
CoSA: Scheduling by
Constrained Optimization for

Spatial Accelerators
Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell,

Aravind Kalaiah†, James Demmel, John Wawrzynek, Yakun Sophia Shao
UC Berkeley, †Facebook

1

Scheduling is required everywhere

algorithmic states
to be run

● Algorithm ● Hardware

hardware resources
to be allocated

2Motivation

Scheduling

Scheduling is a big challenge

● Algorithm

3Motivation

1. Exponentially growing algorithm complexity

Exponentially growing algorithm complexity

4

Alexnet ResNet
25M

340M

YOLO
GNMT BERT-LG

1.5B

8B

GPT-2

GPT-2 8B

Time

Model Complexity
(# of parameters)

175B

GPT-3

20202012

DNN model size doubles
every 3.5 months

* source from Intel AI

Scheduling is a big challenge

5

● Algorithm ● Hardware

1. Exponentially growing algorithm complexity
2. Rapidly increasing hardware capacity

Rapidly increasing hardware capacity

6

Cerebras2
84 Interconnected Chips

Wafer-scale Chip NoC/NoP Chip

Simba1

16PEs x 36 Chiplets

1 Shao, Yakun Sophia, and et al. "Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture." 2019 MICRO.
2 “Wafer-Scale Deep Learning”, https://cerebras.net/blog/wafer-scale-deep-learning-hot-chips-2019-presentation/

Scheduling is a big challenge

● Algorithm ● Hardware

7Motivation

1. Exponentially growing algorithm complexity
2. Rapidly increasing hardware capacity

Scheduling

Intractable scheduling space

Scheduling significantly affects performance

Motivation 8

7.2x

State-of-the-art DNN accelerator schedulers

Motivation

Brute-force
Timeloop

dMazeRunner Triton
Interstellar Marvel

Feedback-
based

AutoTVM Halide
FlexFlow Gamma

MindMapping

Constrained
Optimization

Polly+Pluto TC
Tiramisu

- Costly
- Sample invalid space
- Hard to generalize

- Unable to determine
tiling factor sizes

CoSA

One-shot solution

9

Opportunities

Motivation

Workload
Regularity

Hardware
Regularity

Explicit Data
Movement

10

Target Workload

CoSA

(P - 1) x Stride + R

∗

(Q
 -

1)
 x

 S
tr

id
e

+
S

 C

R

S

...

C

R, S: weight width and height
P, Q: output width and height
C: input channel size
K: output channel size
N: batch size

K

Q

P

K

Inputs (IA) Weights (W) Outputs

DNN Layer :
for n in [0:N)

for k in [0:K)
for c in [0:C)

for p in [0:P)
for q in [0:Q)

for r in [0:R)
for s in [0:S)

OA[n,p,q,k] +=
IA[n,p+r-(R-1)/2,q+s-(S-1)/2,c]

× W[r,s,c,k]

11

Target Architecture

CoSA

ReductionR

R R R R

R R R R

R R R R

Processing Element

Router

G
lo

ba
l B

uf
fe

r
DR

AM

DNN Accelerator

Accumulation
Buffer

Weight Buffer

In
pu

t
Bu

ffe
r

MULT Adder

R R R R

• Spatial PEs
• Multi-level Memory Hierarchy

Registers
8x8

entries: 1
size: 64B

64 MAC

WeightBuffer
1x8

entries: 4096
size: 4KB

AccumBuffer
1x8

entries: 128
size: 384B

InputBuffer
1x1

entries: 8192
size: 8KB

12

DNN scheduling problem formulation with CoSA

CoSA

Reduction

(P - 1) x Stride + R

∗

(Q
 -

1)
 x

 S
tr

id
e

+
S

 C

R

S

...

DNN Layer

C

R, S: weight width and height
P, Q: output width and height
C: input channel size
K: output channel size
N: batch size

K

Q

P

K

R

R R R R

R R R R

R R R R

Processing Element

Router

G
lo

ba
l B

uf
fe

r
DR

AM

DNN Accelerator

Accumulation
Buffer

Weight Buffer
Inputs Weights Outputs

In
pu

t
Bu

ffe
r

MULT Adder

R R R R

Constraints

Variables

Objectives

CoSA

Schedule

13

Three scheduling decisions
DRAM level
for q2 = [0 : 2) :
Global Buffer level
for q1 = [0 : 7) :
for n0 = [0 : 3) :
spatial_for r0 = [0 : 3) :
spatial_for k1 = [0 : 2) :

Input Buffer level
for c1 = [0 : 2) :
for p1 = [0 : 2) :

Weight Buffer level
for p0 = [0 : 2) :
spatial_for k0 = [0 : 2) :

… CoSA

1. Tiling Factors

2. Spatial / Temporal

3. Loop Permutation

14

Key idea: prime factor allocation problem

Prime factor items:

