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Abstract—Quantize-map-and-forward (QMF) is a relaying
scheme that has been shown to achieve the capacity of Gaussian
relay networks to within a constant gap. Under QMF the com-
pression indices forwarded by relays are not decoded explicitly.
Instead, the message is decoded jointly with the compression
indices. In this work we present a practical coding and signaling
framework that captures this aspect of QMF. We outline the
framework for a simple Gaussian network with a single half-
duplex relay. We propose a scheme where binary LDPC codes
are used for encoding at the source and at the relay. For suitable
choice of codes and quantizer we show that the joint decoding
operation for QMF can be reduced to belief propagation over a
Tanner graph. Simulation results are given to justify the proposed
coding scheme. The proposed framework can be extended for use
with high order signal constellations.

I. INTRODUCTION

A cooperation strategy outlines the procedure used to for-
ward information from source to destination in relay networks.
The amplify-and-forward (AF), decode-and-forward (DF) and
compress-and-forward (CF) [1][2] strategies have received the
most attention in literature. In DF the information forwarded
by relays is based on a hard estimate of the encoder’s message
whereas in AF and CF it is based on a soft estimate. Addi-
tionally DF and CF forward coded information whereas AF
forwards it in uncoded form. The simplest network configura-
tion has a single relay and in the context of wireless networks
the relay is modeled as a half-duplex terminal. For such a
network with additive white Gaussian noises it is known that
CF outperforms DF and AF [3]. In fact, CF can perform within
a constant gap to the information theoretic capacity, regardless
of channel parameters [4][5].

More recently there has been a growing interest in co-
operative networks with more relays. In such configurations
CF no longer performs within a constant gap to capacity.
Moreover CF requires the relays to have forward channel
knowledge. The overhead for this becomes large for more
complex networks. Recent work [5] has shown that an im-
provement of CF called quantize-map-and-forward (QMF)
achieves performance within constant gap of capacity for
Gaussian networks with arbitrary number of relays1. In the
QMF scheme the relay quantizes its received signal at noise
level, maps it randomly to a Gaussian codeword and forwards
it. QMF does not require forward channel knowledge at relays
and has played a key role in several information theoretic

1Lim et.al. describe a generalized version of this scheme in [6] and name
it noisy network coding.

results on cooperative networks [6][4][7][8]. These properties
make QMF an interesting candidate for further investigation.

Information theoretic results prove the existence of codes
and relay operations that can be used in cooperative networks.
For the purpose of system design we need to explicitly
construct efficient coding and signaling techniques. Our goal
is to develop the QMF scheme from this perspective. In this
paper we present a practical coding and signaling framework
based on QMF for the simple network configuration with one
half-duplex relay.

The fundamental difference between CF and QMF schemes
is in their respective decoding operations. CF uses successive
decoding i.e. side information from the relay (compression
index) is decoded first before decoding the message. The
CF relay explicitly encodes side information such that it can
be reliably decoded at the destination and therefore requires
forward channel knowledge. On the other hand quantize-map-
and-forward uses joint decoding of the message and side
information at the destination. Joint decoding usually requires
higher complexity and this presents a unique challenge in the
design of practical codes for QMF. The key contribution of
this paper is to present techniques that significantly reduce
the complexity of this step.

Recently a coding technique for QMF [9] was proposed
based on lattice strategies. The proposed scheme reduced the
complexity of mapping at the relay to polynomial-time while
the joint decoding complexity remained exponential-time. In
this paper we use an alternative approach wherein we treat cod-
ing and modulation separately, by employing bit-interleaved
coded modulation (BICM) [10]. The technique allows us to
combine channel codes for binary alphabet and higher order
signal constellations with only minor loss in performance.
Therefore we focus our discussion to the problem of code
design and specifically joint decoding for the binary input
Gaussian relay channel (Sec II).

