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Serverless computing
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Serverless computing

λ

• Stateless
• Short-lived

✅ Enjoys simpler autoscaling.
✅ Free from infra management. ✅ Flexible resource management.

AWS Lambda Azure Functions Google Cloud Functions IBM Cloud Functions
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Our goal: Make serverless a scalable substrate
for general-purpose computing

ExCamera (NSDI ‘17)
Sprocket (SoCC ‘18)

gg (ATC ‘19)PyWren (SoCC ‘17)
Locus (NSDI ‘19)

NumPyWren (SoCC ‘20)Cirrus (SoCC ‘19)
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Challenges in general serverless computing

Computation: can be long-running.

Serverless: lambda are time-limited.

Computation: has diverse concurrency patterns.

Serverless: lacks concurrency features.
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Kappa: a Framework for Serverless Computing

Checkpointing
(based on continuations)

Concurrency API
(futures, message-passing)

Fault tolerance
(in face of nondeterminism and 

side effects)

Requires no modification to the serverless platform.

7



Kappa enables diverse serverless applications

Big-data queries Streaming analytics Web crawling

Opens up possibility for many more applications on 
serverless!
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Kappa Design

Compiler

LibraryCoordinator
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Kappa workflow
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Checkpointing

Kappa coordinator Persistent
Storage

Chkpt 123“Chkpt 123”

λ
𝝹
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Checkpoint construction with continuations

• Language-level mechanism executed entirely in user mode.
• Programmer inserts checkpoint() calls:

def foo(x, y):
z = x * y
checkpoint()
t = z + x
return t

def cont_foo(z, x):
t = z + x
...

Compiler

• Checkpoint for this frame looks like: cont_foo, 𝑧 = 3, 𝑥 = 4 .
• Supports function calls, conditionals, loops, etc.
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Concurrency API

• spawn Kappa task to compute in parallel; wait for task result.
• FIFO queue for communication and synchronization.

𝝹 𝝹

𝝹

𝝹 𝝹 𝝹

spawn
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Fault tolerance for effectful operations

Kappa coordinator

λ
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spawn
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Fault tolerance for effectful operations

def foo():
spawn(f, args)
.
.
.

Chkpt 456
Kappa coordinator

λ
𝝹

spawn
chkpt 456
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Other features

Coordinator state 
persistence

Checkpoint replication External services

16



Evaluation
• How much overhead is added by Kappa’s checkpointing?
• Is the Kappa API general enough to support diverse applications on serverless?
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Experiment setup

• AWS Lambda with maximum lambda memory (3008 MB).
• Coordinator runs on Amazon EC2 instance (m5.4xlarge).
• Coordinator state replicated to two Redis instances.

• Checkpoints are stored in Redis (2-way replicated).
• Unless otherwise specified.
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Checkpointing is fast
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Checkpointing is scalable
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TPC-DS queries
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Concurrent web crawler
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Thank you!
https://kappa.cs.berkeley.edu
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