
ISA-Independent Workload Characterization and
Implications for Specialized Architectures

Yakun Sophia Shao and David Brooks
Harvard University

{shao,dbrooks}@eecs.harvard.edu

Specialized architectures are
decoupled from legacy ISAs.

2

Spectrum of
Specialization:

General-Purpose
CPU GPU Fixed-Function

ASIC

High Efficiency Low Efficiency

Low
Programmability

High
Programmability

No ISA Tied to a
Specific ISA

Specialization requires
workload intrinsic characteristics.

Specialized architecture is tailored to applications.

•  e.g. special data path, memory access patterns.

3

I want to design specialized
architectures for applications.

You need to first
understand their
characteristics.

Where should I start
first?

4

Yeah, good point!
What should I do to understand

those characteristics?

Hmmm…it’s what you used to
do for CPU designs.

Specialization requires
workload intrinsic characteristics.

but is what you get the true
program characteristic?

How about I run the program
and collect performance-

counter stats?

Performance-Counter Based
Workload Characterization

•  Metrics
–  IPC
–  Cache miss rates
–  Branch mis-prediction rates
–  …

•  Microarchitecture-dependent
–  What if there is a bigger cache/a better branch predictor?
–  Not program intrinsic characteristics

5

6

Specialization requires
workload intrinsic characteristics.

Oh I also heard about
microarchitecture-independent

workload characterization.

hmmm…that removes
microarchitecture dependency.

But it still ties to a specific
ISA.

We can perform the profiling
analysis just using the instruction

trace.

7

Specialization requires
workload intrinsic characteristics.

“Ties to a specific ISA”?
Will that be a problem?

Yes for specialized
architectures!

ISA impacts program behaviors.

Stack Overhead
•  Limited Registers
•  Additional Load/Store

Complex Operations
•  Memory Operands
•  Vector Operations

Calling Conventions

8

9

Specialization requires
workload intrinsic characteristics.

I see. So is there a way to
get ISA-independent

program characteristics?

That’s a good question. I
found a paper in ISPASS
this year which seems to

answer this question.
Let’s take a look!

Paper Summary

Goal:
•  An analysis tool to characterize workloads ISA-Independent

characteristics for specialized architectures

10

Methods:
•  Leverage compiler’s intermediate representation (IR)
•  Categorize characteristics into compute, memory, and control

Takeaways:
•  ISA-dependent characterization is misleading for specialization.
•  ISA-independent characterization allows designers to quickly

identify opportunities for specialization.

Tool Overview

Program

IR Trace

x86 Trace

Characterization for
Specialized Architecture

Compute Memory Control

ISA-Independent

Design of
Specialized Architecture

11

ISA-Dependent

Program Representations

12

Program

IR Trace

x86 Trace

ILDJIT

LLVM

Program Representations

•  SPEC CPU2000

13

Program

IR Trace

x86 Trace

ILDJIT

LLVM

Program Representations

ILDJIT
•  A modular compilation framework
•  Performs machine-independent

classical optimizations at the IR level
•  Uses LLVM’s back end to

–  Do machine-dependent optimizations
–  Generate machine code

14

Program

IR Trace

x86 Trace

ILDJIT

LLVM

Campanoni, et al., A Highly Flexible, Parallel Virtual Machine: Design and Experience of ILDJIT,
Software Practice Experience, 2010

Program Representations

ILDJIT IR

•  High-level IR
•  Machine-, ISA-, and system-library-

independent
•  Features:

–  80 instructions
–  Unlimited registers
–  Only loads/stores access memory
–  No vector operations
–  Parameters are passed by variables

15

Program

IR Trace

x86 Trace

ILDJIT

LLVM

Program Representations

x86 Trace
•  Used for ISA-dependent analysis
•  Semantically equivalent to the IR

code
•  Collected with Pin instrumentation

16

Program

IR Trace

x86 Trace

ILDJIT

LLVM

Tool Overview

Program

IR Trace

x86 Trace

Characterization for
Specialized Architecture

Compute Memory Control

ISA-Independent

Design of
Specialized Architecture

17

ISA-Dependent

ISA-Independent Workload Characteristics

18

Compute

Memory

Control

•  Opcode Diversity
•  Static Instructions (I-MEM)!

