
Blockaid
Data-access Policy Enforcement

for Web Applications

Wen Zhang Eric Sheng Michael Chang
Aurojit Panda Mooly Sagiv Scott Shenker

1

Web Applications Are Everywhere

2

Web Applications Serve Sensitive Information

3

Private Message

From: !Alice
To: "️ Bob
Content:

Here’s my little secret…

!
Alice

"️
Bob

🦹
Charlie

Web Applications Serve Sensitive Information

4

Private Message

From: !Alice
To: "️ Bob
Content:

Here’s my little secret…

!
Alice

"️
Bob

🦹
Charlie

Sensitive information be released
only to parties that should have access to it

Data-access Policy
What information can be accessed by which users?

5

• A direct message is accessible
only to its participants.

• …

Data-access Policy
Enforced using access checks

6

• A direct message is accessible
only to its participants.

• …

︙
if not message.has_participant(curr_user):
 return "Error"

return message.content
︙

Every time a message is displayed…

Access Checks Are Hard to Get Right
Missing/incorrect checks ➡ inadvertent data leaks in production software

7

How to systematically ensure
an application reveals only information
allowed by its data-access policy?

8

How to systematically ensure
an application reveals only information
allowed by its data-access policy?

9

Blockaid
Run-time data-access policy enforcer for web applications

Coming Up Next…

1. Overview and goals.

2. Policy specification.

3. Policy enforcement.

4. Evaluation.

10

Coming Up Next…

1. Overview and goals.

2. Policy specification.

3. Policy enforcement.

4. Evaluation.

11

12

Web application

SQL

SQL databaseBlockaid

Blockaid: Overview

Data-access
policy

13

Web application

SQL

SQL databaseBlockaid

Rows

SQL

Rows

Blockaid: Overview

Data-access
policy

14

Web application SQL databaseBlockaid

SQL

Blockaid: Overview

Data-access
policy

⛔️

SQL

Blockaid:

15

Web application SQL databaseBlockaid

Overview

Data-access
policy

Goals

1. Policy expressiveness.

2. Compatibility with existing frameworks.

3. Semantic transparency.

4. Low performance overhead.

16

Ensure application reveals only information
that the policy allows the user to access.

Complies with policy ➡ Maintain application behavior.
Violates policy ➡ Raise error visibly.

No Prior System Satisfies All Four Goals

1. Policy expressiveness.

2. Compatibility with existing frameworks.

3. Semantic transparency.

4. Low performance overhead.

17

Ensure application reveals only information
that the policy allows the user to access.

Complies with policy ➡ Maintain application behavior.
Violates policy ➡ Raise error visibly.

Prior Systems Don’t Meet Both Goals

18

✅ Compatible with existing frameworks

❌ Not semantically transparent

Query Modification Static Verification

✅ Semantically transparent

❌ Incompatible with existing frameworks

19

✅ Compatible with existing frameworks

✅ Semantically transparent

✅ Supports expressive policies

✅ Incurs low performance overhead

Blockaid
Run-time data-access policy enforcer for web applications

20

Web application SQL databaseBlockaid

Request
context Trace

(Q1, O1)
(Q2, O2)

Decision
cache

SMT
solvers

Compliant?

Cached

Not cached

Data-access
policy

Q3

✔️ Q3

O3

❌Error

(Q3, O3)

Blockaid: A Close Look

Coming Up Next…

1. Overview and goals.

2. Policy specification.

3. Policy enforcement.

4. Evaluation.

21

Specify Policy Using Database Views

22

Views: SQL SELECT statements defining data accessible to a user.

SELECT … FROM …
WHERE …

SELECT … FROM …
WHERE …

SELECT … FROM …
WHERE …

Example: Calendar Application

1. SELECT * FROM Users
Each user can view information on all users.

2. SELECT EId FROM Attendance WHERE UId = ?MyUId
Each user can view IDs of events they attend.

3. SELECT *
 FROM Events e
 JOIN Attendance a ON e.EId = a.EId
 WHERE a.UId = ?MyUId
Each user can view details of events they attend.

23

Users(UId, Name)
Events(EId, Title, Date)
Attendance(UId, EId)

Coming Up Next…

1. Overview and goals.

2. Policy specification.

3. Policy enforcement.

4. Evaluation.

24

Query Compliance

25

A compliant query reveals only information exposed by the views.

