
DEC 5 - 9, 2021 San Francisco, California

Gemmini: Enabling Systematic Deep-Learning 
Architecture Evaluation via Full-Stack Integration

Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry 
Zhao, Daniel Grubb, Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt, Samuel Steffl, 

John Wright, Ion Stoica, Jonathan Ragan-Kelley, Krste Asanovic, Borivoje Nikolic, 
Yakun Sophia Shao



DNNs are exploding in popularity…

Matt Christenson/BLM/2017 By Dllu - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/
w/index.php?curid=64517567

2

Apple Support



Which means DNN ACCELERATORS
are exploding in popularity...

Edge TPU Tesla FSD Cloud TPU

3



Which means DNN accelerator 
GENERATORS are exploding in popularity…

4

VTA

MAGNet

DNNWeaver

However, they lack full-
system and full-stack 

visibility



Full-System Visibility

5



Full-System Visibility: SoC

6

Performance Impacts
Resource contention, etc.



Full-System Visibility: Memory Hierarchy

7

Performance Impacts
Cache coherence, miss 

rates/latencies, etc.



Full-System Visibility: Virtual Addresses

8

Performance Impacts
Page faults, TLB hits, etc.



Full-System Visibility: Host CPUs

9

Performance Impacts
Unaccelerated kernels, etc.



Full-System Visibility: Operating System

10

Linux
Performance Impacts

Interrupts, context 
switches, etc.



Full-Stack Visibility

High

LowDirect hardware configuration, low-level ISA

Medium

11



• DNN accelerator generator
• Flexible hardware template
• Full-stack
• Full-system

Gemmini

12



• Parameters:
• Dataflow
• Dimensions
• Pipelining

Gemmini: Spatial Array

13



• Parameters:
• Dataflow
• Dimensions
• Pipelining

Gemmini: Spatial Array

Parallel Vector Engines
(like NVDLA)Systolic Array (like TPU)

14



• Parameters:
• Dataflow
• Dimensions
• Pipelining

Gemmini: Spatial Array

15



• Can be optimized out 
at elaboration-time

Gemmini: Non-GEMM Functionality

16



• Parameters:
• Capacity
• Banks
• Single- or dual-port

Gemmini: Local Scratchpad

17



• Parameters:
• Capacity
• Banks
• DRAM controller

Gemmini: Global Memory

18



• Parameters:
• In-order/out-of-order
• ROB capacity
• L1 capacity
• Branch predictor

Gemmini: Host CPU

19



• Parameters:
• TLB capacity
• TLB hierarchy

• e.g. L2 TLB

Gemmini: Virtual Address Translation

20



Gemmini: Full SoC

21



Gemmini: Programming Model

High

LowDirect hardware configuration, low-level ISA

MediumHand-tuned C library for DNNs

22

matmul(…); conv(…); residual_add(…); max_pool(…); 
global_averaging(…)

configure_loads(…); configure_stores(…);
preload_spatial_array(…); feed_spatial_array(…)



Performance: Evaluating Host CPUs
• “Im2col” runs on CPU, matmuls run on Gemmini

23



Performance: Evaluating Optional 
Functional Units

24

• “Im2col” and matmuls both run on Gemmini



Performance: Overall

25

• DNNs:
• ResNet50: 22.8 FPS
• AlexNet: 79.3 FPS
• MobileNet: 18.7 FPS
• BERT: 167x speedup

• About 50% as fast as NVDLA



Performance: Overall

26

• DNNs:
• ResNet50: 22.8 FPS
• AlexNet: 79.3 FPS
• MobileNet: 18.7 FPS
• BERT: 167x speedup

• About 50% as fast as NVDLA

Performance Updates
ResNet50: 40.3 FPS

About 80% as fast as NVDLA



27

How Does the Full System and Full Stack 
Affect Performance?



Case Study: Virtual Memory for DNNs

Two-level TLB hierarchy

28

Shared L2 TLB

Private 
Accelerator 

TLB

Private 
CPU TLB

TLB Misses for ResNet50



Case Study: Virtual Memory for DNNs

• Small private TLB much more 
impactful

29

Without L0 TLB



Case Study: Virtual Memory for DNNs

• Small private TLB much more 
impactful

• Low-cost optimizations:
• Single-entry L0 TLB filters out 

consecutive TLB requests to 
same page

30

Without L0 TLB With L0 TLB



Case Study: Memory Partitioning

31



• Single core
• Private scratchpad more helpful
• Much better for convs

Case Study: Memory Partitioning

32



• Single core
• Private scratchpad more helpful
• Much better for convs

Case Study: Memory Partitioning
• Dual core

• Shared L2 more helpful
• Much better for residual additions

33



Conclusion
• Gemmini is:

• Full-system
• Full-stack

• Enables DSE and hardware/software 
co-design

• Layer composition vs. memory 
partitioning

• Virtual address translation design

• Open-source!
• github.com/ucb-bar/gemmini

34

https://github.com/ucb-bar/gemmini

	Slide Number 1
	DNNs are exploding in popularity…
	Which means DNN ACCELERATORS are exploding in popularity...
	Which means DNN accelerator GENERATORS are exploding in popularity…
	Full-System Visibility
	Full-System Visibility: SoC
	Full-System Visibility: Memory Hierarchy
	Full-System Visibility: Virtual Addresses
	Full-System Visibility: Host CPUs
	Full-System Visibility: Operating System
	Full-Stack Visibility
	Gemmini
	Gemmini: Spatial Array
	Gemmini: Spatial Array
	Gemmini: Spatial Array
	Gemmini: Non-GEMM Functionality
	Gemmini: Local Scratchpad
	Gemmini: Global Memory
	Gemmini: Host CPU
	Gemmini: Virtual Address Translation
	Gemmini: Full SoC
	Gemmini: Programming Model
	Performance: Evaluating Host CPUs
	Performance: Evaluating Optional Functional Units
	Performance: Overall
	Performance: Overall
	How Does the Full System and Full Stack Affect Performance?
	Case Study: Virtual Memory for DNNs
	Case Study: Virtual Memory for DNNs
	Case Study: Virtual Memory for DNNs
	Case Study: Memory Partitioning
	Case Study: Memory Partitioning
	Case Study: Memory Partitioning
	Conclusion

