
Memory-Efficient Hardware Performance Counters
with Approximate-Counting Algorithms

Jingyi Xu, Sehoon Kim, Borivoje Nikolic, Yakun Sophia Shao

University of California, Berkeley

Abstract—Hardware performance counters are special reg-
isters on processors that track the hardware activities. While
the performance counter data are useful for many applications,
there are challenges in efficiently collecting many event statistics
simultaneously, due to the limited number of performance
counters on chip. We propose an efficient hardware performance
counter design that uses approximate-counting algorithms to
improve the number of events tracked on-chip without incurring
significant memory overhead. These counters are more memory
efficient because they increment counts according to a dynamic
probability and approximate the exact counts. Compared with
multiplexed hardware performance counters, our approximate
hardware counters have a statistically provable memory-accuracy
trade-off and are entirely managed in hardware.

I. INTRODUCTION

The event statistics collected by hardware performance
counters are valuable for various applications, e.g. work-
load characterization [1], performance optimization [2],
task scheduling [3], and CPU power modeling [4]. The
performance-counter-based analysis is typically most useful
when multiple event counts are provided, to correlate the
activities to performance and pinpoint the root cause of
performance bottlenecks. However, due to area and power
constraints, only a limited number of hardware performance
counters are built into processors, typically between 4 and
20 [5] - [8]. In contrast, more than 200 monitoring events
are supported by current generation processors, including
instruction counts, memory accesses, CPU pipeline status [8].
Normally, one counter is only set to keep track of one event
at any time of the program execution, i.e., “one-counter-one-
event”. In this case, collecting a large set of performance data
requires rerunning a workload multiple times. In addition to
incurring extra cost in time and resources, on cloud platforms
for instance, rerunning workloads may not be able accurately
capture the behaviors due to non-deterministic events. There-
fore, it is not straightfoward to efficiently collect a large set
of performance events.

The multiplexing technique [9] has been proposed to moni-
tor a large number of events using a small number of hardware
performance counters. By measuring the events only over a
fraction of execution time, and extrapolating the overall counts
from the sampled counts, the multiplexed counters are able to
cover more events in a small number of runs. However, the
multiplexed counters are inaccurate, and there is no guarantee
on the error bound. Several techniques have been proposed
to improve the accuracy of multiplexed counters, including

rate-of-change event schedulers [10] and data-cleaning-based
post-processing [11]. Despite their complexities, the error rate
of these techniques are typically between 5% to 30%.

In this work, we propose applying approximate-counting
algorithms to build efficient hardware performance counters.
The approximate-counting algorithms are a subset of sketching
algorithms that use a small amount of memory to count a large
number of events. The clear memory-accuracy trade-off makes
them a good fit for performance monitoring in system design.
In particular, the approximate counters have been applied to
distributed computing [12] and network monitoring [13], and
have shown reduction in memory requirement and improved
accuracy. Our implementation of approximate hardware per-
formance counter achieves an average accuracy of 25% while
using only half the memory of deterministic counters.

II. BACKGROUND

Sketching algorithms are a family of algorithms that uses
“sketches” as data structures to compactly store information
about massive datasets, with statistically provable trade-offs
between memory and accuracy. The data compression is
typically done using probabilistic techniques [14].The sketches
approximate the original datasets and act as surrogates of
the original datasets for subsequent queries and computations.
Each sketch is problem-specific, answers one particular ques-
tion, and has unique structures. Many sketches require no
revisits to the data, so they are particularly useful in streaming
applications, e.g., software-defined traffic measurement [13].

Approximate-counting algorithms increment their counts
probabilistically instead of deterministically to save memory
bits. When the count values are queried, the counter can
approximate the exact value with the value it stores and
the increment probability with a specific error bound. While
this paper focuses on the Morris’ algorithm [15] invented by
Robert Morris in 1977, there are many variants of it, e.g.
Sampled-Log Approximate Counting [16], Flexible Approxi-
mate Counters [17]. These counters have been used ML topic
modelling in distributed systems [12].

