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Scheduling is required everywhere

algorithmic states
to be run

● Algorithm ● Hardware

hardware resources
to be allocated

2Motivation

Scheduling



Scheduling is a big challenge

● Algorithm

3Motivation

1. Exponentially growing algorithm complexity



Exponentially growing algorithm complexity
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Alexnet ResNet
25M

340M

YOLO
GNMT BERT-LG

1.5B

8B

GPT-2

GPT-2 8B

Time

Model Complexity
(# of parameters)

175B

GPT-3

20202012

DNN model size doubles 
every 3.5 months

* source from Intel AI



Scheduling is a big challenge
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● Algorithm ● Hardware

1. Exponentially growing algorithm complexity
2. Rapidly increasing hardware capacity



Rapidly increasing hardware capacity
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Cerebras2
84 Interconnected Chips

Wafer-scale Chip NoC/NoP Chip 

Simba1

16PEs x 36 Chiplets

1 Shao, Yakun Sophia, and et al. "Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture." 2019 MICRO.
2 “Wafer-Scale Deep Learning”, https://cerebras.net/blog/wafer-scale-deep-learning-hot-chips-2019-presentation/



Scheduling is a big challenge

● Algorithm ● Hardware
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1. Exponentially growing algorithm complexity
2. Rapidly increasing hardware capacity

Scheduling

Intractable scheduling space



Scheduling significantly affects performance
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State-of-the-art DNN accelerator schedulers

Motivation

Brute-force
Timeloop

dMazeRunner Triton 
Interstellar  Marvel

Feedback-
based

AutoTVM Halide  
FlexFlow Gamma  

MindMapping

Constrained 
Optimization

Polly+Pluto TC  
Tiramisu

- Costly
- Sample invalid space
- Hard to generalize

- Unable to determine 
tiling factor sizes 

CoSA

One-shot solution
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Opportunities

Motivation

Workload 
Regularity 

Hardware 
Regularity 

Explicit Data 
Movement 
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Target Workload

CoSA
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R, S: weight width and height
P, Q: output width and height
C: input channel size
K: output channel size
N: batch size
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Inputs (IA) Weights (W) Outputs

DNN Layer : 
for n in [0:N)

for k in [0:K)
for c in [0:C)

for p in [0:P)
for q in [0:Q)

for r in [0:R)
for s in [0:S)

OA[n,p,q,k] +=
IA[n,p+r-(R-1)/2,q+s-(S-1)/2,c] 

× W[r,s,c,k]
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Target Architecture

CoSA
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• Spatial PEs
• Multi-level Memory Hierarchy

Registers
8x8

entries: 1
size: 64B

64 MAC

WeightBuffer
1x8

entries: 4096
size: 4KB

AccumBuffer
1x8

entries: 128
size: 384B

InputBuffer
1x1

entries: 8192
size: 8KB
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DNN scheduling problem formulation with CoSA

CoSA

Reduction
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Variables
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CoSA

Schedule
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Three scheduling decisions 
DRAM level
for q2 = [0 : 2) :
Global Buffer level
for q1 = [0 : 7) :
for n0 = [0 : 3) :   
spatial_for r0 = [0 : 3) :
spatial_for k1 = [0 : 2) :

Input Buffer level
for c1 = [0 : 2) :
for p1 = [0 : 2) : 

Weight Buffer level
for p0 = [0 : 2) :
spatial_for k0 = [0 : 2) :

… CoSA

1. Tiling Factors

2. Spatial / Temporal

3. Loop Permutation
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Key idea: prime factor allocation problem

Prime factor items: 

CoSA Variable

Weight Buffer 
(Size = 4)

Global Buffer 
(Size = 20)

Local buffers:
- Weight buffer
- Global buffer

C = 28 K = 15

Matrix-vector mult: 
for c in [0:C)  // C = 28    

for k in [0:K)   // K = 15
OA[k] += IA[c] × W[c,k]  
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CoSA Variable X – Tiling Factors

CoSA Variable

Weight Buffer 
(Size = 4)

Global Buffer 
(Size = 80)

Local buffers:
C = 28 K = 15
Prime factor items : 

