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Abstract—Domain-specific hardware, coupled with co-designed
algorithmic optimizations, plays a pivotal role in accelerating
both dense and sparse workloads, surpassing the capability of
general-purpose platforms. However, the diverse nature of these
specialized hardware platforms makes it challenging to system-
atically implement, evaluate, and compare different solutions.

To address these shortcomings, we introduce Stellar, a novel ac-
celerator design framework tailored for dense and sparse spatial
accelerators. Stellar introduces abstractions that systematically
decouple different dimensions of accelerator design, addressing
the need for a clear separation of concerns for automated design
solutions. This modular approach enhances the clarity and flexi-
bility of the design process, while enabling automated hardware
generation for a range of dense and sparse accelerator designs.
Stellar outputs synthesizable Verilog implementations of these
accelerators, paired with RISC-V programming interfaces. We
demonstrate that Stellar-generated accelerators are comparable
to hand-written, high-quality hardware designs, enabling effective
evaluation, comparison, and design-space exploration for both
dense and sparse accelerators.

I. INTRODUCTION

In response to diminishing technology scaling trends and the
growing computational demands of modern workloads, com-
puter architects have increasingly turned to domain-specific
accelerators and co-designed software optimizations for im-
proved energy and area efficiency. However, the expanding
landscape of diverse workloads has given rise to a multitude
of hardware designs and software co-optimization techniques.
These diverse solutions range from fixed-function matrix-
multiplication arrays for dense DNNs [10], [12], [17], [23],
[25], to co-designed structured sparsity formats that remove
low-priority weights or features from large DNN models [1],
[22], [32], [40], to accelerators for extremely sparse, highly-
imbalanced tensor operations [7], [14], [26], [30], [38], [39].

While this broad spectrum of hardware and software op-
timizations presents ample opportunities for accelerator and
software co-design, it also greatly complicates the analysis,
exploration, and design of specialized architectures. Prior work
has attempted to address these challenges through methods
ranging from ad-hoc hardware design to proposals for well-
defined, expressive accelerator taxonomies. Ad-hoc design,
a traditional and flexible approach, provides limited oppor-
tunities for automated and rapid design space exploration.
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Fig. 1: A simplified illustration of Stellar’s design flow,
from the user-specified inputs on the left to the Verilog and
programming interface outputs on the right.

Conversely, techniques like high-level synthesis enable swift
hardware development via direct compilation from software to
hardware, but fail to maintain a strong separation of concerns
in the hardware design process, making it difficult to explore
independent design choices without modifying unrelated parts
of an architect’s specifications. Recent efforts have introduced
expressive abstractions and taxonomies in an attempt to dis-
entangle various components of accelerator design. However,
these approaches often fail to generate synthesizable sparse
hardware designs, focusing predominantly on higher-level
modeling, or they struggle to describe low-level aspects of
hardware design that are of interest to architects.

In response to the complexity posed by the diverse land-
scape of accelerator design, we develop “Stellar”, a new
accelerator design framework for automated dense and sparse
spatial accelerators1. Stellar addresses these challenges by in-
troducing three key features: (i) it provides expressive abstrac-
tions for the design of both dense and sparse accelerators, (ii)
it maintains a strong separation of concerns between different
design considerations, allowing independent specification and
exploration, and (iii) it generates synthesizable Verilog imple-
mentations of user-specified hardware, together with RISC-V
programming interfaces that can easily be incorporated into
users’ software applications. Stellar’s design flow, summarized
in Figure 1, enables the rapid development and generation of

1Stellar is open-sourced at https://github.com/hngenc/stellar.
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accelerators for both dense and sparse workloads.
Building upon prior taxonomies for dense and sparse ac-

celerators [6], [21], [24], [27], [35], Stellar introduces new
abstractions of interest to hardware developers, such as fine-
grained load-balancing schemes and pipelining strategies.
Users independently express a specialized hardware accel-
erator’s (i) functional behavior, (ii) dataflow, (iii) supported
sparsity patterns, (iv) load-balancing strategy, and (v) private
memory buffers. They can modify these different design
considerations in isolation and observe the subtle interactions
between them to determine the best accelerator design choice.

