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Vertically Integrated Computer Arch.
• The future of computers

• Specialization and customization
• HW/SW co-design
• Vertical integration

• Computer architecture classes
• Intersection between CS and EE
• Opportunity to demonstrate and exercise 

vertical topics
• HW/SW integration often discussed in 

lectures, but not in labs assignments and 
exercises

• Hardware-centric vs. software centric classes
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[1] https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
[2] https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/

https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/


HW-Centric vs. SW-Centric

Hardware-Centric
• RTL-based implementation and evaluation
• Assignment types:

• Extending a processor
• Module implementations
• RISC-V/MIPS Simple processor implementations

• Examples: Princeton ELE/COS 475 [4], 
Michigan EECS 470[5], Pohang University of 
Science and Technology
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Software-Centric
• No RTL prerequisites
• Assignment types:

• Real-system Profiling
• Binary instrumentation
• Abstract Simulators (Champsim, Ramulator, 

custom, etc.)
• Examples: MIT 6.823 [1], Stanford EE282 

[2], ETH Zurich Computer Architecture [3]
[1] http://csg.csail.mit.edu/6.823/labs.html
[2] https://web.stanford.edu/class/ee282/
[3] https://safari.ethz.ch/architecture/fall2020/

[4] http://eleclass.princeton.edu/classes/ele475/fall_2019
[5] https://www.eecs.umich.edu/courses/eecs470/

http://csg.csail.mit.edu/6.823/labs.html
https://web.stanford.edu/class/ee282/
https://safari.ethz.ch/architecture/fall2020/doku.php
http://eleclass.princeton.edu/classes/ele475/fall_2019
https://www.eecs.umich.edu/courses/eecs470/


Can we do both?
• Course Design Aspects:

• Time
• Class scope and objectives
• Prior student experience (pre-requisites)
• Teaching staff expertise

• Tool/Infrastructure Aspects:
• System support (compilers, OS, runtimes, processors, etc.)
• Base implementation detail
• Simulation time
• Computing resources
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New/Re-emerging Technologies
• Free and open system-capable ISA specifications

• RISC-V
• Full-system software support (SPEC, Linux, etc.)

• Open-source software + hardware
• Software: GCC, Linux
• Hardware: Swerv, OpenPiton, Rocket, BOOM, PULP

• Hardware generators
• Highly parameterized and modular implementations
• High-level language abstractions

• Accessible FPGA acceleration
• Cloud-hosted FPGAs: Amazon EC2 F1 Instances
• FPGA-based emulation/simulation: FireSim



Open Source Hardware Generators
• Expertise required for design, 

but usage through configurations is 
simple

• Cycle-accurate generated-RTL 
simulation

• Complete open-source processor 
and system implementation

• Rocket-chip generator and the 
Chipyard framework

• Complete flows
• Silicon proven
• Industry-usage



Hardware Generators in Class
• Students interact with configurations

• Can add RTL if class calls for it

• Access to complete systems
• Explore hardware modifications
• Explore software modifications

• Detailed implementations can be used to train students on 
professional tools

• Electronic design automation (EDA)
• Compilers, OS kernels and runtimes

• Labs can be tailored to the scope of the class
• Software labs
• High-level labs
• Low-level labs



Hardware Generators – Example 1

[1] https://inst.eecs.berkeley.edu/~cs152/sp21/assignments/sp21/lab2.pdf

Rocket RV64GC

Floating Point 
Unit

class ArchClassRocketChipMemLabConfig extends Config(

new FRFCFS16GBQuadRank                     ++

new WithBootROM ++

new WithSerial ++

new WithPerfCounters ++

new WithDefaultMemModel ++

new WithL1ICacheSets(64)                   ++

new WithL1ICacheWays(1)                    ++

new WithL1DCacheSets(64)                   ++

new WithL1DCacheWays(1)                    ++

new WithCacheBlockBytes(64)                ++

new freechips.rocketchip.system.DefaultConfig)

Tilelink Crossbar
TSI BootROMUART

4 KB L1D$ 4 KB L1I$

16GB DDR3 Quad Rank 
Memory Model

TLB
Perf Counters

https://inst.eecs.berkeley.edu/%7Ecs152/sp21/assignments/sp21/lab2.pdf
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Hardware Generators – Example 1
Rocket RV64GC
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new FRFCFS16GBQuadRank                     ++
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new WithSerial ++

new WithPerfCounters ++

new WithDefaultMemModel ++

new WithL1ICacheSets(64)                   ++

new WithL1ICacheWays(1)                    ++

new WithL1DCacheSets(64)                   ++

new WithL1DCacheWays(1)                    ++

new WithCacheBlockBytes(64)                ++

new WithInclusiveCache(nBanks = 1,
nWays = 8,
capacityKB = 64)    ++

new freechips.rocketchip.system.DefaultConfig)

Tilelink Crossbar

4 KB L1D$ 4 KB L1I$

16GB DDR3 Quad Rank Me
mory Model

Perf Counters

64 KB L2$

TSI BootROMUART



Hardware Generators – Example 2
• Use a small configuration of the 

same in-order core 
implementation

• Generate synthesizable Verilog 
for a complete processor core

• Exercise the use of VLSI tools to 
extract physical properties of the 
processor core – power and rail 
analysis

• Train students in physical design 
and VLSI tools + enable complete 
system PPA analysis

[1] https://inst.eecs.berkeley.edu/~ee241b/sp21/assignments/lab5.pdf

https://inst.eecs.berkeley.edu/%7Eee241b/sp21/assignments/lab5.pdf


Accessible FPGA Emulation
• Hardware-centric labs are limited by slow RTL simulation time
• FPGAs as an accelerated alternative

• Requires significant boilerplate infrastructure work – pin assignments, IP generation, 
software host management and data movement.

• Lab limited by the amount and type of FPGA board available.

• FPGA-accelerated Emulation vs. FPGA prototyping
• Memory, IO and peripheral timing models
• Observability and debug abilities

• FireSim
• Automation
• Accessibility through the public cloud



Full System FPGA Emulation - Example
• Hardware for machine learning class

• HW/SW co-design
• Long, compute-intensive workloads

• Lab Assignments:
• Implement parts of an accelerator
• Optimize software for the accelerator

• ResNet-50 Inference workloads:
• Hours in software RTL-simulation
• Minutes in FireSim

• Rapid development iterations
• Control over the complete HW/SW system

[1] https://inst.eecs.berkeley.edu//~ee290-2/sp21/

https://inst.eecs.berkeley.edu/%7Eee290-2/sp21/


Cloud-Hosted FPGAs
• Remote Instruction

• Class enrollment not limited by FPGA boards and lab space
• No interruption to assignments during COVID lockdown

• Billing and class management questions
• Usage cost vs. capital cost, and their relation to student effort
• Account management and monitoring
• Overspending
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Multi-Class Curricula
• Classes

• EE290 – Hardware for Machine 
Learning

• CS152/252 - Computer 
Architecture

• EE241B – Advanced Digital 
Integrated Circuits

• EE194 - 28nm SoC for IoT

• Spring 2020: 10%-15% 
student overlap

• Reduced ramp-up time
• More comprehensive 

projects
16
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Conclusion
• Practical experience in HW/SW co-design and full-system topics
• Open-source hardware generators

• Broad spectrum of uses – from architecture to circuits and design automation
• Accommodate differing levels of prerequisite knowledge

• Accessible FPGA-emulation
• Full-system experiments: hardware + software
• Deterministic modeling and characterization
• Remote instruction

• Multi-class curricula
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