C=28 K=15

Prime Factors 2 2 7 3 5

WeightBuf ✓
GlobalBuf ✓ ✓ ✓

DRAM ✓

Binary allocation var X: 

Utilized: 2

Utilized: 
(2x3x5)x(2)=60
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CoSA Variable X – Spatial/Temporal Mapping

CoSA Variable

Global Buffer 
(Size = 80)

4 PEs in the accelerator:
K = 15

Prime factor items : 

C=28 K=15

Prime Factors 2 2 7 3 5

Spatial ✓
Temporal ✓ ✓

Binary allocation var X: 

Spatial Factors
(Limit=4)

Temporal Factors
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CoSA Variable X – Loop Permutation

CoSA Variable

Global Buffer 
(Size = 80)

Rank in global buf:
C = 28 K = 15
Prime factor items : 

C=28 K=15

Prime Factors 2 2 7 3 5

rank0 ✓
rank1 ✓
rank2

rank3

rank4

Binary allocation var X: 
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CoSA Variable X – Putting it altogether

CoSA Variable

Memory Perm C=28 K=15
Prime Factors 2 2 7 3 5

WeightBuf ... t
GlobalBuf rank0 t

s
rank1 t
rank2
rank3
rank4

DRAM … t

s - Spatial,  t - Temporal

DRAM level
for c2 = [0 : 7) :
Global Buffer level
for k1 = [0 : 5) :
for c1 = [0 : 2) :   
spatial_for k0 = [0 : 3) :

Weight Buffer level
for c0 = [0 : 2) :

19



CoSA Constraints:  Buffer Utilization

CoSA Constraints

Weight Buffer 
(Size = 4)

Weight Buffer 
(Size = 4)

Weight Buffer 
(Size = 4)
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CoSA Constraints:  Spatial Resources 

CoSA Constraints

Spatial PEs
(Limit = 4)

Spatial PEs
(Limit = 4)

Spatial PEs
(Limit = 4)
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CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven
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CoSA Objectives

● Utilization-driven
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CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven
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CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven
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CoSA Traffic-driven Objective

CoSA Objectives

DRAM level
for c2 = [0 : 7) :
Global Buffer level
for k1 = [0 : 5) :
for c1 = [0 : 2) :   
spatial_for k0 = [0 : 3) :

Weight Buffer level
for c0 = [0 : 2) :

𝐿 – Unicast/multicast traffic

𝑆 – Temporal iteration

Overall Traffic = 𝑆 × 𝐿 × 𝐷

𝐷 – Data transfer size

26



• Baselines:
• Random (best out of 5 valid schedules)
• Timeloop Hybrid (best out of 16K valid schedules)

• DNN workloads:
• AlexNet, ResNet-50, ResNext-50, DeepBench

• Platforms:
• Timeloop Simulator
• SystemC NoC Simulator
• GPU

CoSA Evaluation

27Evaluation



1.5x latency speedup

● 5.2x better than Random
● 1.5x better than Timeloop Hybrid

Evaluation 28



1.2x better energy efficiency

Evaluation

● 3.3x better than Random
● 1.2x better than Timeloop Hybrid
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90x faster time-to-solution with CoSA

● Generates schedules within seconds
● Significantly reduces the number of samples and evaluations

30Evaluation

CoSA Random Timeloop Hybrid

Runtime / Layer 4.2s 4.6s (1.1x) 379.9s (90.5x) 

Samples / Layer 1 20K 67M

Evaluations/ Layer 1 5 16K



CoSA generalizes to different architectures 
● Larger Buffers – 1.4x speedup

Evaluation 31

● GPU – 1.2x speedup, 2500x faster time-to-solution over TVM (50 samples) 

● 8x8 PEs – 1.1x speedup



• We formulate DNN accelerator scheduling as a constrained optimization that 
can be solved in one shot.

• We take a communication-oriented approach in the formulation and 
exposes the cost through clearly-defined objective functions.

• We demonstrate that CoSA can quickly generate high-performance
schedules outperforming state-of-the-art approaches.

Conclusion

32Conclusion

Github: https://github.com/ucb-bar/cosa 

Questions? 
qijing.huang@berkeley.edu

https://github.com/ucb-bar/cosa

