the Ph.D. degree from the
University of California at Davis in 1999.

He lectured electronics courses at the University
of Belgrade from 1992 to 1996. He spent two
years with Silicon Systems, Inc., Texas Instruments
Storage Products Group, San Jose, CA, working on
disk-drive signal processing electronics. In 1999, he
joined the Department of Electrical Engineering and

Computer Sciences, University of California at Berkeley, where he is now a
Professor. His research activities include digital and analog integrated circuit
design and VLSI implementation of communications and signal processing
algorithms. He is co-author of the book Digital Integrated Circuits: A Design
Perspective, 2nd ed. (Prentice-Hall, 2003).

Dr. Nikolić received the NSF CAREER award in 2003, College of Engi-
neering Best Doctoral Dissertation Prize and Anil K. Jain Prize for the Best
Doctoral Dissertation in Electrical and Computer Engineering at University of
California at Davis in 1999, as well as the City of Belgrade Award for the Best
Diploma Thesis in 1992. For work with his students and colleagues, he received
the Best Paper Award at the ACM/IEEE International Symposium of Low-Power
Electronics in 2005, and the 2004 Jack Kilby Award for the Outstanding
Student Paper at the IEEE International Solid-State Circuits Conference.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

