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DNNs are exploding in popularity…

Matt Christenson/BLM/2017 By Dllu - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/
w/index.php?curid=64517567
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Which means DNN ACCELERATORS
are exploding in popularity...

Edge TPU Tesla FSD Cloud TPU
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Which means DNN accelerator 
GENERATORS are exploding in popularity…
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VTA

MAGNet

DNNWeaver

However, they lack full-
system and full-stack 

visibility



Full-System Visibility
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Full-System Visibility: SoC
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Performance Impacts
Resource contention, etc.



Full-System Visibility: Memory Hierarchy
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Performance Impacts
Cache coherence, miss 

rates/latencies, etc.



Full-System Visibility: Virtual Addresses
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Performance Impacts
Page faults, TLB hits, etc.



Full-System Visibility: Host CPUs
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Performance Impacts
Unaccelerated kernels, etc.



Full-System Visibility: Operating System
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Linux
Performance Impacts

Interrupts, context 
switches, etc.



Full-Stack Visibility

High

LowDirect hardware configuration, low-level ISA

Medium
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• DNN accelerator generator
• Flexible hardware template
• Full-stack
• Full-system

Gemmini
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• Parameters:
• Dataflow
• Dimensions
• Pipelining

Gemmini: Spatial Array
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• Parameters:
• Dataflow
• Dimensions
• Pipelining

Gemmini: Spatial Array

Parallel Vector Engines
(like NVDLA)Systolic Array (like TPU)
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• Parameters:
• Dataflow
• Dimensions
• Pipelining

Gemmini: Spatial Array
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• Can be optimized out 
at elaboration-time

Gemmini: Non-GEMM Functionality
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• Parameters:
• Capacity
• Banks
• Single- or dual-port

Gemmini: Local Scratchpad
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• Parameters:
• Capacity
• Banks
• DRAM controller

Gemmini: Global Memory
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• Parameters:
• In-order/out-of-order
• ROB capacity
• L1 capacity
• Branch predictor

Gemmini: Host CPU
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• Parameters:
• TLB capacity
• TLB hierarchy

• e.g. L2 TLB

Gemmini: Virtual Address Translation
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Gemmini: Full SoC
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Gemmini: Programming Model

High

LowDirect hardware configuration, low-level ISA

MediumHand-tuned C library for DNNs
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matmul(…); conv(…); residual_add(…); max_pool(…); 
global_averaging(…)

configure_loads(…); configure_stores(…);
preload_spatial_array(…); feed_spatial_array(…)



Performance: Evaluating Host CPUs
• “Im2col” runs on CPU, matmuls run on Gemmini
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Performance: Evaluating Optional 
Functional Units
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• “Im2col” and matmuls both run on Gemmini



Performance: Overall
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• DNNs:
• ResNet50: 22.8 FPS
• AlexNet: 79.3 FPS
• MobileNet: 18.7 FPS
• BERT: 167x speedup

• About 50% as fast as NVDLA



Performance: Overall
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• DNNs:
• ResNet50: 22.8 FPS
• AlexNet: 79.3 FPS
• MobileNet: 18.7 FPS
• BERT: 167x speedup

• About 50% as fast as NVDLA

Performance Updates
ResNet50: 40.3 FPS

About 80% as fast as NVDLA
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How Does the Full System and Full Stack 
Affect Performance?



Case Study: Virtual Memory for DNNs

Two-level TLB hierarchy

28

Shared L2 TLB

Private 
Accelerator 

TLB

Private 
CPU TLB

TLB Misses for ResNet50



Case Study: Virtual Memory for DNNs

• Small private TLB much more 
impactful
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Without L0 TLB



Case Study: Virtual Memory for DNNs

• Small private TLB much more 
impactful

• Low-cost optimizations:
• Single-entry L0 TLB filters out 

consecutive TLB requests to 
same page
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Without L0 TLB With L0 TLB



Case Study: Memory Partitioning
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• Single core
• Private scratchpad more helpful
• Much better for convs

Case Study: Memory Partitioning
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• Single core
• Private scratchpad more helpful
• Much better for convs

Case Study: Memory Partitioning
• Dual core

• Shared L2 more helpful
• Much better for residual additions
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Conclusion
• Gemmini is:

• Full-system
• Full-stack

• Enables DSE and hardware/software 
co-design

• Layer composition vs. memory 
partitioning

• Virtual address translation design

• Open-source!
• github.com/ucb-bar/gemmini
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https://github.com/ucb-bar/gemmini
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