
Access Control for Database Applications:

Beyond Policy Enforcement

1

Wen Zhang Aurojit Panda Scott Shenker
UC Berkeley NYU UC Berkeley & ICSI

Apps must take care when revealing sensitive data

To ensure sensitive data is revealed only to authorized parties, 
developers insert permission checks + query filters in their code.

Permission checks and query filters are easy to miss or get wrong.

When this happens, sensitive data is leaked to unauthorized parties.

2

Access control to the rescue

Web application

SQL database

3

Access controlData-access 
policy ⬅️ Enforcement mechanism

Enforcement: Focus of access-control literature

4

Limiting Disclosure in Hippocratic Databases

Kristen LeFevre†§ Rakesh Agrawal† Vuk Ercegovac§ Raghu Ramakrishnan§

Yirong Xu† David DeWitt§

†IBM Almaden Research Center, San Jose, CA 95120
*University of Wisconsin, Madison, WI 53706

Abstract

We present a practical and e±cient approach
to incorporating privacy policy enforcement
into an existing application and database en-
vironment, and we explore some of the se-
mantic tradeoÆs introduced by enforcing these
privacy policy rules at cell-level granularity.
Through a comprehensive set of performance
experiments, we show that the cost of privacy
enforcement is small, and scalable to large
databases.

1 Introduction

The Lowell database research self-assessment of June
2003 points to data privacy as an important area for
future research [4]. One of the defining principles of
data privacy, limited disclosure [6], is based on the
premise that data subjects1 have control over who is
allowed to see their personal information and for what
purpose. For example, a patient entering a hospital
provides some information at the time of registration
with the understanding that this information may only
be used under certain circumstances; for example, the
billing o±ce may use the patient’s address information
to process insurance claims, but the hospital may not
give patient address information to charities for the
purpose of solicitation without consent [1].

Increasingly, organizations want the ability to de-
fine a privacy policy that describes such agreements
with data subjects and to ensure that the policy is en-
forced with respect to all data access. Essentially, a

1We use the term data subject to mean the individual whose
private information is stored and managed by the database sys-
tem.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

privacy policy is comprised of a set of rules that de-
scribe to whom the data may be disclosed (the recip-
ients) and how the data may be used (the purposes).
Additional conditions may be specified to govern dis-
closure. For instance, a policy may specify that a par-
ticular data item may be disclosed, but only with “opt-
in” consent from the data subject, or that the data
item will be disclosed unless the subject has specif-
ically “opted out” of this default. The policy may
also specify more complex conditions; for example, a
patient’s medical history may only be seen by nurses
assigned to the same floor. While there is recent work
on defining languages for specifying privacy policies
(e.g. P3P [12], EPAL [7]), database mechanisms for
enforcing such policies have not been investigated.

An approach often taken is to enforce privacy poli-
cies at the application level [8]: First, the applica-
tion issues the query to the database and retrieves
the result. Then, the application scans the result-
ing records and filters prohibited information (for ex-
ample, by setting it to null). However, this ap-
proach leads to privacy leaks when applied at the cell
level. Consider a query involving a predicate over a
privacy-sensitive field: SELECT Name, Disease FROM
Patients WHERE Disease = "Hepatitis", and Bob,
who has hepatitis, and chose to disclose his name but
not his disease history. The query result contains
Bob’s record with the Disease value filtered out. Un-
fortunately, this allows anyone looking at the results
to conclude that Bob has hepatitis.2

1.1 Requirements for Limited Disclosure

Mechanisms

A solution to the limited disclosure problem should
ideally protect information according to the appropri-

2An alternative might retrieve all of the patient records, not
just those with a particular disease, and apply the privacy-
sensitive predicate in the application. However, this approach
leads to significant performance problems as much data must
be unnecessarily fetched from the database. Query execution is
more di±cult yet when we consider more complicated queries,
such as those involving aggregates or joins, because we must ex-
tract a significant amount of data from the database, and then
perform a large amount of the query processing at the applica-
tion level.