Morris’ Algorithm uses compact data structures and simple
update/query algorithms to count the number of events in a
stream. The desired accuracy can be controlled by choosing the
counter bit-width, and/or update base-exponent and by averag-
ing, making it a good fit for hardware performance counters.
When an event occurs, the Morris counter is incremented with
probability 1

αX , where α is a parameter typically between



Fig. 1. Rocket core with Approximate Performance Counters.

1 and 2 and X is value in the counter before the update.
When the number of events seen so far is queried, the value
αX is returned. This counter is an unbiased estimator of the
actual count, however, it can have a high variance when α is
close to 2. In particular, when α = 2, the failure probability
P (|c′−c| > εc) < 1

2ε2 , where c is the actual number of events
and c′ is the output of the counter.

One of the commonly-used strategies to decrease the vari-
ance is to run multiple independent Morris counters in parallel
as a Morris group counter and average their outputs. The
failure probability of a Morris group counter is 1

groupsize of
a single Morris counter. It effectively improves the accuracy
without adding excessive overhead on the hardware.

III. METHODOLOGY

We leverage the Rocket Chip generator [18] to implement
Morris counters in hardware. By default, it generates a RISC-V
in-order pipelined CPU core with 29 general 64-bit hardware
performance counters, and 29 event selector registers.

Overall Architecture: Figure 1 illustrates the overall ar-
chitecture of our probabilistic hardware performance counter.
First, user registers the specific events to be monitored, e.g.,
I-cache miss and branch mispredcition into the event selector
registers. Those event signals are tracked during the program
execution and, if they occur, the system calls inc() of the
corresponding Morris group counter. Then the Morris group
counter forwards that signal to all the Morris counters to
probabilistically update their internal states. As the Morris
counter is connected with the random probability generator
module, it can probabilistically accept or deny the increment
signal according to its internal state. In particular, the Morris
counters in the same Morris group counter do not share the
same random probability generator so that they can behave in-
dependently. Finally, if user queries the Morris group counter,
i.e., query(), it queries all the Morris counters and returns
the average of their predictions.

Hardware Morris Counter: We use 6-bit Morris counters
that can each store up to 264 counts in expectation. Since a
single Morris counter tends to produce a large variance, 5
Morris counters are grouped into one Morris group counter.
All counters in a group counter count the same event and the

Fig. 2. Relative errors of the proposed approximate counters. The max 129%
relative error of arithmetic is left out to better visualize the lower range.

average of the counter values is used. Comparing with the
deterministic counter that requires 64-bit for counting up to
264, the Morris group counter only needs 30-bit, which allows
2× improvement in terms of storage utilization.

Hardware Probability Generation: Since Morris counters
rely on randomness for the probabilistic increment, we need
a random probability generator module that takes as input X
and outputs 1 with the probability of 1

2X
. A random number of

X-bit is generated by a Fibonacci linear-feedback shift register
and then reduced to 1-bit with bitwise OR operation, which
produces the output of 0 with the probability of 1

2X
.

IV. EVALUATION

We generate our Rocket Core with built-in deterministic-
increment performance counters and approximate counters for
RTL simulation. To gague the accuracy of our sketching hard-
ware counter, we run two benchmarks from the standard RISC-
V testbench library, spmv(sparse matrix-vector multiplication)
and vvadd(vector-vector add). Each benchmark are first run
on the standard RISC-V processor to set baselines, and the
simulated 50 times on the processor with Morris counters.

The maximum, 3rd quartile, 1st quartile and minimum of
relative errors of each performance events are aggregated in
Figure 2. Overall, the average errors are between 10% and
30%. The minimum errors stay consistently within 5%. In con-
trast, there is more variability in the maximum errors, ranging
from 40% to 120%. The relative error can get larger than 100%
due to 2X reconstruction. However, the theoretical error bound
show that when α = 2, P (|c′ − c| > 0.75c) < 1

2·0.752 = 0.89,
so relative errors over 75% are less likely to occur.