The binary-input relay channel with QMF has two distinct
code components, first is the encoder at the source and second
is the mapping at the relay. We choose both these components
to be LDPC codes. This is a natural choice given the fact
that they have the best known performance (for point-to-
point channels). LDPC codes are well suited for practical
implementation and have a well developed set of analysis
and design tools. LDPC codes for the relay channel with
DF relaying have been developed in [11][12][13]. The DF
coding ideas initially developed for the binary-input case have
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been extended to high SNR regime using bit-interleaved coded
modulation (BICM) in [14]. Code designs for CF relaying
using binary inputs have been discussed in [15].

We focus on QMF relaying and represent the joint de-
coding problem as a sum-product algorithm over a factor
graph (Sec.III). The resulting factor graph is not well suited
for efficient implementation and good performance. We then
present three techniques that allow us get a factor graph that
is well conditioned for practical implementation (Sec IV). We
show that for a suitable choice of component codes the factor
graph contains the Tanner graphs of both component codes as
subgraphs. The two subgraphs are connected via new nodes
that represent the quantization operation at the relay. We call
them quantize (QU) nodes and compute their sum product
update rules (Sec V). For a simple one-bit scalar quantizer
at the relay we show that the QU nodes can be simplified
into LDPC check nodes connected to a dummy variable node
sending a constant message which is the bit error probability
in the source-to-relay link. In Sec. VI we present results
from simulating the resulting joint decoder using off-the-shelf
LDPC codes. Finally in Sec VII we discuss the extension of
the ideas in this paper to spectrally efficient (high-SNR) regime
using BICM and present preliminary simulation results for the
same.

II. PROBLEM SETUP

The half-duplex Gaussian relay channel has three half-
duplex terminals: source (S), relay (R) and destination (D)
with Gaussian channels between them.

A. Half-duplex Single-Relay Network

S

R

D
x

zR

xRyR

y
z

Fig. 1. Half-Duplex Gaussian Relay Channel

The half-duplex single-relay network is shown in Figure 1.
R listens for fraction f ∈ [0, 1] of the total communication
time and transmits for fraction (1− f). The block lengths for
the transmitted signals at the source S and the relay R are NS

and NR respectively. They satisfy the half-duplex constraint
NR = (1−f)NS. The transmit signals xS ∈ ANS ,xR ∈ ANR ,
where A denotes the alphabet of the signal. Here we use the
bold-face lower case alphabet to denote a sequence of symbols.
In the rest of our paper we shall focus on the binary alphabet
{±1}.

The received signal sequences are y ∈ RNS , yR ∈ RfNS ,
where

y = h1xS + h2xR + z (1)
yR = hRxS + zR, (2)

and h1, h2, hR denote the corresponding channel gains. h2 = 0
when R is listening. z and zR are independent zero-mean
Gaussian noise vectors with identity covariance matrices.

B. Quantize-Map-and-Forward Relaying Scheme

For the general continuous alphabet with average power
constraints, the quantize-map-and-forward scheme [5] is de-
scribed as follows.

Source S has a sequence of messages wb ∈ {1, . . . , 2NSR},
b = 1, 2, . . . to be transmitted. At both source S and relay R we
create random Gaussian codebooks CS and CR respectively. S
randomly maps each message to one of its Gaussian codewords
and transmits it using NS symbol times giving an overall
transmission rate of R. Due to the half-duplex nature of the
relay, it must operate using listen-transmit cycles. Relay listens
to the first fNS time symbols of each block. It quantizes
its observation and then randomly maps it into a Gaussian
codeword using a random mapping function. It transmits this
codeword during the next (1− f)NS symbol times. Given the
knowledge of all the encoding functions and signals received,
destination D attempts to decode the message sent by S.

We adapt the QMF scheme described above to the binary-
input Gaussian relay network. The only difference is that,
the codebooks CS and CR are now binary codes. Relay R
quantizes its received signal into yR into KR bits and maps
the quantization index to a codeword xR in its codebook CR.
For the majority of this paper we will focus on this simplified
channel model. In Sec VII we use a parallel combination of
these binary-input channels using BICM to approximate the
original channel model described in Sec II-A.