VLDB ’04

STORM: Refinement Types for Secure Web Applications

Nico Lehmann
UC San Diego

Rose Kunkel
UC San Diego

Jordan Brown
Independent

Jean Yang
Akita Software

Niki Vazou
IMDEA Software Institute

Nadia Polikarpova
UC San Diego

Deian Stefan
UC San Diego

Ranjit Jhala
UC San Diego

Abstract
We present STORM, a web framework that allows developers
to build MVC applications with compile-time enforcement of
centrally specified data-dependent security policies. STORM
ensures security using a Security Typed ORM that refines the
(type) abstractions of each layer of the MVC API with logical
assertions that describe the data produced and consumed by
the underlying operation and the users allowed access to that
data. To evaluate the security guarantees of STORM, we build a
formally verified reference implementation using the Labeled
IO (LIO) IFC framework. We present case studies and end-to-
end applications that show how STORM lets developers specify
diverse policies while centralizing the trusted code to under 1%
of the application, and statically enforces security with modest
type annotation overhead, and no run-time cost.

1 Introduction

We trust web applications with our most sensitive data: our
finances, health records, email, or even our participation in
political protests. While application developers go to great
lengths to protect this data, today’s approach to safeguarding
sensitive data by sprinkling access control checks throughout
the application is not working. Even companies with dedicated
security teams are failing. For example, in 2018 Facebook
accidentally allowed third-party applications to access the
photos of 6.8 million users without their explicit permission [1].
This was not their first (nor last) leak. And Facebook is not
unique: sensitive data exposure and broken access control

are—and have been for almost a decade—on the OWASP top
ten list of most common web application vulnerabilities [2, 3].

To fundamentally address this class of bugs, we need
to reduce the amount of code developers need to get right.
One promising approach to doing this is to centralize policy

specification, i.e., specify data access control policies in a
centralized place, and enforce policies automatically. This
could reduce the code developers need to get right from the
whole application—as a single missing check could introduce
a vulnerability—to the policy specification code.

Centralizing policy specification is not a new idea. Several
web frameworks (e.g., HAILS [4], JACQUELINE [5], and
LWEB [6]) already do this. These frameworks, however, have
two shortcomings that have hindered their adoption. First,
they enforce policies at run-time, typically using dynamic
information flow control (IFC). While dynamic enforcement
is better than no enforcement, dynamic IFC imposes a high
performance overhead, since the system must be modified to
track the provenance of data and restrict where it is allowed
to flow. More importantly, certain policy violations are only
discovered once the system is deployed, at which point they
may be difficult or expensive to fix, e.g., on applications
running on IoT devices [7].

Second, these frameworks are invasive—they typically
require modifications to the language runtime and database
object-relational mapping (ORM). For example, JACQUELINE
uses a faceted ORM and runtime to keep track of multiple
facets of any individual value and only shows the right facet
to the right user (e.g., when reading a password, a user can
see their own password but get a default facet when trying
to read another user’s password). HAILS and LWEB, on the
other hand, use labeled values at the ORM and language
level to restrict the flow of sensitive, labeled data. This means
that developers need to write code that is aware of faceted or
labeled values, i.e., they need to write code that is aware of the
underlying IFC enforcement mechanism. Worse, this invades
policy specification. For example, in HAILS, developers can’t
simply write declarative policies, they often need to use the
low-level APIs used to track and enforce IFC to, for example,
inspect and manipulate labeled values [4, 8]. This not only
increases the amount of code they need to get right, but also
makes it hard to get the policy right since manipulating labeled
values is still an IFC expert—and not web developer—task.

We built the STORM web framework to address these
shortcomings. With STORM, users specify all security policies
in a declarative language, alongside the data model, the
description of the application database schema. Policies are
logical assertions that describe which users are allowed to
view, insert, or update particular rows and columns of each

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 441

OSDI ’21

Towards Multiverse Databases
Alana Marzoev Lara Timbó Araújo† Malte Schwarzkopf Samyukta Yagati

Eddie Kohler‡ Robert Morris M. Frans Kaashoek Sam Madden
MIT CSAIL † MIT CSAIL and Airbnb ‡ Harvard University

Abstract
A multiverse database transparently presents each application
user with a flexible, dynamic, and independent view of shared
data. This transformed view of the entire database contains
only information allowed by a centralized and easily-auditable
privacy policy. By enforcing the privacy policy once, in the
database, multiverse databases reduce programmer burden and
eliminate many frontend bugs that expose sensitive data.

