
Kappa
A Programming Framework for

Serverless Computing

Wen Zhang
UC Berkeley

Vivian Fang
UC Berkeley

Aurojit Panda
NYU

Scott Shenker
UC Berkeley/ICSI

https://kappa.cs.berkeley.edu

1



Serverless computing

Serverless platform

Handler
λTenant

2



Serverless computing

Serverless platform

Handler
λλλ

λ

3



Serverless computing

λ

• Stateless
• Short-lived

✅ Enjoys simpler autoscaling.
✅ Free from infra management. ✅ Flexible resource management.

AWS Lambda Azure Functions Google Cloud Functions IBM Cloud Functions

4



λλλ
λ

Our goal: Make serverless a scalable substrate
for general-purpose computing

ExCamera (NSDI ‘17)
Sprocket (SoCC ‘18)

gg (ATC ‘19)PyWren (SoCC ‘17)
Locus (NSDI ‘19)

NumPyWren (SoCC ‘20)Cirrus (SoCC ‘19)

5



Challenges in general serverless computing

Computation: can be long-running.

Serverless: lambda are time-limited.

Computation: has diverse concurrency patterns.

Serverless: lacks concurrency features.

6



Kappa: a Framework for Serverless Computing

Checkpointing
(based on continuations)

Concurrency API
(futures, message-passing)

Fault tolerance
(in face of nondeterminism and 

side effects)

Requires no modification to the serverless platform.

7



Kappa enables diverse serverless applications

Big-data queries Streaming analytics Web crawling

Opens up possibility for many more applications on 
serverless!

8



Kappa Design

Compiler

LibraryCoordinator

9



Kappa workflow

{

}

App code

Kappa compiler

Kappa library

{

}

{

}

{

}
Transformed code

Kappa coordinator

λ
𝝹

λ
𝝹

λ
𝝹

10



Checkpointing

Kappa coordinator Persistent
Storage

Chkpt 123“Chkpt 123”

λ
𝝹

11



Checkpoint construction with continuations

• Language-level mechanism executed entirely in user mode.
• Programmer inserts checkpoint() calls:

def foo(x, y):
z = x * y
checkpoint()
t = z + x
return t

def cont_foo(z, x):
t = z + x
...

Compiler

• Checkpoint for this frame looks like: cont_foo, 𝑧 = 3, 𝑥 = 4 .
• Supports function calls, conditionals, loops, etc.

12



Concurrency API

• spawn Kappa task to compute in parallel; wait for task result.
• FIFO queue for communication and synchronization.

𝝹 𝝹

𝝹

𝝹 𝝹 𝝹

spawn

13



Fault tolerance for effectful operations

Kappa coordinator

λ
𝝹

λ
𝝹

spawn

14



Fault tolerance for effectful operations

def foo():
spawn(f, args)
.
.
.

Chkpt 456
Kappa coordinator

λ
𝝹

spawn
chkpt 456

15



Other features

Coordinator state 
persistence

Checkpoint replication External services

16



Evaluation
• How much overhead is added by Kappa’s checkpointing?
• Is the Kappa API general enough to support diverse applications on serverless?

17



Experiment setup

• AWS Lambda with maximum lambda memory (3008 MB).
• Coordinator runs on Amazon EC2 instance (m5.4xlarge).
• Coordinator state replicated to two Redis instances.

• Checkpoints are stored in Redis (2-way replicated).
• Unless otherwise specified.

18



Checkpointing is fast

1

10

100

1000

1 10 100 1000 10000

Checkpoint size (KB) (log scale)

Checkpoint latency (ms) (log scale)

Redis S3

19



Checkpointing is scalable

0

0.5

1

1.5

2

2.5

3

3.5

4

1 10 100 1000

Number of parallel lambdas

Latency (ms) of taking 0.5 KB checkpoints at 100 ms interval in parallel

20



TPC-DS queries

0

5

10

15

20

25

30

35

40

45

50

Q1 Q16 Q94 Q95

Workload duration (s)

PyWren Spark SparkSQL Kappa

21



Concurrent web crawler

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700

Time (s)

Download goodput (GB/s)

22



Thank you!
https://kappa.cs.berkeley.edu

23


