
2021 IEEE International Symposium on Circuits and Systems
May 22-28, 2021 Virtual & Hybrid Conference

Vertically Integrated Computing Labs
Using Open-Source Hardware Generators

and Cloud-Hosted FPGAs

University of California, Berkeley

Alon Amid, Albert Ou,
Krste Asanovic, Yakun Sophia Shao, Borivoje Nikolic

Vertically Integrated Computer Arch.
• The future of computers

• Specialization and customization
• HW/SW co-design
• Vertical integration

• Computer architecture classes
• Intersection between CS and EE
• Opportunity to demonstrate and exercise

vertical topics
• HW/SW integration often discussed in

lectures, but not in labs assignments and
exercises

• Hardware-centric vs. software centric classes

2
[1] https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
[2] https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/

https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/

HW-Centric vs. SW-Centric

Hardware-Centric
• RTL-based implementation and evaluation
• Assignment types:

• Extending a processor
• Module implementations
• RISC-V/MIPS Simple processor implementations

• Examples: Princeton ELE/COS 475 [4],
Michigan EECS 470[5], Pohang University of
Science and Technology

3

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡

=
𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡

×
𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖
×
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡

Hardware-CentricSoftware-Centric

Software-Centric
• No RTL prerequisites
• Assignment types:

• Real-system Profiling
• Binary instrumentation
• Abstract Simulators (Champsim, Ramulator,

custom, etc.)
• Examples: MIT 6.823 [1], Stanford EE282

[2], ETH Zurich Computer Architecture [3]
[1] http://csg.csail.mit.edu/6.823/labs.html
[2] https://web.stanford.edu/class/ee282/
[3] https://safari.ethz.ch/architecture/fall2020/

[4] http://eleclass.princeton.edu/classes/ele475/fall_2019
[5] https://www.eecs.umich.edu/courses/eecs470/

http://csg.csail.mit.edu/6.823/labs.html
https://web.stanford.edu/class/ee282/
https://safari.ethz.ch/architecture/fall2020/doku.php
http://eleclass.princeton.edu/classes/ele475/fall_2019
https://www.eecs.umich.edu/courses/eecs470/

Can we do both?
• Course Design Aspects:

• Time
• Class scope and objectives
• Prior student experience (pre-requisites)
• Teaching staff expertise

• Tool/Infrastructure Aspects:
• System support (compilers, OS, runtimes, processors, etc.)
• Base implementation detail
• Simulation time
• Computing resources

4

New/Re-emerging Technologies
• Free and open system-capable ISA specifications

• RISC-V
• Full-system software support (SPEC, Linux, etc.)

• Open-source software + hardware
• Software: GCC, Linux
• Hardware: Swerv, OpenPiton, Rocket, BOOM, PULP

• Hardware generators
• Highly parameterized and modular implementations
• High-level language abstractions

• Accessible FPGA acceleration
• Cloud-hosted FPGAs: Amazon EC2 F1 Instances
• FPGA-based emulation/simulation: FireSim

Open Source Hardware Generators
• Expertise required for design,

but usage through configurations is
simple

• Cycle-accurate generated-RTL
simulation

• Complete open-source processor
and system implementation

• Rocket-chip generator and the
Chipyard framework

• Complete flows
• Silicon proven
• Industry-usage

Hardware Generators in Class
• Students interact with configurations

• Can add RTL if class calls for it

• Access to complete systems
• Explore hardware modifications
• Explore software modifications

• Detailed implementations can be used to train students on
professional tools

• Electronic design automation (EDA)
• Compilers, OS kernels and runtimes

• Labs can be tailored to the scope of the class
• Software labs
• High-level labs
• Low-level labs

Hardware Generators – Example 1

[1] https://inst.eecs.berkeley.edu/~cs152/sp21/assignments/sp21/lab2.pdf

Rocket RV64GC

Floating Point
Unit

class ArchClassRocketChipMemLabConfig extends Config(

new FRFCFS16GBQuadRank ++

new WithBootROM ++

new WithSerial ++

new WithPerfCounters ++

new WithDefaultMemModel ++

new WithL1ICacheSets(64) ++

new WithL1ICacheWays(1) ++

new WithL1DCacheSets(64) ++

new WithL1DCacheWays(1) ++

new WithCacheBlockBytes(64) ++

new freechips.rocketchip.system.DefaultConfig)

Tilelink Crossbar
TSI BootROMUART

4 KB L1D$ 4 KB L1I$

16GB DDR3 Quad Rank
Memory Model

TLB
Perf Counters

https://inst.eecs.berkeley.edu/%7Ecs152/sp21/assignments/sp21/lab2.pdf

Hardware Generators – Example 1

Rocket RV64GC

Floating Point
Unit

class ArchClassRocketChipMemLabConfig extends Config(

new FRFCFS16GBQuadRank ++

new WithBootROM ++

new WithSerial ++

new WithPerfCounters ++

new WithDefaultMemModel ++

new WithL1ICacheSets(64) ++

new WithL1ICacheWays(1) ++

new WithL1DCacheSets(64) ++

new WithL1DCacheWays(1) ++

new WithCacheBlockBytes(64) ++

new freechips.rocketchip.system.DefaultConfig)