Multiverse databases’ per-user transformations risk expen-
sive queries if applied dynamically on reads, or impractical
storage requirements if the database proactively materializes
policy-compliant views. We propose an efficient design based
on a joint dataflow across “universes” that combines global,
shared computation and cached state with individual, per-user
processing and state. This design, which supports arbitrary
SQL queries and complex policies, imposes no performance
overhead on read queries. Our early prototype supports thou-
sands of parallel universes on a single server.

ACM Reference Format:
Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf, Samyukta
Yagati, Eddie Kohler, Robert Morris, M. Frans Kaashoek, and Sam
Madden. 2019. Towards Multiverse Databases. In Workshop on Hot
Topics in Operating Systems (HotOS ’19), May 13–15, 2019, Berti-
noro, Italy. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3317550.3321425

1 Introduction
Most web services store users’ private, sensitive information
in shared backend stores. Any frontend can access the whole
store, regardless of the application user consuming the results.
Therefore, frontend code is responsible for permission checks
and privacy-preserving transformations that protect users’ data.
This is dangerous and error-prone, and has caused many real-
world bugs in applications like HotCRP [25], WordPress [27],
and Facebook [2, 4]: any omitted or incorrect check can leak

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321425

(a) Today. (b) Multiverse database.

Figure 1. Currently, web applications’ entire frontend code is
trusted (amber) and can query any backend data (left, (a)). A
multiverse database applies a privacy policy (PP) to generate
transformed, logical per-user databases, in which the untrusted
applications’ queries can only see permissible data (right, (b)).

private data, so the trusted computing base (TCB) effectively
includes the entire application.

It would be safer and easier to specify and transparently
enforce access policies once, at the shared backend store inter-
face. Although state-of-the-art databases have security features
designed for exactly this purpose, such as row-level access
policies and grants of views, these features are too limiting for
many web applications. Application privacy policies are often
data-dependent in ways incompatible with current row- and
column-level access control, or allow the exposure of aggre-
gate or transformed information that access control prevents.
Prior research solutions based on query interposition and infor-
mation flow control are slow, complex, or require impractical
changes to the application programming model (§2).

In this paper, we make the case for multiverse databases, a
flexible, easy-to-use, and performant paradigm that enforces
declarative privacy policies within the store. The database ap-
plies policies for each user, filtering and transforming the base
data to form a user-specific “parallel universe” database that
contains only data that the user is allowed to see (Figure 1).
Application code executing for a user can safely execute any
query against the user’s parallel universe database without
risk of seeing (and perhaps inadvertently leaking) forbidden
data. In essence, multiverse databases limit the TCB to the
privacy policies and the database code enforcing them, defend-
ing against a threat model of inadvertently buggy application
queries and privacy checks.1

1Defending against actively malicious applications would require considering
side-channels, which we omit in this paper.

88

HotOS ’19

Qapla: Policy compliance for database-backed systems

Aastha Mehta1, Eslam Elnikety1, Katura Harvey1,2, Deepak Garg1, and Peter Druschel1

1Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus
2University of Maryland, College Park

Abstract
Many database-backed systems store confidential data
that is accessed on behalf of users with different priv-
ileges. Policies governing access are often fine-grained,
being specific to users, time, accessed columns and rows,
values in the database (e.g., user roles), and operators
used in queries (e.g., aggregators, group by, and join).
Today, applications are often relied upon to issue policy
compliant queries or filter the results of non-compliant
queries, which is vulnerable to application errors. Qapla
provides an alternate approach to policy enforcement that
neither depends on application correctness, nor on spe-
cialized database support. In Qapla, policies are specific
to rows and columns and may additionally refer to the
querier’s identity and time, are specified in SQL, and
stored in the database itself. We prototype Qapla in a
database adapter, and evaluate it by enforcing applicable
policies in the HotCRP conference management system
and a system for managing academic job applications.

1 Introduction
Confidential information stored in systems backed by re-
lational databases is often subject to complex access poli-
cies. In a personnel management system, for instance,
ordinary employees may query their own personal infor-
mation but not that of others. Members of a workers’
council may be able to query the columns containing
employee names and ages separately, but not together,
to prevent them from linking employees to their ages.
Similarly, members of the payroll department may not
be able to query the health history of individual employ-
ees, but they may be able to query aggregates over the
health histories of all employees.

