
Persistent State Machines for
Recoverable In-memory Storage

Systems with NVRam

1

Wen Zhang
UC Berkeley

Scott Shenker
UC Berkeley

ICSI

Irene Zhang
Microsoft Research

University of Washington

Distributed in-memory systems are ubiquitous

2

In-memory systems: Pros and cons

✅ High performance.
• Kernel bypass è microsecond-level latency in datacenter.

❌ No persistence.
• Node failure è recover from replica or storage.
• Datacenter failure è potential data loss.

3

Perform
ance

Persiste
nce

Persistent memory (PM) is here

4

Caches

CPU

PM

High performancePersistent

DRAM

Persimmon
Using PM to add persistence to in-memory storage systems.

5

Outline

• Background: Challenges and key insight
• Persimmon overview: API and guarantees
• Persimmon runtime: Design and implementation
• Evaluation: Programming experience and performance

6

Outline

• Background: Challenges and key insight
• Persimmon overview: API and guarantees
• Persimmon runtime: Design and implementation
• Evaluation: Programming experience and performance

7

Porting in-memory systems to PM is not trivial

8

Redis Persistent
Redis

Challenge: crash consistency for PM

9

Definition: Operations must persist all-or-nothing.

42 0x2000

Persistent memory

0x2000

How to use PM to provide persistence with minimal
programming effort and performance overhead?

Challenge: crash consistency for PM

10

Definition: Operations must persist all-or-nothing.
Applications typically use logging for atomicity & recoverability.

Can incur high overhead.

Requires complex code.

Key insight
In-memory storage systems are state machines

State machine properties:
• Encapsulate state.
• Have atomic operations.
• Execute operations deterministically.

11

INCR x

5

12

Solution: State machines as PM abstraction

Encapsulates persistent state for recovery.

State machine operation = units of persistence.

Determinism è persistence via operation logging.

INCR x

5

Outline

• Background: Challenges and key insight
• Persimmon overview: API and guarantees
• Persimmon runtime: Design and implementation
• Evaluation: Programming experience and performance

13

The Persimmon system

• A user-level runtime system that provides persistence to in-memory
state machine applications.
• Keep 2 copies of state machine: one in DRAM, one in PM.
• On RPC-handling path: state machine operation logging.
• Persistence with low latency overhead!

• In the background: shadow execution on PM state machine.
• For crash consistency: Dynamically instrumented for undo logging.

14

PM
State

Machine

DRAM
State

Machine

Application model: State machine

State machine operations are arbitrary application code that:
• Do not have external dependencies.
• Execute deterministically.
• Have no external side-effects.

Assumption: operations are applied sequentially.

15

INCR x

5

Persistent State Machine (PSM) API

• psm_init() → bool – Initialize; return true if in recovery.
• psm_invoke_rw(op) – Invoke read-write op with persistence.
• psm_invoke_ro(op) – Invoke read-only op without persistence.

16

Persistent State Machine (PSM) guarantees

• Linearizability: All PSM operations are run in order submitted.
• Durability: PSM operations are never lost once they return.
• Failure atomicity: If crash before PSM operations, recover to state

either before or after.

17

Persimmon design: Pros and cons

18

Low programming effort Requires two CPU cores, 2x space.

Low latency overhead

PM
State

Machine

DRAM
State

Machine

Shadow execution: throughput bottleneck?

Outline

• Background: Challenges and key insight
• Persimmon overview: API and guarantees
• Persimmon runtime: Design and implementation
• Evaluation: Programming experience and performance

19

Persimmon runtime

20

Shadow ProcessApplication Process

Network I/O

Persimmon Runtime Persimmon Runtime
Persistent Op Log

Shared Memory
DRAM
State

Machine

PM
State

Machine

Shadow Process

Persimmon runtime

21

Persimmon Runtime

DRAM
State

Machine

invoke

Persimmon Runtime

PM
State

Machine

execute insert

shadow
exec

RPC

Application Process

Network I/O

Persistent Op Log

Shared Memory

Shadow execution

22

PM
State

Machine

DRAM
State

Machine

State machine operation

Shadow execution

23

⋮

mov $42, 0x2000

⋮

0 0x2000

CPU Caches

42 0x2000

PM
State

Machine

DRAM
State

Machine

Persistent memory

Dynamic instrumentation for undo logging

24

⋮

(log 0x2000)

mov $42, 0x2000

⋮

0 0x2000

CPU Caches

42 0x2000

Undo log

0 0x2000

State machine operation

Persistent memory

0 0x2000

Recovery using the undo log

25

⋮

(log 0x2000)

mov $42, 0x2000

⋮

CPU Caches
Persistent memory

Undo log

42 0x2000

0 0x2000

State machine operation

Optimizations for undo logging

• Undo-log in 32B blocks.

• De-duplication: log each block only once.

• …

26

Persimmon Runtime

Application crash recovery

27

PM
State

Machine

shadow
exec

DRAM
State

Machine

copy

Application Process

Network I/O

Shadow Process

Persimmon Runtime
Persistent Op Log

Shared Memory

RPC

Outline

• Background: Challenges and key insight
• Persimmon overview: API and guarantees
• Persimmon runtime: Design and implementation
• Evaluation: Programming experience and performance

28

Persimmon requires little code modification

29

Redis performance experiment setup

30

Client
• Mellanox CX-5 100 Gbps NICs
• 20-core dual-socket Xeon Silver

Server
• Mellanox CX-5 100 Gbps NICs
• 52-core dual-socket Intel Xeon Platinum
• 3TB of Intel Optane DC PMM (app direct)
• 768 GB of DRAM

Arista 7060CX 100 Gbps

“Vanilla”
• Networking: Linux TCP
• Memory allocator: jemalloc

Kernel bypass
• Networking: DPDK UDP
• Memory allocator: Hoard

Redis is fast (and persistent) under Persimmon

31

0
2
4

6
8

10
12
14

16
18

20

Linux Kernel bypass

Median latency (μs)

No Persistence Persimmon AOF (Redis logging)

0
50

100

150
200
250
300
350

400
450

500

Linux Kernel Bypass

Throughput (Kops)

No Persistence Persimmon AOF (Redis logging)

(Read/write workload, 10% writes, Zipf constant = 0.75, 130 million key-value pairs)

7% overhead

5% overhead

2.1×

3.3×

Persimmon performance depends on write percentage

Redis on Linux

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

Write percentage (%)

Peak throughput (Mops)

No persistence Persimmon AOF (Redis logging)

Redis with kernel bypass

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

Write percentage (%)

Peak throughput (Mops)

No persistence Persimmon AOF (Redis logging)

32

Persimmon recovers quickly

0
10
20
30
40
50
60
70
80
90

100

Linux Kernel Bypass

Recovery time (s)

Redis AOF Redis RDB Persimmon

33

(Read/write workload, 130 million key-value pairs)

0

5

10

15

20

25

30

35

Linux Kernel Bypass

Storage size (GB)

Redis AOF Redis RDB Persimmon

6× 4.6×

Conclusion

• Persistent State Machines (PSM): a useful persistent memory
abstraction for in-memory applications.
• Persimmon uses operation logging + shadow execution to achieve

fast, low-effort persistence.
• Persimmon can persist Redis with ~100 LoC change and 5–7%

performance overhead on a typical workload.

Thank you!
Wen Zhang <zhangwen@cs.berkeley.edu>

34

mailto:zhangwen@cs.berkeley.edu