SELECT … FROM …
WHERE …

SELECT … FROM …
WHERE …

SELECT … FROM …
WHERE …Q

Example: Calendar Application

1. SELECT * FROM Users
Each user can view information on all users.

2. SELECT * FROM Attendance
 WHERE UId = ?MyUId
Each user can view which events they attend.

3. SELECT *
 FROM Events e
 JOIN Attendance a
 ON e.EId = a.EId
 WHERE a.UId = ?MyUId
Each user can view information on events they attend.

26

1. SELECT * FROM Attendance
 WHERE UId = 1 AND EId = 2
✅ Covered by View 2.
↪️ Returns one row.

2. SELECT * FROM Events
 WHERE EId = 2
✅ Covered by View 3 given Query 1 & result.

Users(UId, Name)
Events(EId, Title, Date)
Attendance(UId, EId)

UId = 1

GET /events/2

Web app

Contain the same accessible information V(D) = V(D′) ∀V ∈ 𝒱

Q(D) = Q(D′)
⟹

Query Compliance, Formally

Given:

• A set of views (for the current request context),

• A trace of query-result pairs: ,

We say query is compliant if for every pair of databases :

𝒱
(Q1, O1), …, (Qn, On)

Q D, D′

27

Consistent with the observed trace Qi(D) = Qi(D′) = Oi ∀1 ≤ i ≤ n

Checking Compliance

28

Qi(D) = Qi(D′) = Oi

V(D) = V(D′)

⇓
Q(D) = Q(D′)

Compliance
definition

SMT solversLogical formula

Translate SQL into first-order logic
via Codd’s Theorem + approximation.

SMT solvers can be slow!
100 ms per query ↝ seconds per page

Checking Compliance

29

Qi(D) = Qi(D′) = Oi

V(D) = V(D′)

⇓
Q(D) = Q(D′)

Compliance
definition

SMT solversLogical formula Decision cache

Cache only
compliant queries

Fast

Naive Caching ↝ Low Cache Hit Rate

30

Decision cache

IsCompliant(, query, trace) ✔️=

Assuming fixed database schema and policy…

??

Each entry specific to user & URLs visited!

Blockaid Generalizes Compliance Determinations

31

Decision cache

IsCompliant(, query, trace) ✔️=

Decision template

Generalize

(, query, trace)
(, query, trace)
(, query, trace)

✔️
✔️
✔️

How Are Templates Generated?

32

Blockaid SMT solver

Find a small set of constraints
on the request context, query, & trace

that is sufficient to guarantee compliance

Is sufficient?{C1, C2, C3}

Unsat core: {C2, C3}
✔️

Coming Up Next…

1. Overview and goals.

2. Policy specification.

3. Policy enforcement.

4. Evaluation.

33

Setup

• Implemented Blockaid as JDBC driver wrapping a database connection.

• Applied Blockaid to three applications (with hand-crafted policies).

34

• Measured page load time of 5 URLs per application.

• Modified ~20 — 100 lines of code per application.

• To fetch only data that can be revealed to the user.

Page Load Times (median)
Original: 20 ms — 450 ms

35

0 ms

150 ms

300 ms

450 ms

600 ms

D1 D2 D3 D4 D5 S1 S2 S3 S4 S5 A1 A2 A3 A4 A5
Original Modified Blockaid: cached Blockaid: no cache

Page Load Times (median)
Modified: up to 6% overhead for all but one page

36

0 ms

150 ms

300 ms

450 ms

600 ms

D1 D2 D3 D4 D5 S1 S2 S3 S4 S5 A1 A2 A3 A4 A5
Original Modified Blockaid: cached Blockaid: no cache

19% (4 ms) overhead

Page Load Times (median)
Cached: up to 12% overhead over modified

37

0 ms

150 ms

300 ms

450 ms

600 ms

D1 D2 D3 D4 D5 S1 S2 S3 S4 S5 A1 A2 A3 A4 A5
Original Modified Blockaid: cached Blockaid: no cache

Page Load Times (median)
No cache: up to 236x overhead over modified

38

0 ms

20000 ms

40000 ms

60000 ms

80000 ms

D1 D2 D3 D4 D5 S1 S2 S3 S4 S5 A1 A2 A3 A4 A5
Original Modified Blockaid: cached Blockaid: no cache

More Evaluation in the Paper

• Breakdown of page load times.

• Solver performance.

• Template generalization case study.

39

40

Blockaid
Data-access Policy Enforcement
for Web Applications

https://github.com/blockaid-project/

• Compatible with existing frameworks ➕ semantically transparent.

• Uses SMT to verify query compliance with view-based policy.

• Generalization-based caching through decision templates.

