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Abstract—Low-density parity-check (LDPC) codes have been
demonstrated to perform very close to the Shannon limit when
decoded iteratively. However challenges persist in building practi-
cal high-throughput decoders due to the existence of error floors
at low error rate levels. We apply high-throughput hardware
emulation to capture errors and error-inducing noise realizations,
which allow for in-depth analysis. This method enables the design
of LDPC decoders that operate without error floors down to very
low bit error rate (BER) levels. Such emulation-aided studies
facilitate complex systems designs.

I. INTRODUCTION

Low-density parity-check (LDPC) codes can be designed

to perform at rates extremely close to the Shannon limit [1],

[2]. Since their recent rediscovery [3], LDPC codes have

received wide-spread adoption in applications ranging from

communications to data storage to improve both bandwidth

efficiency and reliability. However, practical LDPC codes are

not guaranteed to perform well at a low bit error rate (BER)

[4] as required by some high-performance applications.

There is currently a shortage of simulation power and a lack

of analytical approaches to fully understand the performance

of practical LDPC codes at low error rates. As a result, high-

throughput field-programmable gate array (FPGA) platforms

have often been used for the purpose of verifying hardware

architecture and accelerating code evaluation [4], [5].

This work demonstrates an LDPC decoder emulation plat-

form that is constructed for studying decoder failure mech-

anisms at low error rate levels. The platform described in

this work records noise realizations, as well as iteration-

by-iteration states that lead to a decoding error. The noise

realizations allow each error to be replicated in a Matlab

reference model and interesting error profiles to be identified.

More importantly, error statistics can be exploited in building

an improved decoding algorithm.

The hardware emulation platform in described in Section

II. The error traces captured by this platform lead to the

classification of errors in Section III. The code-intrinsic ab-

sorbing errors are profiled in Section IV to clearly distinguish

the effect of each implementation. Finally, error statistics

are investigated in-depth for the formulation of an improved

decoding algorithm to overcome the absorbing errors.

II. HARDWARE EMULATION

An emulation-based design flow is developed for the inves-

tigation of LDPC codes, shown in Fig. 1. The design flow is

based on the Berkeley Emulation Engine 2 (BEE2) platform
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Fig. 1: Design flow for hardware emulation.

[6]. The BEE2 platform consists of an FPGA array hardware

and a Simulink-based programming paradigm. The LDPC

decoder is described in a fixed-point reference model in Matlab

and its architecture is constructed in Simulink. The Simulink

model is verified against the Matlab reference model before it

is mapped to FPGA. More parallel decoder architectures can

be implemented on an FPGA, enabling a throughput of at least

several orders of magnitude higher than software simulations

to reach very low BER levels. The Simulink-based design flow

allows the rapid translation from data-flow-based design entry

to hardware, facilitating an iterative design and refinement.

A. Design Flow

The decoder is hierarchically constructed in a bottom-up

manner. The basic component modules are designed and ver-

ified in Simulink. The component modules are parameterized

by wordlength and quantization. A Matlab script takes as input

the H matrix of the LDPC code, instantiates modules from the

design library and establishes connections between modules

based on the H matrix. This approach simplifies the design

process and enables design-time configurability.

B. Emulation Setup

Block RAMs on the FPGA record the noise realizations

and final iterations of soft decisions when decoding fails.

With a large number of block RAMs available on modern

FPGA devices, a large memory bandwidth and fast access

are possible. An on-chip PowerPC microprocessor controls

the decoder by issuing start and stop commands, setting an

upper limit on the number of decoding iterations, and adjusting

the noise variance for different SNR levels. The hardware

emulation platform is illustrated in Fig. 2. This platform allows

the characterization of code performance and evaluation of

practical implementation parameters [7]. Error traces captured
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Fig. 2: An LDPC decoder emulation platform.

TABLE I: FPGA resource utilization

Available 4-bit 6-bit 8-bit

Slice FF 66,176 9,153 10,017 10,881

4-input LUT 66,176 8,386 10,296 11,946

Slices 33,088 8,199 9,706 10,828

Total LUT 66,176 11,252 13,645 15,778

Block RAM 328 134 134 134

by the platform help in uncovering the causes of the error

floors.

