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Abstract 

A Sparse Neural Acceleration Processor (SNAP) is designed to ex-
ploit unstructured sparsity in deep neural networks (DNNs). SNAP 
uses parallel associative search to discover input pairs to maintain an 
average 75% hardware utilization. SNAP’s two-level partial sum re-
duce eliminates access contention and cuts the writeback traffic by 
22´. Through diagonal and row configurations of PE arrays, SNAP 
supports any CONV and FC layers. A 2.4mm2 16nm SNAP test chip 
is measured to achieve a peak effectual efficiency of 21.55TOPS/W 
(16b) at 0.55V and 260MHz for CONV layers with 10% weight and 
activation density. Operating on pruned ResNet-50, SNAP achieves 
90.98fps at 0.80V and 480MHz, dissipating 348mW. 

Introduction 
Modern DNNs [1] contain millions of weights and require billions of 
operations per input frame. By removing weights (Ws) using pruning 
[2] and zeroing out output activations (OAs) (i.e., input activations 
(IAs) of the next layer) using rectified linear units (ReLU), a sparse 
DNN model can be produced (Fig. 1). A sparse DNN accelerator 
stores Ws and IAs in a compressed form consisting of a data array 
(zeros removed) and an index array. Compressed W and IA arrays are 
paired by matching indices, dispatched to a SIMD multiplier (MULT) 
array, and the resulting partial sums (psums) are accumulated to their 
respective OAs (Fig. 2). Data sparsity leads to better efficiency, but 
major challenges remain: 1) MULT underutilization due to an insuf-
ficient number of W-IA inputs that can be extracted and dispatched 
(frontend challenge); 2) massive data traffic and access contention to 
support accumulation of psums whose destination addresses are seem-
ingly random (backend challenge); and 3) limited support for different 
kernel sizes and layer types (flexibility challenge). 

The latest sparse DNN accelerators are unable to solve all three 
challenges. SCNN [3] supports only CONV layers. It maximizes 
MULT utilization at the cost of massive writeback traffic and access 
contention. STICKER [4] uses 2-way set-associative PEs but is una-
ble to resolve access contention completely. Stitch-X [5] proposes a 
parallelism discovery unit (PDU) to improve utilization, but it does 
not solve the backend or the flexibility challenges. We present SNAP 
to address all three challenges. SNAP uses associative index matching 
(AIM) to extract a sufficient number of W-IA pairs to maintain an 
average 75% hardware utilization. SNAP accumulates (i.e., reduces) 
psums in two levels to the maximum extent before writeback: chan-
nel-dimension reduce (C-reduce) followed by pixel-dimension reduce 
(P-reduce). The two-level reduce eliminates access contention and 
cuts writeback traffic by over one order of magnitude. With PE array 
configurations, SNAP supports various kernel sizes and layer types. 

SNAP Architecture  
The SNAP architecture consists of control, memory and multi-core 
compute modules (Fig. 3). The memory module is composed of multi-
banked IA, OA buffers shared between cores, and W buffers private 
to each core. Inputs are aligned after fetch, and outputs are com-
pressed before writeback. The 16nm SNAP test chip is built using 4 
cores, with 7´3 PEs per core and 3 MULTs per PE for a total of 252 
MULTs (16b) together with 280.6 KB SRAM buffer. AIM units are 
used as the frontend of the PE array to extract W-IA inputs by search-
ing index arrays. In the backend, C-reduce is done at the PE level, and 
P-reduce is done at the core level by the core reducer. To sustain a 
high throughput and efficiency, the PE array needs to be maximally 
utilized by having the AIM produce enough W-IA inputs, and the re-
duce stages consume as many psums as possible before writeback. 

Associative Index Matching 
To facilitate psum reduce, SNAP streams compressed Ws and IAs in 
a channel-first ordering. To extract enough W-IA inputs, AIM em-
ploys a 2D comparator array to discover W-IA pairs of matching 
channel index that can be readily multiplied (Fig. 4a). The 2D com-
parator results are read out in parallel by priority encoders to obtain a 

list of IA addresses that have matching Ws. A sequence decoder then 
locates the addresses for dispatching data to the MULT array to com-
pute psums (Fig. 4b, Fig. 4c). The size of the 2D comparator array 
determines the search depth, and it needs to be sufficiently large to 
extract enough W-IA inputs to maintain high MULT utilization. How-
ever, the area and power of AIM increase quadratically with the size. 
In the SNAP test chip, we choose a 32´32 AIM to serve a row of 3 
PEs in a time-multiplexed fashion, keeping the average MULT utili-
zation above 75% for common workload densities (Fig. 4d) and lim-
iting the AIM area overhead in a core below 12.5%. 