Today, such fine-grained policies are enforced by
adding policy compliance checks to application code
wherever the database is queried. This approach
is cumbersome, error-prone, and inappropriate: Poli-
cies are usually derived from the privacy requirements
of the broader legal/enterprise context and are code-

independent, yet every code path in every application
leading to a query must be instrumented by a program-
mer to perform a check. It is easy to miss such checks.
Moreover, when the policy changes, application devel-
opers must update these checks everywhere.

Alternatively, policy compliance can rely on fine-
grained access-control support in the underlying
database management system (DBMS). Unfortunately,
the extent of the support and the language used to
express the policies varies across DBMSs. For instance,
a cell-level policy can be specified in Oracle using its
VPD technology [11], whereas the same policy will
require a combination of views (for column access
control) and row-level policies in PostgreSQL [7].

Furthermore, DBMS support for policies is limited to
standard row-, column- and cell-level access control but,
in practice, policies are often more complex. For in-
stance, a policy may prohibit the linking or joining of
two or more columns, while allowing those columns to
be read independently. Similarly, a policy may allow cer-
tain principals to query for aggregates (sometimes based
on user-defined functions), while prohibiting them from
reading individual values. To the best of our knowl-
edge, such complex policies can be implemented in ex-
isting DBMSs only through extensive use of application-
specific views. However, views can neither support link
policies nor are they transparent to applications. When
using policy-specific views, all queries, even if they are
compliant, must be modified whenever policies change.

Goals. Based on these observations, our goal is to pro-
vide a policy compliance system for database-backed ap-
plications that satisfies the following requirements. (i) It
must be able to express a rich class of policies including
standard fine-grained row-, column- and cell-level poli-
cies and also complex policies that limit data linking or
allow aggregation. (ii) The policy specification must be
associated with the database schema and independent of
applications, and it must be simple and intuitive for pol-

USENIX Association 26th USENIX Security Symposium 1463

USENIX Sec ’17

Precise, Dynamic Information Flow
for Database-Backed Applications

Jean Yang
Carnegie Mellon University and
Harvard Medical School, USA

Travis Hance
Dropbox, USA

Thomas H. Austin
San Jose State University, USA

Armando Solar-Lezama
Massachusetts Institute of

Technology, USA

Cormac Flanagan
University of California, Santa Cruz,

USA

Stephen Chong
Harvard University, USA

Abstract
We present an approach for dynamic information flow control
across the application and database. Our approach reduces
the amount of policy code required, yields formal guarantees
across the application and database, works with existing rela-
tional database implementations, and scales for realistic appli-
cations. In this paper, we present a programming model that
factors out information flow policies from application code
and database queries, a dynamic semantics for the underlying
�JDB core language, and proofs of termination-insensitive
non-interference and policy compliance for the semantics.
We implement these ideas in Jacqueline, a Python web frame-
work, and demonstrate feasibility through three application
case studies: a course manager, a health record system, and
a conference management system used to run an academic
workshop. We show that in comparison to traditional applica-
tions with hand-coded policy checks, Jacqueline applications
have 1) a smaller trusted computing base, 2) fewer lines of
policy code, and 2) reasonable, often negligible, overheads.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Frameworks, Security

Keywords Web frameworks, information flow

1. Introduction
From social networks to electronic health record systems,
programs increasingly process sensitive data. As information
leaks often arise from programmer error, a promising way to
reduce leaks is to reduce opportunities for programmer error.

A major challenge in securing web applications involves
reasoning about the flow of sensitive data across the appli-
cation and database. According to the OWASP report [42],
errors frequently occur at component boundaries. Indeed,
the difficulty of reasoning about how sensitive data flows
through both application code and database queries has led
to leaks in systems from the HotCRP conference manage-
ment system [3] to the social networking site Facebook [47].
The patch for the recent HotCRP bug involves policy checks
across application code and database queries.

Information flow control is important to securing the
application-database boundary [15, 18, 29, 42]. This is be-
cause leaks often involve the results of computations on
sensitive values, rather than sensitive values themselves. To
reduce the opportunity for inadvertent leaks, we present a
policy-agnostic approach [7, 48]. Using this approach, the
programmer factors out the implementation of information
flow policies from application code and database queries. The
system manages the policies, removing the need to trust the
remaining code. The program thus specifies each policy once,
rather than as repeated intertwined checks across the program.
Because of this, policy-agnostic programs require less policy
code. We illustrate these differences in Figure 1.