FPGA resource utilization is listed in Table I for the

decoders (together with AWGN noise generators) of a (6,32)-

regular (2048,1723) RS-LDPC code [8]1. The decoders are

implemented in a layered architecture [9] with wordlengths

of 4, 6, and 8 bits using the sum-product message-passing

decoding algorithm [1]. These decoders are made resource

efficient – occupying approximately 1/3 of the available slices

and block RAMs on a Xilinx Virtex-II Pro XC2VP70 FPGA.

The Xilinx AWGN noise generators are incorporated at the

cost of approximately 900 slices. The remaining resource

on-chip can be used to store error traces. These decoders

achieve a peak throughput of 480 Mb/s using a 100 MHz

clock. Hardware emulation extends the BER measurement

below 10−10 within hours. For comparison, an optimized

implementation of the decoder in C provides a peak throughput

of only 260 kb/s on an Intel Xeon 2.4 GHz microprocessor.

III. ERROR CLASSIFICATION

Hardware emulation uncovers the flattening of the BER-

SNR curve at low BER levels, known as error floors [4]. Most

errors in the error floor region exhibit rather pronounced char-

acteristics, either oscillatory or absorbing. Both types of errors

start with a small number of bits that are received incorrectly.

An oscillation error is unstable under the message-passing

decoding: the number of incorrect bits increases with iterations

of message passing and falls when enough incorrect bits are

1Here and in the remainder of the paper (x,y)-regular (n,k) code refers to a
code transforming k input bits into n coded bits, and is such that each coded
bit participates in x parity checks, and each parity check is incident to y coded
bits.
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Fig. 3: Hardware emulation being used in a feedback loop.

accumulated. The fluctuation of the number of incorrect bits

occurs in a periodic fashion.

Absorbing errors also start with a small number of bits that

are received incorrectly. The values of these bits gradually

stabilize, such that the incorrect bits remain incorrect and

correct bits remain correct, thereby remaining in a local

minimum state that absorbs the message-passing decoding

algorithm.

Hardware emulation accelerates code and decoder evalua-

tion substantially. Very low error rate performance of practical

LDPC decoders can be characterized and iteration-by-iteration

soft decision capturing further allows the classification of

errors that cause the decoder to fail. Hardware emulation

can also be utilized as a step in an iterative design loop, as

shown in Fig. 3. The input noise realizations that cause the

decoding errors are captured and plugged in a functionally-

equivalent decoder in Matlab to replicate each failure case.

The error-replicating feedback simulation, when correlated

with code structure and decoding algorithm, yields an in-depth

understanding of the decoding errors.

A. Oscillation Errors and Absorbing Errors

Feedback simulation is applied in the investigation of de-

coding errors. Oscillation errors are unstable and can be inter-

preted as a consequence of the dynamics of quantized message

exchange, while absorbing errors are the local minimum states

and can be analyzed exactly.

Absorbing errors are related to the structure of the code

under message-passing decoding. To illustrate an absorbing

error, start with a factor graph such as the one in Fig. 4a that

is associated with a small LDPC code (edges of the factor

graph to the received output are not shown). Assume an all-

zeros code is transmitted. By definition, all parity checks are

satisfied. Suppose noise is injected to the transmitted bits, such

that a subset of the bits are received incorrectly, e.g., the bits

corresponding to variable nodes v7, v8, and v9 now assume

the incorrect value of 1 as shown in Fig. 4b. These incorrectly

received bits cause some of the parity checks to be unsatisfied.

With this setup, every incorrect bit receives two messages

from the satisfied check nodes telling it to keep the incorrect

decision, and it receives one message from the unsatisfied

check node telling it to correct the decision. But two is more

than one, and the incorrect bit cannot be recovered, thus the

decoder is absorbed.

Absorbing sets were defined in the past [7], [10] to provide

a valuable characterization of absorbing errors. In order to
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Fig. 4: Illustration of (a) an all-zeros codeword transmitted,

(b) a (3,3) fully absorbing set.

define an absorbing set, let G = (V, F, E) be the bipartite

graph associated with a parity-check matrix H, such that the

set V corresponds to the columns of H, the set F corresponds

to the rows of H, and E = {e(i, j)|H(j, i) = 1}. Such a

graph GH is commonly referred to as the Tanner graph of the

parity-check matrix H of a code, and is the relevant portion

of the factor graph [11]–[13]. For a subset D of V , let O(D)
be the set of neighboring vertices of D in F with odd degree

with respect to D. With this setup we have the following.