Two-Level Partial Sum Reduce 
A PE consists of 3 MULTs and computes 3 psums per cycle. In the 
majority of the cases, the 3 psums are C-reduced to 1 OA. A PE uses 
a configurable adder tree (Fig. 5) to support the 3:1 C-reduce as well 
as the cases when the 3 psums belong to different OAs, i.e., when W’s 
and/or IA’s pixel address advance. A PE retains psums until C-reduce 
is complete, cutting the writeback traffic by up to the channel depth. 

After C-reduce is complete, a PE passes the final psum and its 
OA address to the core reducer. The core reducer reduces psums of 
matching OA address along lanes of the PE array based on the layer 
type as described in the next section. The core-level reduce cuts the 
writeback traffic by another 2.3-3.0´. The two-level reduce resolves 
access contention completely. For common workload densities, the 
traffic is cut down to 2.79 OA writeback per cycle per core (63 
MULTs), which is 22´ lower than the SCNN baseline. 

PE Array Configuration 
SNAP provides two PE array configurations, diagonal and row, to 
support different kernel and layer types. The diagonal configuration 
supports CONV layers with P-reduce, e.g., in a 3´3 CONV, com-
pressed IA data of consecutive pixels are broadcast to consecutive PE 
rows; and the 3´3 kernels are split into 3´1 slices, compressed and 
broadcast to consecutive PE columns. The streaming order allows the 
PEs along a diagonal to compute psums of the same OA address for 
P-reduce (Fig. 6a). Arbitrary R´S CONV kernels are divided into R´3 
sub-kernels, each assigned to a core. The row configuration supports 
layers without P-reduce opportunity, e.g., in a 1´1 CONV, IA and W 
are partitioned in the C dimension and multicast to PEs, allowing the 
PEs along each row to compute psums of the same OA address for C-
reduce (Fig. 6b). A FC layer can be supported in a similar way by 
further partitioning in the K dimension. 

Chip Measurement Results 
A 2.4 mm2 SNAP test chip (Fig. 7) was implemented in 16nm CMOS. 
At 0.55V, 260MHz, and in room temperature, the chip is measured to 
achieve a peak effectual efficiency of 1.67, 5.06 and 21.55TOPS/W 
(16b) on 100%, 40% and 10% W and IA density benchmarks, respec-
tively (Fig. 8a). Following the pruning technique [2], SNAP’s runtime 
performance and efficiency are evaluated using pruned AlexNet, 
VGG-16 and ResNet-50, demonstrating effectual efficiency of 3.86, 
3.79 and 3.61TOPS/W for the three networks at 0.55V, 260MHz. At 
0.8V, 480MHz, SNAP provides an inference throughput of 90.98fps 
on the pruned ResNet-50, dissipating 348mW (Fig. 8b).  Compared to 
the state-of-the-art dense [6]-[8] and sparse [3], [4] accelerators, 
SNAP offers competitive performance and efficiency (Tables I and II) 
by maintaining high utilization and low writeback data traffic. 
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Envision [7]
UNPU [8]
Sticker [4]

Eyeriss [6]

Pruned Networks(a)
TABLE II: PEAK EFFICIENCY (TOPS/W) ON SPARSE WORKLOADS

AlexNet VGG-16 ResNet-50
Sparse Layers

Dense Medium Sparse

This Work

0.53 (16b)
3.08 (16b)

0.5 (8b)

0.31 (16b)

1.67 (16b)
2.5 (8b)

5.06 (16b)
30 (8b)

21.55 (16b)

0.8-3.8(b)

4.3 (8b)
1.038 (8b)

0.17 (16b)

3.86 (16b)

2.0(b)

4.71 (8b)
-

0.09 (16b)

3.79 (16b)

-
-
-

-

3.61 (16b)
1MAC = 2Ops; Dense: 1.0/1.0, Medium: 0.4/0.4, Sparse: 0.1/0.1 IA/W density; 
(a): Network pruned with no accuracy loss; (b): Bit-precision not provided
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TABLE I: COMPARISON WITH PRIOR WORKS

Sparsity Mode
Layer Type

Technology (nm)
Die Area (mm2)

Multiplier Number
Data Width (bit)

On-Chip Buffer (KB)
Supply Voltage (V)
Frequency (MHz)

Power (mW)

D D IA+W IA+WD IA+W
CONV+FC CONV+FC CONV CONV+FCCONV CONV+FC

28 65 16 6565 16
1.87 16 7.9 7.812.25 2.4

Nx256 13824(b) 1024 256168 252
1-16 1-16 16 816 16
144 256 1200 170108 280.6

0.55-1.1 0.63-1.1 N/A 0.67-1.00.82-1.17 0.55-0.80
50-200 5-200 1000 20-200100-250 33-480
7.5-300 3.2-297 N/A 20.5-248.4235-332 16.3-364
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