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Web Applications Are Everywhere
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Web Applications Serve Sensitive Information
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Private Message

From: !Alice 
To:   "️ Bob 
Content: 

Here’s my little secret…

! 
Alice

"️ 
Bob

🦹 
Charlie



Web Applications Serve Sensitive Information
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Private Message

From: !Alice 
To:   "️ Bob 
Content: 

Here’s my little secret…

! 
Alice

"️ 
Bob

🦹 
Charlie

Sensitive information be released 
only to parties that should have access to it



Data-access Policy
What information can be accessed by which users?
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• A direct message is accessible 
only to its participants. 

• …



Data-access Policy
Enforced using access checks
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• A direct message is accessible 
only to its participants. 

• …

︙ 
if not message.has_participant(curr_user): 
    return "Error" 

return message.content 
︙

Every time a message is displayed…



Access Checks Are Hard to Get Right
Missing/incorrect checks ➡ inadvertent data leaks in production software
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How to systematically ensure 
an application reveals only information 
allowed by its data-access policy?
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How to systematically ensure 
an application reveals only information 
allowed by its data-access policy?
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Blockaid 
Run-time data-access policy enforcer for web applications



Coming Up Next…

1. Overview and goals. 

2. Policy specification. 

3. Policy enforcement. 

4. Evaluation.
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Blockaid: Overview

Data-access 
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⛔️

SQL

Blockaid:
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Web application SQL databaseBlockaid

Overview

Data-access 
policy



Goals

1. Policy expressiveness. 

2. Compatibility with existing frameworks. 

3. Semantic transparency. 
 
 

4. Low performance overhead.
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Ensure application reveals only information 
that the policy allows the user to access.

Complies with policy ➡ Maintain application behavior.
Violates policy ➡ Raise error visibly.



No Prior System Satisfies All Four Goals

1. Policy expressiveness. 

2. Compatibility with existing frameworks. 

3. Semantic transparency. 
 
 

4. Low performance overhead.
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Ensure application reveals only information 
that the policy allows the user to access.

Complies with policy ➡ Maintain application behavior.
Violates policy ➡ Raise error visibly.



Prior Systems Don’t Meet Both Goals
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✅ Compatible with existing frameworks 

❌ Not semantically transparent

Query Modification Static Verification

✅ Semantically transparent 

❌ Incompatible with existing frameworks
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✅ Compatible with existing frameworks 

✅ Semantically transparent 

✅ Supports expressive policies 

✅ Incurs low performance overhead

Blockaid 
Run-time data-access policy enforcer for web applications
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Web application SQL databaseBlockaid

Request 
context Trace

 
 

(Q1, O1)
(Q2, O2)

Decision 
cache

SMT 
solvers

Compliant?

Cached

Not cached

Data-access 
policy

Q3

✔️ Q3

O3

❌Error

(Q3, O3)

Blockaid: A Close Look
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Specify Policy Using Database Views
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Views: SQL SELECT statements defining data accessible to a user.

SELECT … FROM … 
WHERE …

SELECT … FROM … 
WHERE …

SELECT … FROM … 
WHERE …



Example: Calendar Application

1. SELECT * FROM Users 
Each user can view information on all users. 

2. SELECT EId FROM Attendance WHERE UId = ?MyUId 
Each user can view IDs of events they attend. 

3. SELECT * 
  FROM Events e 
  JOIN Attendance a ON e.EId = a.EId 
 WHERE a.UId = ?MyUId 
Each user can view details of events they attend.

23

Users(UId, Name) 
Events(EId, Title, Date) 
Attendance(UId, EId)
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Query Compliance
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A compliant query reveals only information exposed by the views.

SELECT … FROM … 
WHERE …

SELECT … FROM … 
WHERE …

SELECT … FROM … 
WHERE …Q



Example: Calendar Application

1. SELECT * FROM Users 
Each user can view information on all users. 

2. SELECT * FROM Attendance 
 WHERE UId = ?MyUId 
Each user can view which events they attend. 

3. SELECT * 
  FROM Events e 
  JOIN Attendance a 
    ON e.EId = a.EId 
 WHERE a.UId = ?MyUId 
Each user can view information on events they attend.
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1. SELECT * FROM Attendance 
 WHERE UId = 1 AND EId = 2 
✅ Covered by View 2. 
↪️ Returns one row. 

2. SELECT * FROM Events 
 WHERE EId = 2 
✅ Covered by View 3 given Query 1 & result.

Users(UId, Name) 
Events(EId, Title, Date) 
Attendance(UId, EId)

UId = 1

GET /events/2

Web app



Contain the same accessible information V(D) = V(D′ ) ∀V ∈ 𝒱

Q(D) = Q(D′ )
⟹

Query Compliance, Formally

Given: 

• A set  of views (for the current request context), 

• A trace of query-result pairs: , 

We say query  is compliant if for every pair of databases :

𝒱
(Q1, O1), …, (Qn, On)

Q D, D′ 
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Consistent with the observed trace Qi(D) = Qi(D′ ) = Oi ∀1 ≤ i ≤ n



Checking Compliance
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Qi(D) = Qi(D′ ) = Oi

V(D) = V(D′ )

⇓
Q(D) = Q(D′ )

Compliance 
definition

SMT solversLogical formula

Translate SQL into first-order logic 
via Codd’s Theorem + approximation.

SMT solvers can be slow! 
100 ms per query ↝ seconds per page



Checking Compliance
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Qi(D) = Qi(D′ ) = Oi

V(D) = V(D′ )

⇓
Q(D) = Q(D′ )

Compliance 
definition

SMT solversLogical formula Decision cache

Cache only 
compliant queries

Fast



Naive Caching ↝ Low Cache Hit Rate
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Decision cache

IsCompliant(     , query, trace)  ✔️=

Assuming fixed database schema and policy…

??

Each entry specific to user & URLs visited!



Blockaid Generalizes Compliance Determinations
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Decision cache

IsCompliant(     , query, trace)  ✔️=

Decision template

Generalize

(     , query, trace)
(     , query, trace)
(     , query, trace)

✔️
✔️
✔️



How Are Templates Generated?
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Blockaid SMT solver

Find a small set of constraints 
on the request context, query, & trace 

that is sufficient to guarantee compliance

Is  sufficient?{C1, C2, C3}

Unsat core: {C2, C3}
✔️



Coming Up Next…

1. Overview and goals. 
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3. Policy enforcement. 
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Setup

• Implemented Blockaid as JDBC driver wrapping a database connection. 

• Applied Blockaid to three applications (with hand-crafted policies).
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• Measured page load time of 5 URLs per application. 

• Modified ~20 — 100 lines of code per application. 

• To fetch only data that can be revealed to the user.



Page Load Times (median)
Original: 20 ms — 450 ms
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Page Load Times (median)
Modified: up to 6% overhead for all but one page

36

0 ms

150 ms

300 ms

450 ms

600 ms

D1 D2 D3 D4 D5 S1 S2 S3 S4 S5 A1 A2 A3 A4 A5
Original Modified Blockaid: cached Blockaid: no cache

19% (4 ms) overhead



Page Load Times (median)
Cached: up to 12% overhead over modified
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Page Load Times (median)
No cache: up to 236x overhead over modified
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More Evaluation in the Paper

• Breakdown of page load times. 

• Solver performance. 

• Template generalization case study.
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Blockaid 
Data-access Policy Enforcement 
for Web Applications

https://github.com/blockaid-project/

• Compatible with existing frameworks ➕ semantically transparent. 

• Uses SMT to verify query compliance with view-based policy. 

• Generalization-based caching through decision templates.


