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Designing hardware specialized for a target application domain dramatically improves energy efficiency.  However, 
the design of specialized hardware is hampered by high cost, dominated by the effort needed to design, validate, and 
verify the custom integrated circuit. An agile design approach, discussed here, relies on hardware generators coupled 
with rapid design of iterative prototypes and open source to reduce the cost of hardware specialization.  

A limited set of 13 computational motifs have been found to provide the basis for most of the relevant algorithms in 
important applications [1].  Examples of these motifs are dense and sparse linear algebra, transformations into 
spectral domain, or graph traversals, a subset of which will be represented in a particular application domain. 
Implementing specialized hardware for efficient computation of the representative motifs in a target application 
domain, along with the effective methods for mapping the software onto the specialized hardware [2], is the key to 
achieving efficiency while maintaining programmability. 

However, the practicality of mapping specialized functions to custom silicon is limited by designers’ productivity 
and the overall cost of the design. The hardware design process needs to change to provide a path to achieving 
energy-efficient, cost-effective, high-performance designs for future applications.  The complexity of modern 
software systems far exceeds the complexity of the hardware on which they run.  Software productivity has 
dramatically improved with adoption of the agile software development process [3], which relies on building a 
sequence of working but incomplete prototypes, the use of higher levels of abstraction, and modularization done by 
small design teams. Hardware design can become more efficient by adopting the principles of software 
development, as outlined in this presentation. 

Some of the key principles that enable productive customized hardware design are: (1) small integrated teams 
building a series of prototypes, (2) use of higher-level descriptions to accelerate design, aid verification and enhance 
reuse, (3) develop generators not instances for better reuse and scalability of the design, (4) rapid design flows to 
enable agile design validation, and (5) leverage open-source designs for common hardware infrastructure. 

Small, integrated teams building prototypes. Rather than extensive up-front design and working in distinct phases by 
using different engineers for architecture exploration, RTL design, and verification, Agile relies of a sequence of 
working but incomplete prototypes built by a small, group of engineers that all do the design, verification (“built the 
thing right?”), and validation (“built the right thing?”).  

Higher-level description. Chisel is a hardware construction language aimed at designing hardware by using 
parameterized generators [5].  Chisel is based on the Scala programming language, and is built by extending Scala, 
and supports good software engineering techniques via object-oriented and functional programming. Chisel code is 
compact, due to its higher level of description than traditional hardware description languages. Hardware 
development in Chisel enables the agile development practices.  

Designing generators, not instances. The key to efficient design and reuse is in using generators, that is, 
parameterized descriptions of a set of design choices. The use of generators enables design-space exploration 
through sweeping the parameters of the design.  For this to work, language and tool support are needed that enable 
designers to naturally implement generators, rather than particular instances of a function [4-6].  Fortunately, 
languages for constructing generators, such as Chisel, Genesis2, and Spiral are emerging to aid the designers.   

Rapid design flows. Agile hardware development relies on a rapid design flow that maps a description of hardware 
into layout.  Modern synthesis and place-and-route tools are robust enough that they can be scripted to produce a 
clean layout with a push-button flow.  Such flows enable design exploration from a high-level description and by 
changing generator parameters.  Even if each mapping of the design into silicon is suboptimal in terms of 
performance and energy efficiency, often the overall design is highly optimized through automated search of 



architectural tradeoffs. Producing complete prototypes rapidly enables iterative agile validation with the intended 
user to ensure the design actually meets user needs. 

Open-source hardware. A large portion of the cost of a modern chip is in re-implementing and re-verifying the 
myriad interfaces necessary for seamless integration into complex products, yet these standard features add little 
differentiated value to the part, resulting in proposals to push these onto separate standardized chips in a multi-chip 
module [7].  Many interfaces are simple, and fully commoditized, such as SPI and I2C, but there are also more 
complex interfaces such as USB, WiFi, or Bluetooth. Development of standard open-source hardware 
implementations of these and other common blocks presents a path to align design effort with the added value of a 
chip project. The open-source model has revolutionized software development in the past ~15 years, and opening 
the source for hardware designs provides a similar opportunity. 

Processors are ubiquitous in complex chip designs, and multiple processor cores are often embedded in a typical 
modern SoC.  The vast majority of embedded processors are based on proprietary instruction-set architectures 
(ISAs), but much broader innovation is enabled with a free ISA supported with a full open-source software stack.  
While there are a few free ISAs in use, the RISC-V eco-system is provocative, as it closely follows the principles of 
open-source development [8].  RISC-V is a modern ISA, with a small number of instructions, designed for 
extensibility.  It supports the IEEE-754-2008 floating-point standard, compact instruction encoding, and 32-, 64- and 
128-bit address spaces.  A complete software tool stack is available including GCC, Linux, LLVM, and a 
verification suite. Chisel generators (e.g. a “Rocket Chip generator”) to build RISC-V cores are freely available, and 
a number of other open-source implementations of RISC-V cores are available online. 

An example design that relies on many of the principles outlined in this paper is the RISC-V microprocessor with 
integrated switched-capacitor DC-DC converters [9] based on the Rocket Chip generator. The use of generators 
throughout makes the design scalable and its components reusable. The 64-bit RISC-V processor was built in a 
28nm, fully-depleted, silicon-on-insulator (FD-SOI) process with ultra-thin body and buried oxide (UTBB). The 
DC-DC converter is supplied with two external voltages, a 1.0V core and 1.8V I/O, and generates four dynamically 
reconfigurable average output voltages: 1.0V, 0.9V, 0.67V, and 0.5V. An adaptive clock generator adjusts the clock 
period of each cycle based on the instantaneous converter output voltage.  All custom mixed-signal blocks––DC-DC 
converters, clock generator, and custom low-voltage memories––have been characterized for use in an automated 
flow. The complete system has been synthesized and automatically placed and routed using the automated flow, 
where the run-time from an RTL change to the LVS-clean layout was less than 14 hours.  The resulting design runs 
Linux and software applications and achieves a peak energy efficiency of 27GFLOPS/W including the DC-DC 
convertor. 
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