III. JOINT DECODING ALGORITHM AND FACTOR GRAPH

The main result leading to a factor graph for the joint
decoding algorithm is summarized in the following theorem.

Theorem 1: The maximum a posterior (MAP) joint decod-
ing rule for the channel described in Sec. II-A can be expressed
as a sum-product algorithm over a factor graph that has the
Tanner graphs of CS and CR as its subgraphs.

Proof: The decoder searches for the codeword xS ∈ CS
which maximizes the a posterior probability p (xS|y). An
efficient way to do this search is to consider the bitwise
maximum a posterior (MAP) decoder, where the aim is to
compute p (xS,i|y) =

∑
∼xS,i

p (xS|y) for all i = 1, 2, . . . NS.
Here the subscript i denotes the symbol time.

p (xS|y) =
∑
xR

f (y|xS,xR) p (xS,xR)
f (y)

∝
∑
xR

f (y|xS,xR) p (xS,xR) . (3)

The first term f (y|xS,xR) can be factorized as

f(y|xS,xR)

=
fNS∏
i=1

f(yi|xS,i)
NR∏
j=1

f(yfNS+j |xR,j , xS,(fNS+j)) (4)
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since the additive noises are independent over time. Now we
focus on the use of LDPC codes for both CS and CR. The codes
have characteristic functions 1(xS ∈ CS) and 1(xR ∈ CR)
respectively. Hence,

p (xS,xR) = p (xS) p (xR|xS)
∝ 1 (xS ∈ CS) p (xR|xS) (5)
(a)
= 1 (xS ∈ CS) 1 (xR ∈ CR) p (xR|xS) . (6)

(a) is due to the fact that xR must a codeword in CR.

QM

xS,1 xS,2 xR,1 xR,2 xR,NRxS,NS

f(y1|xS,1) f(y2|xS,2)

f(y(fNS+1)|xS,(fNS+1), xR,1) f(yNS |xS,NS , xS,NR)

CHK CHK

VAR VAR

OBS

OBS

SOURCE RELAY

p(xR|xS)

Fig. 2. Factor Graph

To this end we have shown that the MAP joint decoding
procedure can be expressed as a sum-product algorithm over
a factor graph containing the Tanner graphs of CS and CR as
its subgraphs hence the proof of Theorem 1 is complete. The
factor graph is shown in Fig. 2.

The update rules at the function node p (xR|xS) may get
very complex since its arguments are of lengths NS and NR.
Moreover the node p (xR|xS) has a degree NS + NR which
can introduce very short cycles in the graph. Running the sum-
product algorithm over such a graph would result in decoding
performance which will not approach that of the MAP decoder.
In order to get reasonable performance and low decoding
complexity we need to simplify this factor graph. In the next
section we discuss three specific techniques that allow this.

IV. SIMPLIFIED FACTOR GRAPH

A. Systematic Mapping

If we restrict the encoding at the relay to be in systematic
form, the first KR bits xR[1 : KR] are the quantization index
of yR[1 : fNS]. This reduces the degree of the p (xR|xS)
function node to fNS +KR. The complexity is also reduced
because the node now represents only a quantization operation.

p (xR|xS) = p (xR|xS[1 : fNS]) (7)

B. Scalar Quantizer

It has been shown [5] that QMF is within constant gap
of capacity even with a scalar quantizer. Therefore if we
use a scalar quantizer at the relay i.e. each each symbol
yR,i is quantized into xR[αi], for i = 1, 2, . . . fNS then the

p (xR|xS) function node factorizes into fNS separate nodes
each representing a scalar quantization operation.

p (xR|xS) =
fNS∏
i=1

p (xR[αi]|xS,i) (8)

fNS⋃
i=1

αi = {1, 2, . . . ,KR}

αi ∩ αj = φ ∀i 6= j

where αi denotes the subset of time indices in xR that symbol
yR,i is quantized into. Now, the variable nodes of the two

QU QU

xS,1 xS,2 xR,1 xR,2 xR,NRxS,NS

f(y1|xS,1) f(y2|xS,2)

f(y(fNS+1)|xS,(fNS+1), xR,1) f(yNS |xS,NS , xS,NR)

CHK CHK

VAR VAR

OBS

OBS

SOURCE RELAY

Fig. 3. Factor Graph: Systematic code at relay and scalar quantizer.