Supporting policy-agnostic programming for web appli-
cations requires the framework to enforce information flow
policies across the application and database. As we also show
in Figure 1, a standard web program runs using an application
runtime and a database. An object-relational mapping (ORM)
to mediate interactions between the two. Our web framework
uses a policy-agnostic application runtime and a specialized

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4261-2/16/06...$15.00
http://dx.doi.org/10.1145/2908080.2908098

631

PLDI ’16

Blockaid: Data Access Policy Enforcement for Web Applications

Wen Zhang1 Eric Sheng2,* Michael Chang1 Aurojit Panda3 Mooly Sagiv4 Scott Shenker1,5

1UC Berkeley 2Yugabyte 3NYU 4Tel Aviv University 5ICSI

Abstract
Modern web applications serve large amounts of sensitive user
data, access to which is typically governed by data-access poli-
cies. Enforcing such policies is crucial to preventing improper
data access, and prior work has proposed many enforcement
mechanisms. However, these prior methods either alter applica-
tion semantics or require adopting a new programming model;
the former can result in unexpected application behavior,
while the latter cannot be used with existing web frameworks.

Blockaid is an access-policy enforcement system that pre-
serves application semantics and is compatible with existing
web frameworks. It intercepts database queries from the appli-
cation, attempts to verify that each query is policy-compliant,
and blocks queries that are not. It verifies policy compliance
using SMT solvers and generalizes and caches previous compli-
ance decisions for better performance. We show that Blockaid
supports existing web applications while requiring minimal
code changes and adding only modest overheads.

1 Introduction
Many modern web applications use relational databases to
store sensitive user data, access to which is governed by orga-
nizational or regulatory data-access policies. To enforce these
policies, today’s web developers wrap each database query
within access checks that determine whether a user has access
to the queried data. As an application can query the database
at many call sites, getting access checks right at every call site
is challenging, and erroneous or missing checks have exposed
sensitive data in many production systems [4,30,37,38,47,64].

Prior work has suggested a variety of languages, frame-
works, and tools that simplify the enforcement of data-access
policies. As we detail in §2, these approaches either (1) require
applications be written using specialized web frameworks, hin-
dering their adoption; or (2) transparently remove from query
results any data that cannot be revealed, possibly resulting in
unexpected application behavior (e.g., the user has no idea that
there are missing results and reaches the wrong conclusion).

*Work done while at UC Berkeley.

This paper proposes an alternative approach to enforcing
data-access policies that meets four goals:
1. Backwards compatibility: Applies to applications built

using common existing web frameworks.
2. Semantic transparency: Fully answers queries that com-

ply with the policy and blocks queries that do not (rather
than providing partial, and potentially misleading, results).

3. Policy expressiveness: Supports a wide range of policies.
4. Low overhead: Has limited impact on page load time.

We implement this approach in Blockaid, a system that en-
forces a data-access policy at runtime by intercepting SQL
queries issued by the application, verifying that they comply
with the policy, and blocking those that do not. We assume non-
compliant queries are rare in production (having been mostly
eliminated in testing), and focus on efficiently checking com-
pliant queries. Blockaid expects the developer to insert access
checks as usual; it merely ensures that the checks are adequate.

A Blockaid policy consists of SQL view definitions that
specify what information can be accessed by a given user,
although the application still issues queries against the base ta-
bles as usual (rather than against the views). Under this setting,
a query is compliant if it never reveals—for any underlying
dataset—more information than the views do, a well-studied
property in databases called query determinacy [51].

While determinacy characterizes the compliance of one
query in isolation, it is too restrictive in the context of web
applications, which typically issue multiple queries when
serving a request. In this setting, what queries can be allowed
often depends on the result of previous queries in the same
web request. Thus, we extend determinacy to take a trace of
previous queries and their responses, a novel extension we call
trace determinacy, and use that as the criterion for compliance.

To verify compliance, Blockaid frames trace determinacy as
an SMT formula and checks it using SMT solvers. As we later
explain, a solver returns an unsatisfiability proof when a query
is compliant, and a test demonstrating a violation otherwise.

