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Distributed in-memory systems are ubiquitous
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In-memory systems: Pros and cons

✅ High performance.
• Kernel bypass è microsecond-level latency in datacenter.

❌ No persistence.
• Node failure è recover from replica or storage.
• Datacenter failure è potential data loss.
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Persistent memory (PM) is here
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Persimmon
Using PM to add persistence to in-memory storage systems.
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Outline

• Background: Challenges and key insight
• Persimmon overview: API and guarantees
• Persimmon runtime: Design and implementation
• Evaluation: Programming experience and performance
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Porting in-memory systems to PM is not trivial
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Challenge: crash consistency for PM
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Definition: Operations must persist all-or-nothing.
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How to use PM to provide persistence with minimal
programming effort and performance overhead?

Challenge: crash consistency for PM
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Definition: Operations must persist all-or-nothing.
Applications typically use logging for atomicity & recoverability.

Can incur high overhead.

Requires complex code.



Key insight
In-memory storage systems are state machines

State machine properties:
• Encapsulate state.
• Have atomic operations.
• Execute operations deterministically.
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Solution: State machines as PM abstraction

Encapsulates persistent state for recovery.

State machine operation = units of persistence.

Determinism è persistence via operation logging.
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The Persimmon system

• A user-level runtime system that provides persistence to in-memory 
state machine applications.
• Keep 2 copies of state machine: one in DRAM, one in PM.
• On RPC-handling path: state machine operation logging.
• Persistence with low latency overhead!

• In the background: shadow execution on PM state machine.
• For crash consistency: Dynamically instrumented for undo logging.
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Application model: State machine

State machine operations are arbitrary application code that:
• Do not have external dependencies. 
• Execute deterministically. 
• Have no external side-effects.

Assumption: operations are applied sequentially.
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Persistent State Machine (PSM) API

• psm_init() → bool – Initialize; return true if in recovery. 
• psm_invoke_rw(op) – Invoke read-write op with persistence. 
• psm_invoke_ro(op) – Invoke read-only op without persistence.
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Persistent State Machine (PSM) guarantees

• Linearizability: All PSM operations are run in order submitted.
• Durability: PSM operations are never lost once they return.
• Failure atomicity: If crash before PSM operations, recover to state 

either before or after.
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Persimmon design: Pros and cons
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Low programming effort Requires two CPU cores, 2x space.

Low latency overhead
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Persimmon runtime
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Shadow Process

Persimmon runtime
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Shadow execution
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State machine operation

Shadow execution
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Dynamic instrumentation for undo logging
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Recovery using the undo log
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Optimizations for undo logging

• Undo-log in 32B blocks.

• De-duplication: log each block only once.

• …
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Persimmon Runtime

Application crash recovery
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Persimmon requires little code modification
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Redis performance experiment setup
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Client
• Mellanox CX-5 100 Gbps NICs
• 20-core dual-socket Xeon Silver

Server
• Mellanox CX-5 100 Gbps NICs
• 52-core dual-socket Intel Xeon Platinum
• 3TB of Intel Optane DC PMM (app direct)
• 768 GB of DRAM 

Arista 7060CX 100 Gbps

“Vanilla”
• Networking: Linux TCP
• Memory allocator: jemalloc

Kernel bypass
• Networking: DPDK UDP
• Memory allocator: Hoard



Redis is fast (and persistent) under Persimmon
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Persimmon performance depends on write percentage

Redis on Linux
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Persimmon recovers quickly
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(Read/write workload, 130 million key-value pairs)
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Conclusion

• Persistent State Machines (PSM): a useful persistent memory 
abstraction for in-memory applications.
• Persimmon uses operation logging + shadow execution to achieve 

fast, low-effort persistence.
• Persimmon can persist Redis with ~100 LoC change and 5–7% 

performance overhead on a typical workload.

Thank you!
Wen Zhang <zhangwen@cs.berkeley.edu>
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