Tanner graphs are connected by function nodes representing
the stochastic relations p (xR[αi]|xS,i) among them. We call
such nodes quantize (QU) nodes, as they are induced by the
quantization procedure at the relay. In summary there are four
kinds of nodes in the resulting factor graph: (1) Observation
(OBS) nodes, (2) Variable (VAR) nodes, (3) Check (CHK)
nodes, and (4) Quantize (QU) nodes. An illustration is given
in Figure 3 for the case where each symbol observation yR,i
is quantized into one bit.

As depicted in Fig. 3, some VAR nodes in the Tanner graph
for the source’s code share OBS nodes with some VAR nodes
in the Tanner graph for the relay. This may not be desirable in
a practical implementation due to the complexity of updates at
these OBS nodes and the possibility of introducing short cycles
and thereby degrading the performance of iterative message
passing. In the next sub-section we propose a DBLAST-
like layered system architecture to resolve this issue. This
architecture allows us to use a simplified channel model where
the destination observes two orthogonal AWGN links - one
from the source and the other from the relay. Hence the OBS
nodes connecting the source VAR nodes and the relay VAR
nodes factorize and the resulting factor graph is simplified.

C. DBLAST Architecture

DBLAST (diagonal Bell-labs space time) was originally
introduced for MIMO channels to allow coding across an-
tennas for slow fading scenarios. The relay channel can be
thought of as a distributed MIMO channel with coding across
the transmit antennas (source and relay). This is a natural fit
for the relay channel and we show that it provides several
system design advantages. The system architecture is depicted
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Fig. 4. System Architecture at Block b

in Fig. 4 and its equivalent channel model is shown in Fig. 5.
The architecture relies on introducing a delay of one block
at the relay. At the b-th block the destination receives the
superposition of the following:
• signal from the source containing the codeword sent at

block b, namely, xS(mb)
• signal from the relay containing the side information

about the source’s codeword at block b − 1, namely,
xR(qb−1)

Across blocks the messages sent from the source are indepen-
dent and the destination can perform successive interference
cancellation (SIC). At the b-th block, it jointly decodes block
b − 1 (message mb−1 and side information xR(qb−1)) by
treating xS(mb) as Gaussian noise. Then it subtracts relay’s
codeword xR from its received signal y[b] and keeps the
residual ỹ[b] for decoding the next block. This architecture
allows us to use a simplified equivalent channel model.

Simplified Equivalent Channel Model:
Consider the end-to-end system in Figure 4. For decoding

the block b− 1 message mb−1, the decoder takes two inputs
y[b] and ỹ[b − 1]. Note that the noises are independent over
time and the messages sent at all blocks are independent.
We can think of y[b] and ỹ[b − 1] as two orthogonal links
with independent additive Gaussian noises. Therefore, for the
purpose of code design we can alternatively investigate a
simpler model depicted in Figure 5. In this model,

ySR = hSRxS + zSR (9)
ySD = hSDxS + zSD (10)
yRD = hRDxR + zRD (11)

where hSR = hR, hSD = h1, hRD = h2, and zSR, zSD, and
zRD are independent Gaussian noises with variances

Var[zSR] = Var[zSD] = 1 (12)

Var[zRD] = 1 + |h1|2. (13)

The equivalent noise zRD has higher variance since the signal
from the source in block b is treated as Gaussian noise. We
denote the signal-to-noise ratios in the three links by SNRSR,
SNRSD, and SNRRD respectively.