This basic method, while correct, is impractically slow as
it invokes solvers on every query. Thus, we use a decision
cache to record compliant queries (with traces) so that future

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 701

OSDI ’22

Static Checking of Dynamically-Varying Security Policies in

Database-Backed Applications

Adam Chlipala
Impredicative LLC

Abstract

We present a system for sound static checking of security
policies for database-backed Web applications. Our tool
checks a combination of access control and information
flow policies, where the policies vary based on database
contents. For instance, one or more database tables may
represent an access control matrix, controlling who may
read or write which cells of these and other tables. Us-
ing symbolic evaluation and automated theorem-proving,
our tool checks these policies statically, requiring no pro-
gram annotations (beyond the policies themselves) and
adding no run-time overhead. Specifications come in the
form of SQL queries as policies: for instance, an appli-
cation’s confidentiality policy is a fixed set of queries,
whose results provide an upper bound on what infor-
mation may be released to the user. To provide user-
dependent policies, we allow queries to depend on what

secrets the user knows. We have used our prototype im-
plementation to check several programs representative of
the data-centric Web applications that are common today.

1 Introduction

Much of today’s most important software exists as
Web applications, and many of these applications are
thin interface layers for relational databases. Real-
world requirements impel developers to implement many
application-specific schemes for access control (“who
can do what?”) and information flow (“who can learn
what?”). To reason about correctness of these implemen-
tations, the programmer must consider all possible flows
of control through a program.

This task is hard enough if a security policy can be
expressed statically, as, for instance, a list of which of
a fixed set of principals is allowed to perform each of a
fixed set of actions. However, the needs of real applica-
tions tend to force use of evolving security policies, and
usually the most convenient place to store a policy is in

the same database where the rest of application data re-
sides. For instance, a database often encodes some kind
of access control matrix, where entries reference rows of
other tables. The peculiar structure of an organization
may require access control based on customized schema
design and checking code. An effective security valida-
tion tool must be able to “understand” these policies.

Many program analysis and instrumentation schemes
have been applied to provide some automatic assurance
of security properties. In this space, the traditional di-
chotomy is between dynamic and static tools, based on
whether checking happens at run time or compile time.
The two extremes have their characteristic advantages.

• Dynamic analysis can often be implemented with-
out requiring any program annotations included
solely to make analysis easier.

• Real developers have an easier time writing spec-

ifications compatible with dynamic analysis, since
these specifications can often be arbitrary code for
inspecting program states.

• Static analysis can provide strong guarantees that
hold for all possible program executions, even those
exercising weird corner cases that may not have
been considered.

• Static analysis adds no run-time overhead.

In this paper, we present a tool UrFlow for static anal-
ysis of database-backed Web applications. We have tried
to reap some of all of the advantages just described. Our
tool requires no program annotations and provides fully
sound static assurance about all possible executions of a
program, and it requires no changes to the run-time be-
havior of programs. We take advantage of the fact that
it is already common for Web applications to be imple-
mented at quite a high level, relying on an SQL engine
to implement the key data structures. Our tool models

1

OSDI ’10

Many challenges

The full life-cycle of access control
You’re a web admin. You want to deploy access control on your web app.

5

Create 
a policy

“What data does the 
application need 

to function?”

“Does this policy  
adequately protect 

sensitive data?”

“Why was my query rejected, 
and how do I fix this?”

Policy 
violation

🚀

Evaluate 
the policy

and then…

Enforce 
the policy

and then…

Diagnose 
a violation

and then…

—we outline a path to addressing them.

Challenges in the access-control life-cycle

6

Enforce 
the policy

Create 
a policy

Diagnose 
a violation

Evaluate 
the policy

Writing a policy from scratch is challenging

• You’re an admin, wanting to write a data-access policy for your application.

1. You map out and understand all the intended data accesses…

2. And write down a good policy.

• This is tedious and error-prone.

• As you wade through thousands upon thousands of line of code…

• You can easily miss an edge case, or make a typo in the policy.

7

Can we make policy creation easier?

• Writing a policy inherently requires human input.

• Balance application needs vs social, regulatory requirements.

• But we should automate as much as possible.

• Assumption:

• Compared to writing a policy from scratch…

• Reviewing and refining a draft policy is much easier.