Tilelink Crossbar
TSI BootROMUART

4 KB L1D$ 4 KB L1I$

16GB DDR3 Quad Rank
Memory Model

TLB
Perf Counters

Hardware Generators – Example 1
Rocket RV64GC

Floating Point
Unit

TLB

class ArchClassRocketChipMemLabConfig extends Config(

new FRFCFS16GBQuadRank ++

new WithBootROM ++

new WithSerial ++

new WithPerfCounters ++

new WithDefaultMemModel ++

new WithL1ICacheSets(64) ++

new WithL1ICacheWays(1) ++

new WithL1DCacheSets(32) ++

new WithL1DCacheWays(2) ++

new WithCacheBlockBytes(64) ++

new freechips.rocketchip.system.DefaultConfig)

Tilelink Crossbar
TSI BootROMUART

4 KB L1D$ 4 KB L1I$

16GB DDR3 Quad Rank
Memory Model

Perf Counters

Hardware Generators – Example 1
Rocket RV64GC

Floating Point
Unit

TLB

class ArchClassRocketChipMemLabConfig extends Config(

new FRFCFS16GBQuadRank ++

new WithBootROM ++

new WithSerial ++

new WithPerfCounters ++

new WithDefaultMemModel ++

new WithL1ICacheSets(64) ++

new WithL1ICacheWays(1) ++

new WithL1DCacheSets(64) ++

new WithL1DCacheWays(1) ++

new WithCacheBlockBytes(64) ++

new WithInclusiveCache(nBanks = 1,
nWays = 8,
capacityKB = 64) ++

new freechips.rocketchip.system.DefaultConfig)

Tilelink Crossbar

4 KB L1D$ 4 KB L1I$

16GB DDR3 Quad Rank Me
mory Model

Perf Counters

64 KB L2$

TSI BootROMUART

Hardware Generators – Example 2
• Use a small configuration of the

same in-order core
implementation

• Generate synthesizable Verilog
for a complete processor core

• Exercise the use of VLSI tools to
extract physical properties of the
processor core – power and rail
analysis

• Train students in physical design
and VLSI tools + enable complete
system PPA analysis

[1] https://inst.eecs.berkeley.edu/~ee241b/sp21/assignments/lab5.pdf

https://inst.eecs.berkeley.edu/%7Eee241b/sp21/assignments/lab5.pdf

Accessible FPGA Emulation
• Hardware-centric labs are limited by slow RTL simulation time
• FPGAs as an accelerated alternative

• Requires significant boilerplate infrastructure work – pin assignments, IP generation,
software host management and data movement.

• Lab limited by the amount and type of FPGA board available.

• FPGA-accelerated Emulation vs. FPGA prototyping
• Memory, IO and peripheral timing models
• Observability and debug abilities

• FireSim
• Automation
• Accessibility through the public cloud

Full System FPGA Emulation - Example
• Hardware for machine learning class

• HW/SW co-design
• Long, compute-intensive workloads

• Lab Assignments:
• Implement parts of an accelerator
• Optimize software for the accelerator

• ResNet-50 Inference workloads:
• Hours in software RTL-simulation
• Minutes in FireSim

• Rapid development iterations
• Control over the complete HW/SW system

[1] https://inst.eecs.berkeley.edu//~ee290-2/sp21/

https://inst.eecs.berkeley.edu/%7Eee290-2/sp21/

Cloud-Hosted FPGAs
• Remote Instruction

• Class enrollment not limited by FPGA boards and lab space
• No interruption to assignments during COVID lockdown

• Billing and class management questions
• Usage cost vs. capital cost, and their relation to student effort
• Account management and monitoring
• Overspending

15

Multi-Class Curricula
• Classes

• EE290 – Hardware for Machine
Learning

• CS152/252 - Computer
Architecture

• EE241B – Advanced Digital
Integrated Circuits

• EE194 - 28nm SoC for IoT

• Spring 2020: 10%-15%
student overlap

• Reduced ramp-up time
• More comprehensive

projects
16

Acknowledgments
• Graduate Student Instructors: David Biancolin, Albert Magyar, Abraham

Gonzalez, Jerry Zhao, Daniel Grubb, Harrison Liew
• The Chipyard and FireSim development teams
• NSF CCRI Award 2016662
• ADPET Lab sponsors and affiliates
• The students of UC Berkeley classes CS152/252, EE290-2, EE241B, EE-194

17

Conclusion
• Practical experience in HW/SW co-design and full-system topics
• Open-source hardware generators

• Broad spectrum of uses – from architecture to circuits and design automation
• Accommodate differing levels of prerequisite knowledge

• Accessible FPGA-emulation
• Full-system experiments: hardware + software
• Deterministic modeling and characterization
• Remote instruction

• Multi-class curricula

18

	Slide Number 1
	Vertically Integrated Computer Arch.
	HW-Centric vs. SW-Centric
	Can we do both?
	New/Re-emerging Technologies
	Open Source Hardware Generators
	Hardware Generators in Class
	Hardware Generators – Example 1
	Hardware Generators – Example 1
	Hardware Generators – Example 1
	Hardware Generators – Example 1
	Hardware Generators – Example 2
	Accessible FPGA Emulation
	Full System FPGA Emulation - Example
	Cloud-Hosted FPGAs
	Multi-Class Curricula
	Acknowledgments
	Conclusion