Remark 1: Consider the original channel and the equivalent
channel under DBLAST without binary input constraint i.e.
average power constraint is put at the transmitters. It is not
difficult to show that the capacities of these two channels are
within a constant gap. Note that the cut-set upper bounds for

S

R

D
xS

zSR

xRySR

zRD

yRD

ySD

zSD

Fig. 5. Equivalent Channel Model

both channels are within 1 bit (for any listening time f ∈
[0, 1]). Compared with the original channel in Fig. 1, the cut at
the source remains unchanged, while the cut at the destination
has a [(1− f)× 1]-bit power-gain loss since SIC achieves the
sum capacity of multiple-access channels, and this cut in the
original channel allows full cooperation of S and R. Since
QMF achieves the cut-set bound to within a constant gap for
arbitrary half-duplex Gaussian relay networks, the capacities
are within a constant gap. Therefore for our original purpose
of implementing QMF, such DBLAST architecture does not
incur much loss.

This greatly simplifies the factor graph shown in Fig. 3.
The OBS nodes of degree 2 (representing multiple access) can
now be factorized. The destination observes two orthogonal set
of observations. The factorization is shown in equation (14)
where y := [ySD yRD].

An example of the simplified factor graph is depicted in
Figure 6. We see that in such factor graphs, VAR nodes
in the two Tanner graphs are connected only through QU
nodes. Since yRD,i = 0 for i = 1, . . . , fNS, we rename
yRD,(fNS+j) ≡ yRD,j , for j = 1, . . . , NR.

QU QU

xS,1 xS,2 xR,1 xR,2 xR,NRxS,NS

f(yS,1|xS,1) f(yS,NS |xS,NS)f(yR,1|xR,1) f(yR,NR |xR,NR)

Fig. 6. Simplified Factor Graph with One-bit Scalar Quantizer, that is, αi =
{i} for i = 1, 2, . . . , fNS.

After using these three techniques the resulting factor graph
is very similar to a Tanner graph for an LDPC code. The
only difference in the presence of QU nodes which have small
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f(y|xS,xR) =
fNS∏
i=1

f(ySD,i|xS,i)
NR∏
j=1

f(ySD,(fNS+j), yRD,(fNS+j)|xR,j , xS,(fNS+j))

=
fNS∏
i=1

f(ySD,i|xS,i)
NR∏
j=1

f(ySD,(fNS+j)|xS,(fNS+j))f(yRD,(fNS+j)|xR,j)

=
NS∏
i=1

f(ySD,i|xS,i)
NR∏
j=1

f(yRD,(fNS+j)|xR,j), (14)

degree (in our example 2). In the next section we derive the
message passing updates for this graph following the general
principle outlined in [16] and show that for a simple one-
bit quantizer each QU node can be further factorized into
an LDPC check constraint and a dummy variable node. This
reduces the joint decoding algorithm to belief propagation over
a Tanner graph.

V. MESSAGE PASSING ALGORITHM

For the point-to-point system, belief propagation is an
iterative algorithm that computes the a posterior probability
to decode message bits. The algorithm computes this exactly
if the factor graph has no cycles. Otherwise it computes
the approximate a posterior probability for each bit. For the
joint decoding framework presented in previous sections the
messages being passed on the edges of the factor graph and the
update rules at the variable/check nodes remain the same. The
only new ingredient in the mix are the QU nodes introduced
by our framework. In this section we derive the update rules
for QU nodes.

Let the subscripts V , C, and Q denote VAR nodes, CHK
nodes, and QU nodes respectively. For F ∈ {C,Q}, let ω(l)

V F

denote the message sent from variable node V to function node
F in the lth iteration. Every edge in the graph is connected to
exactly one variable node and a message on the edge represents
the a posterior probability for the respective variable. Since
all the variables in our graph are binary, the messages can be
represented as likelihood or log-likelihood ratios. For the sake
of simplicity, in this discussion we represent the messages as
a two-dimensional vector

ωV F = [p1 p−1]

where ωV F (1) = p1 ∈ [0, 1] represents the probability that the
bit is 0 and ωV F (2) = p−1 ∈ [0, 1] represents the probability
that the bit is 1. (p1 + p−1 = 1)

At a VAR node V , the incoming messages from CHK nodes
and QU nodes are the likelihoods of the bit represented by
V . The message sent from V to node F ∈ {C,Q} is the
normalized product of all incoming messages into node V
except the message from F . The normalization ensures that
p1 + p−1 = 1 for the outgoing message.