Given an integer pair (a, b), an (a, b) absorbing set is a

subset D of V of size a, with O(D) of size b, and with the

property that each element of D has strictly fewer neighbors

in O(D) than in F \O(D). We say that an (a, b) absorbing set

D is an (a, b) fully absorbing set, if in addition, all variable

nodes in V \D have strictly fewer neighbors in O(D) than in

F \O(D). Using this notation, Fig. 4b shows a (3,3) absorbing

set.

Two simple heuristic ways to characterize these sets are

by weight (or a) and by stability. Everything else being equal,

low-weight absorbing sets appear much more frequently when

decoding fails. This phenomenon is more pronounced at higher

SNR levels. The stability of an absorbing set is related to the

structure of the set and the connectivity of the factor graph.

In general, the ratio a/b provides clues to how stable an (a, b)
absorbing set is – the higher the a/b ratio, the more stable

the (a, b) absorbing set. Low-weight absorbing sets and more

stable absorbing sets are of greater importance because they

dominate the error floors.

IV. ERROR PROFILE

To demonstrate the applicability of the hardware emulation

approach in identifying potentially important results, the finite-

wordlength decoders of a (5,47)-regular (2209,1978) array-

based LDPC code are studied in [7]. The class of array-based

LDPC codes is known to perform well under iterative de-

coding [14]. This code is investigated by feedback simulation
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Fig. 5: Iterative improvement cycle by hardware emulation and

feedback simulation.
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Fig. 6: FER (dotted lines) and BER (solid lines) performance

of a (2209,1978) array-based LDPC code using 200 decoding

iterations.

for the possible link between error events and the decoder

implementation. The error profile of the baseline design is

first characterized. The Matlab reference model of the decoder

is then improved by tuning the decoder implementation. The

improved design is subsequently mapped to FPGA for fast

emulation and a complete new set of error profiles can be

obtained for verification. The iterative investigation loop is

illustrated in Fig. 5.

Emulation results are shown in Fig. 6. The baseline design is

a 6-bit wordlength sum-product decoder implementation. The

failures in the error floor region of this decoder are entirely

due to absorbing errors. The error profile is shown in Fig. 7

demonstrating the dominance of (4,8) and (5,9) absorbing sets

in causing the error floor due to their low weights.

The quantization of the baseline decoder is improved using

a two-domain scheme with no increase in hardware complex-

ity [7]. Fig. 6 shows that a two-domain quantized decoder

performs better than the baseline in the error floor region. The

absorbing error profile of the two-domain quantized decoder

is compared to the baseline design in Fig. 7, which reveals

the dominant absorbing sets (8,6) and (8,8) – higher weight

and more stable than the (4,8) and (5,9) absorbing sets. These

dominant absorbing sets account for the lower error floor and

its steeper slope.

Min-sum approximation [15] is an alternative to the sum-

product decoding algorithm. Min-sum approximation avoids
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Fig. 7: Error profiles of three decoder implementations of a

(2209,1978) array-based LDPC code at SNR=5.8dB.

some numerical saturation problems of a sum-product decoder

implementation and it can perform better than the baseline in

the error floor region. Its error profile shows that the dominant

absorbing sets are (8,6) and (9,5) – higher weight and more

stable than the (4,8) and (5,9) sets. Therefore the error floor

is lower and its slope is steeper.

The results obtained on our hardware emulator are in

excellent agreement with the stochastic based approach imple-

mented in software, recently discussed in [16]. The approach

in [16] utilizes a so-called importance sampling that samples

from a distribution that is a tilted version of the original

distribution, e.g., it is a mean-shifted Gaussian for the AWGN

transmission. Under a properly chosen tilted distribution the

decoding errors – typically very rare in the error floor of

interest – appear significantly more frequently. This property

drastically reduces the simulation time and enables a cross-

check with the hardware results.