Stellar maps these design specifications to hardware tem-
plates, and optimizes them to maximize data reuse and mini-
mize area and wiring congestion. Stellar then outputs synthe-
sizable Verilog implementations of a full SoC, including user-
specified accelerators, optional RISC-V host CPUs, and shared
memory hierarchies. Our evaluation demonstrates that Stellar-
generated hardware implementations perform competitively to
hand-designed accelerators, and that they effectively expose
various performance bottlenecks caused by either hardware or
software design choices, which often cannot be exposed in
high-level simulators or models. We provide an end-to-end,
unified platform for both dense and sparse accelerator design,
enabling systematic evaluation and comparison of diverse
architectural design choices.

II. BACKGROUND AND MOTIVATION

The growing diversity of spatial accelerators, tailored for
dense and sparse workloads, has spurred the development of
design space exploration frameworks to expedite the design
process. However, existing accelerator design frameworks
often lack the ability to automatically synthesize hardware
implementations, especially for sparse accelerators which re-
quire subtle tradeoffs across multiple design dimensions. This
section reviews prior work in dense and sparse accelerator
designs and motivates the need for an automatic and unified
flow for synthesizing both dense and sparse accelerators.

A. Novel Spatial Accelerators

Spatial accelerators, which spatially distribute an array of
processing elements (PEs), present a broad spectrum of trade-
offs in performance, programmability, and resource utilization
for dense and sparse workloads. The design space for dense
accelerators is well understood as they typically differ in the
dataflows they support, the quantized or unquantized datatypes
they operate on, the functional operations they can perform
(e.g., ReLU, GeLU, or other activation functions), or in their
resource constraints, e.g. for small accelerators targeting edge
devices or for high-performance accelerators in the cloud.

Sparse accelerators differ in even more ways, due to the
wide variety of sparsity distributions and the corresponding
sparse data formats in sparse workloads. Some sparse acceler-
ators are designed for extremely sparse workloads, where far
fewer than 1% of elements are non-zeros [26], [30], [38], [39].
Others target sparse DNNs [1], [28], [29] with matrix densities
ranging from 30% to 70%. The vast range of sparsity levels

necessitates the adoption of distinct sparse data formats and
hardware designs, exposing a substantial design space.

As a result, existing accelerator designs generally differ
from each other in multiple ways. For example, recent sparse
accelerator proposals commonly propose not only new hard-
ware dataflows but also new sparse formats and load balancing
strategies [30]. This inherent diversity complicates the process
of comparing different accelerators, making it challenging to
discern which feature contributes to specific improvements or
drawbacks. However, such nuanced comparisons are crucial
for architects, providing insights into the key principles un-
derlying each design and guiding the selection of optimal
solutions for specific workloads.

B. Dense Spatial Accelerator Design Frameworks

To address the complexities of dense spatial accelera-
tors, prior efforts have developed hardware generation frame-
works that systematically enumerate the dense design space.
These frameworks feature orthogonal design dimensions, e.g.,
functionality to describe an accelerator’s expected outputs,
dataflow to describe data reuse patterns, and memory buffers
to describe the memory hierarchy. The regularity of dense
accelerators within these well-defined design dimensions has
enabled the development of frameworks like PolySA [6],
AutoSA [33], and Interstellar [36]. These frameworks can
automatically synthesize RTL implementations for FPGAs or
ASICs, together with application-level APIs as their program-
ming interfaces, while offering a comprehensive separation of
design concerns for systematic design space exploration.

However, although these hardware design frameworks can
effectively separate the concerns that go into dense accelerator
design while generating high-quality RTL, they are challeng-
ing to extend to sparse accelerator design. Sparse accelerators
introduce new key design considerations such as different
sparse data structures and load-balancing techniques, which
are often overlooked by frameworks designed exclusively
for dense scenarios. In addition, while the application-level
programming interface facilitates the offloading of the entire
workload to accelerators, the absence of a low-level ISA
makes it hard to deploy for sparse workloads due to their
irregular nature of computation. Consequently, this inherent
limitation significantly narrows their applicability, especially
for the growing number of modern workloads that involve
irregular sparse computations.