At a CHK node C the incoming message from node V is
the likelihoods the bits represented by V . Hence the message
sent from C to any VAR node V ′ is the indicator function

that the check is satisfied, marginalized on the bit represented
by V ′. Note that the update rules at CHK node represent a
deterministic constraint on the variables.

At a QU node Q, the message passed from Q to a VAR
node V , is the marginalization of the function p (xR[αi]|xS,i)
on the symbol represented by V . xR is computed from a
noisy observation of xS,i and therefore the QU node imposes a
probabilistic constraint on the variables. Since the quantization
is scalar, we have: ∀u ∈ {±1}|αi| and v ∈ {±1},

g(u, v) := p (xR[αi] = u|xS,i = v) . (15)

This function can be fully represented by a lookup table with
2|αi|+1 values, and hence the update rule can be derived.

As an example we consider a one-bit scalar quantizer at
the relay and derive the update rules. We have the following
theorem.

xS,1 xS,2 xR,1 xR,2 xR,NRxS,NS

f(yS,1|xS,1) f(yS,NS |xS,NS)f(yR,1|xR,1) f(yR,NR |xR,NR)

[1− pf pf ]

Fig. 7. Euivalent Factor Graph of that in Fig. 6

Theorem 2: If the relay uses a one-bit scalar quantizer and
a systematic encoding i.e. αi = {i} for i = 1, 2, . . . , fNS and
KR = fNS, then each QU node can be decomposed into to a
CHK node connected with a dummy VAR node that sends a
constant message:[

1−Q
(√

SNRSR

)
Q
(√

SNRSR

)]
. (16)

Proof: Note that

αi = {i}, i = 1, 2, . . . , fNS, (17)

and KR = fNS. The factor graph is depicted in Figure 6. We
have: ∀u ∈ {±1} and v ∈ {±1},

g(u, v) :=p (xR,i = u|xS,i = v)
=(1− pf )1{u = v}+ pf1{u 6= v}, (18)
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Fig. 8. Simulation Results for qSR = 2, qRD = 1, NS = 20400, NR =
13600, f = 1

3
, rS = rR = 0.5

where pf := Q(
√

SNRSR) denotes the probability of error in
scalar quantization. Since the function g is symmetric in u
and v, we can assume that the VAR node is of the source, and
the marginalization is on v. Let the other VAR node be V ′.
Hence,

ωQV (1) = (1− pf )ωV ′Q(1) + pfωV ′Q(2) (19)
ωQV (2) = (1− pf )ωV ′Q(2) + pfωV ′Q(1), (20)

which takes the same form of a CHK node with incoming
messages ωV ′Q and [1−pf pf ]. Therefore, the QU node in this
set-up specializes to a CHK node with additional dummy VAR
nodes sending constant messages, and the constant depends on
SNRSR. The resulting factor graph is depicted in Fig. 7.

Theorem 2 implies that the implementation of the iterative
decoder follows the same structure as that in the conventional
LDPC decoder. In the next section we present some simulation
results based such implementation.

VI. SIMULATION RESULTS

In this section we present simulation results for sum product
decoding on the factor graph shown in Fig. 6 i.e. using
a one-bit quantizer at the relay. We use LDPC codes that
are optimized for point-to-point communication on a AWGN
channel from [17]. The signal to noise ratios on the channels
are modeled as described in Sec. IV-C using linear scaling
factors qSR and qRD.