•  Memory Footprint (D-MEM)
•  Global Address Entropy
•  Local Address Entropy

•  Branch Instruction Counts
•  Branch Entropy

Compute::Static Instructions

19

20

Compute::Static Instructions

I will think those stack
operations are part of the

“hot code”.

So if you use x86
trace instead of

IR trace…

ISA-Independent Workload Characteristics

21

Compute

Memory

Control

•  Opcode Diversity
•  Static Instructions (I-MEM)

•  Memory Footprint (D-MEM)
•  Global Address Entropy!
•  Local Address Entropy!

•  Branch Instruction Counts
•  Branch Entropy

Memory::Entropy

Entropy: a measure of the randomness

22

Entropy = − p(xi)* log2
i=1

N

∑ p(xi)

Case 1:
X is always a constant.

 p(X) =1

log2 p(X) = 0
Entropy = 0

Case 2:
N possible outcomes of
X occur equally.

p(X) = 1
N

log2 p(X) = log2 N
−1

Entropy = −N * 1
N
* log2 N

−1

Entropy = log2 N

Memory::Global Address Entropy

23

Temporal Locality

Address Stream A Address Stream B
(less temporal locality) (more temporal locality)

0 0 0 0 !
0 0 0 1 !
0 0 1 0 !
0 0 1 1 !

Entropy = 2! Entropy = 0"

Yen, Draper, and Hill. Notary: Hardware Techniques to Enhance Signatures. MICRO 08

Memory::Global Address Entropy

24

Temporal Locality

Address Stream A Address Stream B
(less temporal locality) (more temporal locality)

0 0 0 0 !
0 0 0 1 !
0 0 1 0 !
0 0 1 1 !

Entropy = 2! Entropy = 0"

Yen, Draper, and Hill. Notary: Hardware Techniques to Enhance Signatures. MICRO 08

Memory::Global Address Entropy

25

Temporal Locality

I will have wrong locality
estimate for workloads!

So if you use x86
trace instead of

IR trace…

Memory::Local Address Entropy

Address Stream A Address Stream B

0 0 0 0

0 1 0 0

1 0 0 0

1 1 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 421 3

of Bits Skipped

Local
Entropy

1

2

A
B

(less spatial locality) (more spatial locality)

26

Spatial Locality

Address Stream A Address Stream B
(less spatial locality) (more spatial locality)

0 0 0 0 !
0 1 0 0 !
1 0 0 0 !
1 1 0 0 !

Memory::Local Address Entropy

27

Spatial Locality

I will think program has
more spatial locality than

it really has.

So if you use x86
trace instead of

IR trace…

ISA-Independent Workload Characteristics

28

Compute

Memory

Control

•  Opcode Diversity
•  Static Instructions (I-MEM)

•  Memory Footprint (D-MEM)
•  Global Address Entropy
•  Local Address Entropy

•  Branch Instruction Counts
•  Branch Entropy!

Yokota, et all, Introducing Entropies for Representing Program Behavior
and Branch Predictor Performance, 07

Control::Branch Entropy

29

Control::Branch Entropy

30

I won’t get much wrong for
control.

So if you use x86
trace instead of

IR trace…

Tool Overview

Program

IR Trace

x86 Trace

Characterization for
Specialized Architecture

Compute Memory Control

ISA-Independent

Design of
Specialized Architecture

31

ISA-Dependent

ISA-Independent Workload Characteristics

32

Compute

Memory

Control

•  Opcode Diversity
•  Static Instructions (I-MEM)

•  Memory Footprint (D-MEM)
•  Global Address Entropy
•  Local Address Entropy

•  Branch Instruction Counts
•  Branch Entropy

Is there a way to
compare those

across workloads?

Yes, Kiviat plot!

ISA-Independent Workload Characteristics

33

Compute

Memory

Control

•  Opcode Diversity!
•  Static Instructions (I-MEM)!

•  Memory Footprint (D-MEM)!
•  Global Address Entropy!
•  Local Address Entropy

•  Branch Instruction Counts
•  Branch Entropy!

Workload Characterization

34

Conclusions

•  We demonstrate that ISA-dependent analysis can be
misleading for specialized architectures.

•  We present an analysis tool to characterize ISA-
independent characteristics for specialization.

•  We show that our tool provides opportunities for
designers to compare workloads’ characteristics.

35