V. ERROR MECHANISMS

Despite a lower error floor achieved with improved im-

plementations, the underlying message-passing decoding al-

gorithm is still a local algorithm when operating on graphs

containing cycles – the error floor still remains and it is

eventually defined by the stable absorbing sets. An algorithm

improvement loop is formulated relying on the hardware

emulation platform and feedback simulations. The statistics of

the error-inducing channel outputs collected through hardware

emulation are of the most interest as they shed light on certain

“weaknesses” of the absorbing error mechanism. An improved

algorithm can be designed to exploit the weaknesses.

The following discussions are based on a (2048,1723) RS-

LDPC code [8]. Hardware emulation of this code uncovers the

(8,8) absorbing sets as the dominant cause of the error floor

[7]. Assume an all-zeros codeword is transmitted and {0,1}
are mapped to {1,-1} in a BPSK modulation. Whenever an

(8,8) absorbing error occurs, the emulation platform records

the prior LLRs causing the error. Averaged over a large number

of errors, the distribution of prior LLRs of the variable nodes
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Fig. 8: Prior LLR distribution of the bits at absorbing set

locations that eventually lead to an absorbing error.

at absorbing set locations can be obtained, as in Fig. 8 for

statistics at the SNR level of 4.8dB. In this figure, the y-axis

shows the average number of bits in an (8,8) absorbing set that

assume each of the prior LLR values displayed on the x-axis.

The center of the distribution falls slightly below 0, confirming

that absorbing errors are mostly due to noise moderately out

in the tail rather than noise values in the extreme tails.

This observation motivates a post-processing scheme that

potentially lowers the error floor by orders of magnitude

[17]. The scheme can be simply illustrated using the (3,3)

absorbing set example in Fig. 4b. Each bit in the absorbing

set is connected to two satisfied checks (these checks are

falsely satisfied because their neighboring bits are not all

correct) and one unsatisfied check. The message from the

unsatisfied check attempts to correct the wrong bit decision,

as opposed to the messages from two falsely satisfied checks

that reinforce the wrong bit decision. A perturbation can be

applied in post-processing to reduce the reliability of the

messages from satisfied checks (note that the correctly satisfied

and the falsely satisfied checks are indistinguishable), and

increase the reliability of the message from the unsatisfied

check. The perturbation helps the bits in the absorbing set to

recover the correct values, but it also causes some undesirable

disturbance to the bits outside of the absorbing set. Therefore

the perturbation needs to be kept small and Fig. 8 confirms

that a small perturbation is usually sufficient in helping most

of the bits at absorbing set locations to recover the correct

values and the remaining errors can be resolved by follow-up

iterations of regular message-passing decoding.

The emulation results in Fig. 9 show that the error floor

of the baseline design (a 4-bit wordlength, modified min-

sum decoder) is removed after applying post-processing. The

average bit error count per decoding failure in the baseline

decoder converges to 8 at higher SNR levels, as shown in Fig.

10, signifying the importance of (8,8) absorbing sets in deter-

mining the error floor performance. The average error weight

increases after post-processing, because the lower weight (8,8)

absorbing sets are resolved and only higher weight errors
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Fig. 9: FER (dotted lines) and BER (solid lines) performance

of a (2048,1723) RS-LDPC code using 20 decoding iterations

(and 10 iterations of post-processing where applicable).
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Fig. 10: Error weight before and after post-processing.

remain. A recent chip implementation incorporating post-

processing demonstrates that most of the residual errors after

post-processing are due to undetected errors [18], achieving

near maximum-likelihood decoding performance.

VI. CONCLUSION

Hardware emulation plays an important role in the inves-

tigation and design of low error rate LDPC decoders. Error

classification allows the separation of implementation-induced

oscillation errors and code-intrinsic absorbing errors. Error

profiling based on the absorbing set structure serves as the

basis in characterizing and optimizing decoder implemen-

tations. The captured error statistics ultimately lead to the

identification of weak links in the failure mechanism and

a post-processing approach is formulated to lower the error

floors.

Interesting future direction involves improving the code

design from the point of view of the absorbing set spectrum.

The data collected via the hardware emulator will be an

indispensable component in designing a code with a better

absorbing set distribution for an even lower error floor perfor-

mance.
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