SNRSR = qSRSNRSD

SNRRD = qRDSNRSD

Fig. 8 shows the case with qSR = 2 and qRD = 1 using rate
0.5 codes of block length 20400 and 13600 for the source and
relay respectively. The codes are generated using profiles from
Table 1 in [17] using maximum variable node degree of 8.

We compare our simulation results with the following
information theoretic quantities

1) Point-to-point Channel:
• Shannon capacity:

Cp2p = I (X;Y ) with X ∼ Unif{±1}, Y = X + Z,
Z is zero-mean Gaussian with variance 1

SNR , and Z is
independent of X .

• Density evolution threshold of the chosen code [17]

2) Half-Duplex Relay Channel:
• Cut-set upper bound of the original channel (Fig. 1):
Ccut = min {CS, CD}, where

CS = fCMISO + (1− f)Cp2p,SD (21)
CD = fCp2p,SD + (1− f)CSIMO. (22)

Here Cp2p,SD denotes the channel capacity for the S-D
link, CMISO denotes the channel capacity of the MISO
channel from (S,R) to D, and CSIMO denotes the channel
capacity of the SIMO channel from S to (R,D). Note the
all calculations are based on the channel model in Fig. 1.
Note that the input alphabet A = {±1}.

• Cut-set upper bound of the equivalent channel under
DBLAST (Fig. 5):
The expression of this bound, Ccut,DBLAST, is the same
as above, except that the calculations are based on the
channel model in Fig. 5. Since the S-D and R-D links
are orthogonal, CMISO becomes the sum of point-to-point
capacities of S-D and R-D links: CMISO = Cp2p,SD +
Cp2p,RD.

• QMF achievable rate using the scalar one-bit quantizer:
This is the QMF achievable rate based on the scalar one-
bit quantizer and the DBLAST transmission architecture.
The calculation is based on the general expression in [6].
We omit the details of derivation and just give the result:
for a given listening time f , based on the channel model
in Fig. 5, RQMF = min {RS, RD}, where

RS = Cp2p,SD + f (H (ŷSR|ySD)−Hb (pf )) (23)
RD = (1− f)Cp2p,RD + Cp2p,SD − fHb (pf ) , (24)

where Hb (·) denotes the binary entropy function and
pf = Q

(√
SNRSR

)
.

Table I lists the information theoretic quantities in terms of
SNR in dB at rate = 1

2 and listening time f = 1
3 .

TABLE I
INFORMATION THEORETIC QUANTITIES IN TERMS OF SNR (DECIBELS) AT

RATE 1
2

Point-to-Point Relay: qRD = 1, qSR = 2, f = 1
3

Cp2p,SD DE Threshold Ccut Ccut,DBLAST RQMF

0.19 0.45 −1.51 −1.51 −1.11

Discussion on Simulation Results

Since we have not designed specialized LDPC code profiles
for the joint factor graph, we use the BER performance of
the point-to-point (no cooperation) case as the baseline for
comparison. In Fig. 8 it can be seen that the BER performance
of the relay channel is ≈ 1dB better than the point-to-point
case (cooperation gain). The plot also shows the Shannon
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threshold for BIAWGN and threshold corresponding to RQMF

for for chosen parameters f, qSR, qRD. The gap between these
two thresholds can be seen to be ≈ 1.3dB. This can be
considered as the theoretical maximum cooperation gain using
a 1-bit quantizer and QMF relaying. Moreover it can be seen
that the threshold corresponding to RQMF is only 0.4dB away
from the cut-set bound.

The simulation results above indicate that the joint decoding
algorithm presented here converges and performs reasonably
well using off-the-shelf LDPC codes designed for the binary
input AWGN channel. Using tools described in [18][17] we
can design LDPC code profiles which are specialized for
use with the joint decoder to get the performance closer to
fundamental limits.