8

Proposal: Policy extraction

9

Web application Draft policy

Automatically 
extract

Final policy

Human 
review

Ideally: Strictest policy that 
allows all possible access.

Relax

Restrict

How to extract draft policy?
• Language-based: Symbolic execution.

• Explore program paths ➡️ Gather (symbolic) queries ➡️ Construct policy.

• Challenge: Web languages & frameworks are highly dynamic.

• Language-agnostic: (Run-time) Specification mining.

• Run the application ➡️ Observe (concrete) queries ➡️ Construct policy.

• Challenge: Must run application on comprehensive input suite.

• Challenge: Must generalize concrete queries into policy.

• Doctor #1 accesses Patient #10 ➡ Doctors can access patients they treat.
10

Challenges in the access-control life-cycle

11

Enforce 
the policy

Create 
a policy

Diagnose 
a violation

Evaluate 
the policy

Does a policy adequately protect sensitive data?

• A policy must strike a balance between:

• Application’s need to access data,

• Admin’s need to protect sensitive information.

• Where does a given policy fall in the balance?

• Given a policy for allowed queries, and a sensitive query…

• Does the policy disclose too much about sensitive query’s output?

• To discuss this, we need a metric for disclosure.

12

Reject sensitive query ≠ Prevent disclosure
Possible metric: Reject the sensitive query.

• In a medical-records management system, the policy allows analyst to view:

1. The doctor assigned to each patient.

2. The diseases treated by each doctor.

• Sensitive query: What disease is patient John being treated for?

• Query is rejected under the policy…

• But significant disclosure is possible from answers to allowed queries.

• (E.g., if John is being treated by a doctor who treats only two diseases.)

13

State-of-the-art metric: Bayesian privacy

Given an adversary’s prior belief over what the sensitive data might be…

Compute a posterior belief after seeing the allowed data.

Sensitive data disclosure = Difference between the prior and the posterior.

• Can seeing allowed data change an adversary’s mind about sensitive data?

• Issue: Must estimate what the adversary believes a priori.

• Hard to model realistically and validate empirically.

14

Deutsch, A. (2008). Privacy in Database Publishing: A Bayesian Perspective. In: Gertz, M., Jajodia, S. (eds) Handbook of Database Security.

Proposal: Prior-agnostic privacy criteria
We should use metrics that do not require modeling priors.

• Two examples from theoretical literature:

• PQI: Can allowed data imply John definitely has pneumonia?

• NQI: Can allowed data imply John definitely does not have pneumonia?

• Coarser-grained than Bayesian criteria, but meaningful regardless of belief.

• Challenges:

• How to measure prior-agnostic privacy?

• How to present the result to the admin?

15

Michael Benedikt, Pierre Bourhis, Balder ten Cate, Gabriele Puppis, and Michael Vanden Boom. 2021. 
Inference from Visible Information and Background Knowledge. ACM Trans. Comput. Log. 22, 2 (2021).

Enforce 
the policy

Challenges beyond enforcement

16

Create 
a policy

Diagnose 
a violation

Evaluate 
the policy

When a query gets rejected…

• One day, the application issues a query that gets rejected under the policy.

• Why was the query rejected?

• How do I fix this?

• You’re shown: The policy, the offending query, a stack trace.

• Diagnosing the violation is still difficult—too much information!

• How to better assist the admin in diagnosing such a violation?

• Ideally: Give a small amount of feedback that the admin can act upon.

17

What would the ideal feedback look like?

• It is unclear, especially for expressive policies.

• An allow-list policy specifies accessible information.

• A query gets rejected simply because the
information it reveals is not contained in
“accessible regions”.

• No policy item—or subset of items—is responsible
for the rejection.

• Hard to explain why the query was rejected.

18

Q

Proposal: Generate fixes, show to admin

• Fixing the policy: Grant access to more data.

• Approach: Re-run policy extraction on updated source code / input suite.

• Fixing the application: Narrow down the query, or insert access check.

• Approach: View-based query rewriting, abductive reasoning.

19

Addressing the full life-cycle of access control

20

Enforce 
the policy

Create 
a policy

Diagnose 
a violation

Evaluate 
the policy

Thank you!

Wen Zhang <zhangwen@cs.berkeley.edu>

mailto:zhangwen@cs.berkeley.edu