V. CONCLUSION

We propose hardware performance counters with
approximate-counting algorithms that use only half of
the bit-width of regular performance counters and show 5%
decrease in relative errors compared to previous works. For
future work, we would like to experiment with techniques to
further improve accuracy of approximate hardware counters.

VI. ACKNOWLEDGEMENT

This work was supported in part by the NSF Award 1955450
and in part by ADEPT Lab industrial sponsors and affiliates.



REFERENCES

[1] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-
wide profiling: A continuous profiling infrastructure for data centers,”
IEEE Micro, vol. 30, no. 4, pp. 65–78, 2010.

[2] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“Cpi2:cpu performance isolation for shared compute clusters,” in Pro-
ceedings of European Conference on Computer Systems (EuroSys),
2013.

[3] S. Ziemba, G. Upadhyaya, and V. Pai.,2004. “Analyzing the Effective-
ness of Multicore Scheduling Using Performance Counters”.

[4] R. Zamani and A. Afsahi, ”A study of hardware performance monitoring
counter selection in power modeling of computing systems,” 2012
International Green Computing Conference (IGCC), pp. 1-10, 2012.

[5] Intel, “Intel 64 and ia-32 architectures developer’s manual,” 2017. [On-
line]. Available: https://www.intel.com/content/www/us/en/architecture-
and- technology/ 64-ia-32-architectures- software- developer- manual-
325462.html

[6] Arm, “Arm cortex-a53 mpcore processor technical reference
manual,” 2014. [Online]. Available: http://infocenter.arm.com/help/
topic/com.arm.doc.ddi0500d/DDI0500 cortex a53 r0p2 trm.pdf

[7] I. Advanced Micro Devices, “Bios and kernel developer’s guide for
amd family 10h processors,” 2013. [Online]. Available: http: //sup-
port.amd.com/TechDocs/31116.pdf

[8] Intel,“Intel® 64 and IA32 Architectures Performance
Monitoring Events Guide,” 2017. [Online]. Available:
https://software.intel.com/sites/default/files/managed/8b/6e/335279

performance monitoring events guide.pdf
[9] J.M, May, “MPX: Software for multiplexing hardware performance

counters in multithreaded programs,” Proc. 15th International Parallel
and Distributed Processing Symposium. IPDPS 2001. IEEE, 2001.

[10] R.V. Lim, D. Carrillo-Cisneros, W. Alkowaileet, and I. Scherson, “Com-
putationally efficient multiplexing of events on hardware counters,”
Linux Symposium, 2014.

[11] Y. Lv, B. Sun, Q. Luo, J. Wang, Z. Yu, X. Qian, “Counterminer: Mining
big performance data from hardware counters,” 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018.

[12] G.L. Steele and J. Tristan. ”Adding approximate counters,” Proc. the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’16), 2016.

[13] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. 10th USENIX Conf. NSDI,pp. 29–42, 2013.

[14] D. Ahfock, WJ. Astle, S. Richardson, “Statistical Properties of
Sketching Algorithms,” arXiv preprint arXiv:1706.03665, 2019.
https://arxiv.org/abs/1706.03665.

[15] R.Morris, ”Counting large numbers of events in small registers,” Com-
munications of the ACM, 21 (1976), 840-842., 1976.

[16] A. Cvetkovski, ”An algorithm for approximate counting using limited
memory resources,” Proc. 2007 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems, pages
181–190, 2007.

[17] S. Mitchell and D. Day. ”Flexible approximate counting,” In IDEAS ’11:
Proc. 15th Symp. International Database Engineering Applications,
pages 233–239, 2011.

[18] K. Asanovic, et al. ”The Rocket Chip Generator,” Technical
Report No. UCB/EECS-2016-17, [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.pdf