VII. CONCLUDING REMARKS

A. Summary

In this paper we propose a framework for designing efficient
QMF relaying schemes over a half-duplex relay channel. The
framework is based on LDPC codes for encoding at the source
and mapping at the relay. We derive the factor graph for joint
decoding at the destination, and propose three techniques that
make the graph suitable for efficient implementation:

1) systematic codes at the relay
2) scalar quantizers at the relay,
3) a DBLAST-like transmission architecture that results in

an effective parallel channel at the destination.
The proposed framework is not constrained to a Gaussian
channel and can be extended to any binary-input symmetric-
output memoryless half-duplex relay channel.

B. Extension to High-Order Constellation

The capacity advantage of cooperative relaying and the
effectiveness of QMF are most significant in the high SNR
regime. In this regime coding and modulation both play
an important role in system performance. In practice most
systems use BICM [10] to combine channel codes designed
for binary alphabet with higher order signal constellations.
BICM has been proposed for various cooperative channel
scenarios [19][20][21][14]. To extend our work to high-order
constellations we follow the BICM approach. This is work-
in-progress and the results will be reported in a forthcoming
paper. Following is a brief preview of the same.

Under classical BICM [10] the effective channel from a
bit B to the channel output Y is equivalent to a state-
dependent binary-input channel pY |B,Θ(y|b, θ) with state Θ ∈
{1, 2, ...,m} known to both the transmitter and the receiver
(2m is the cardinality of the chosen constellation). Ideally
we would like to use our coding framework for the binary-
input channel at each BICM “sub-channel” (under a given
state θ). However the sub-channel corresponding to a state θ
is no longer guaranteed to be output-symmetric.

For binary-input channels that are not output-symmetric,
classical analytical tools for LDPC codes such as density evo-
lution become very complicated since the all-zero codeword
can no longer represent the performance of all codewords.

 0.0001

 0.001

 0.01

 0.1

 1

 2  3  4  5  6  7

BE
R

SNRSD(dB)

Cp2p,SD(Th)

5.11dBCcut(Th)
3.44dB

1.67dB
1.0dB

No Cooperation
QM Relay

Fig. 9. 16QAM Simulation Results for qSR = 2, qRD = 1, NS = 20400,
NR = 13600, f = 1

3
, rS = rR = 0.5

This is a well-known issue and can be resolved by adding
random dithers into the system [22][23]. Dithers are i.i.d.
Bernoulli

(
1
2

)
random variables known to both the transmitter

and receiver. Dithering guarantees that the sub-channels under
BICM are output-symmetric.

Secondly we need to define the quantize-and-map operation
under BICM. The natural approach is to have the relay R
quantize its received signal encode it using a binary LDPC
code and then forward it using a second independent BICM
operation. However this choice does not yield a practical
decoder because we can no longer “decompose” the original
channel into sub-channels as in the point-to-point scenario.
This defeats the purpose of BICM which is to allow design
of coding and modulation subsystems separately. We propose
an alternative approach for the quantize-and-map operation to
retain this separation. Under this approach the relay quantizes
each effective sub-channel (instead of its received signal). The
relays operation is described below:

1) compute the LLR (log-likelihood-ratio) of each bit based
on knowledge of dither

2) quantize each bit on the effective sub-channel that it
went through

3) encode the quantization output using a LDPC code
4) pass the resultant binary codeword to another BICM

module

Results of a simulation experiment based on the above
approach using 16QAM modulation is given in Fig. 9. The
LDPC codes used in this experiment were the same as those
used for the binary-input case. The overall design rate is 2
bits/channel use.

For comparison Table II lists the information theoretic
quantities for rate 2 and 16QAM constrained inputs.
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TABLE II
INFORMATION THEORETIC QUANTITIES IN TERMS OF SNR (DECIBELS) AT

RATE 2 FOR 16QAM SCENARIO

Point-to-Point Relay: qRD = 1, qSR = 2, f = 1
3

CM Capacity BICM Capacity Ccut,DBLAST RQMF

5.11 5.28 3.44 3.95

Research Program, a Semiconductor Research Corporation
program.
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