CoSA Variable

Weight Buffer
(Size = 4)

Global Buffer
(Size = 20)

Local buffers:
- Weight buffer
- Global buffer

C = 28 K = 15

Matrix-vector mult:
for c in [0:C) // C = 28

for k in [0:K) // K = 15
OA[k] += IA[c] × W[c,k]

15

CoSA Variable X – Tiling Factors

CoSA Variable

Weight Buffer
(Size = 4)

Global Buffer
(Size = 80)

Local buffers:
C = 28 K = 15
Prime factor items :

C=28 K=15

Prime Factors 2 2 7 3 5

WeightBuf ✓
GlobalBuf ✓ ✓ ✓

DRAM ✓

Binary allocation var X:

Utilized: 2

Utilized:
(2x3x5)x(2)=60

16

CoSA Variable X – Spatial/Temporal Mapping

CoSA Variable

Global Buffer
(Size = 80)

4 PEs in the accelerator:
K = 15

Prime factor items :

C=28 K=15

Prime Factors 2 2 7 3 5

Spatial ✓
Temporal ✓ ✓

Binary allocation var X:

Spatial Factors
(Limit=4)

Temporal Factors

17

K = 15C = 28

G
lo

ba
lB

uf

CoSA Variable X – Loop Permutation

CoSA Variable

Global Buffer
(Size = 80)

Rank in global buf:
C = 28 K = 15
Prime factor items :

C=28 K=15

Prime Factors 2 2 7 3 5

rank0 ✓
rank1 ✓
rank2

rank3

rank4

Binary allocation var X:

18

G
lo

ba
lB

uf

CoSA Variable X – Putting it altogether

CoSA Variable

Memory Perm C=28 K=15
Prime Factors 2 2 7 3 5

WeightBuf ... t
GlobalBuf rank0 t

s
rank1 t
rank2
rank3
rank4

DRAM … t

s - Spatial, t - Temporal

DRAM level
for c2 = [0 : 7) :
Global Buffer level
for k1 = [0 : 5) :
for c1 = [0 : 2) :
spatial_for k0 = [0 : 3) :

Weight Buffer level
for c0 = [0 : 2) :

19

CoSA Constraints: Buffer Utilization

CoSA Constraints

Weight Buffer
(Size = 4)

Weight Buffer
(Size = 4)

Weight Buffer
(Size = 4)

20

CoSA Constraints: Spatial Resources

CoSA Constraints

Spatial PEs
(Limit = 4)

Spatial PEs
(Limit = 4)

Spatial PEs
(Limit = 4)

21

CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven

22

CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven

23

CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven

24

CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven

25

CoSA Traffic-driven Objective

CoSA Objectives

DRAM level
for c2 = [0 : 7) :
Global Buffer level
for k1 = [0 : 5) :
for c1 = [0 : 2) :
spatial_for k0 = [0 : 3) :

Weight Buffer level
for c0 = [0 : 2) :

𝐿 – Unicast/multicast traffic

𝑆 – Temporal iteration

Overall Traffic = 𝑆 × 𝐿 × 𝐷

𝐷 – Data transfer size

26

• Baselines:
• Random (best out of 5 valid schedules)
• Timeloop Hybrid (best out of 16K valid schedules)

• DNN workloads:
• AlexNet, ResNet-50, ResNext-50, DeepBench

• Platforms:
• Timeloop Simulator
• SystemC NoC Simulator
• GPU

CoSA Evaluation

27Evaluation

1.5x latency speedup

● 5.2x better than Random
● 1.5x better than Timeloop Hybrid

Evaluation 28

1.2x better energy efficiency

Evaluation

● 3.3x better than Random
● 1.2x better than Timeloop Hybrid

29

90x faster time-to-solution with CoSA

● Generates schedules within seconds
● Significantly reduces the number of samples and evaluations

30Evaluation

CoSA Random Timeloop Hybrid

Runtime / Layer 4.2s 4.6s (1.1x) 379.9s (90.5x)

Samples / Layer 1 20K 67M

Evaluations/ Layer 1 5 16K

CoSA generalizes to different architectures
● Larger Buffers – 1.4x speedup

Evaluation 31

● GPU – 1.2x speedup, 2500x faster time-to-solution over TVM (50 samples)

● 8x8 PEs – 1.1x speedup

• We formulate DNN accelerator scheduling as a constrained optimization that
can be solved in one shot.

• We take a communication-oriented approach in the formulation and
exposes the cost through clearly-defined objective functions.

• We demonstrate that CoSA can quickly generate high-performance
schedules outperforming state-of-the-art approaches.

Conclusion

32Conclusion

Github: https://github.com/ucb-bar/cosa

Questions?
qijing.huang@berkeley.edu

https://github.com/ucb-bar/cosa