C. Sparse Spatial Accelerator Design Frameworks

While existing design frameworks for dense accelerators
provide end-to-end flows from abstract design specifications to
RTL generation, frameworks dedicated to sparse accelerators
have primarily focused on modeling and simulating sparse
hardware designs and are not able to automate the RTL
generation process. As such, they still leave significant manual
work for hardware designers, and may sometimes fail to
expose low-level performance bottlenecks not accounted for
in higher-level simulators.
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Prior Dense Frameworks Prior Sparse Frameworks StellarPolySA AutoSA Interstellar Tabla Sparseloop TeAAL SAM DSAGen Spatial

Design
Specifications

Functionality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dataflow ✓ ✓ ✓ × ✓ ✓ ✓ Implicit Implicit ✓
Sparse data
structures × × × × ✓ ✓ ✓ × × ✓

Load-balancing × × × × × ✓ × ✓ × ✓
Private memory
buffers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hardware
Outputs

Simulators × × × × ✓ ✓ ✓ × × ×
Synthesizable RTL ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓

Programming
Interface

Application-level ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓
ISA-level × × × × × × × × × ✓

TABLE I: A comparison between Stellar and other accelerator design frameworks which attempt to separate different concerns.

Specifically, recent works on modeling and simulating
sparse hardware accelerators, such as TeAAL [24], the Sparse
Abstract Machine (SAM) [16], and Sparseloop [35], introduce
new abstractions for sparse data formats and load balancing,
separated from other design concerns. These works define the
functionality of sparse accelerators using syntax such as Ein-
stein summations [11], the scheduling of operations on them
using Halide-like loop transformations, and their sparse data
formats using extensible abstractions such as fibertrees [31].
While TeAAL supports certain load-balancing schemes by
allowing various tensor dimensions to be flattened for balanced
distribution to spatial array PEs, it is difficult to describe with
this method more sophisticated load-balancing strategies [13],
where individual PEs in a spatial array might have greater
load-balancing capabilities than others.

Although these frameworks enable rapid specification, eval-
uation, and simulation of sparse spatial accelerators, none
of them generate actual RTL implementations. TeAAL and
Sparseloop provide simulation and modeling capabilities and
are primarily intended for early-stage exploration. SAM, while
defining a set of hardware components for mapping dataflow,
limits its evaluation to cycle-approximate simulations and
CGRAs, lacking actual RTL implementations.

Finally, prior work has proposed hardware generation
frameworks which do generate sparse accelerator RTL, but
these lack the full separation of concerns necessary for ef-
fective design-space exploration. For example, DSAGEN [34]
generates RTL for both dense and sparse workloads, however,
it expects them to be defined as annotated C programs. These
C descriptions are limited in their ability to separate out all the
different concerns which go into sparse hardware design, so
that each can be explored independently, as for the previously
mentioned taxonomies. Other works, such as Spatial [19],
introduce languages which describe custom hardware as sets of
nested-loops, which generalize well to a variety of workloads,
but which make it difficult to separate the functionality of an
accelerator fully from its scheduling and dataflow, and which
also lack higher-level constructions, such as data format spec-
ifications, necessary to concisely express sparse workloads.

Unlike prior work, Stellar is an end-to-end tool that not only
enables the specification of both dense and sparse accelerators
with high-level descriptions that separate independent design
concerns, but also generates efficient and synthesizable Verilog
implementations of these high-level specifications. Specifi-

cally, Stellar enumerates the sparse accelerator design space
along five separate, independent axes: (i) functionality, (ii)
dataflow, (iii) sparse data structures, (iv) load-balancing strat-
egy, and (v) private memory buffers. This modular approach
facilitates the development of each design consideration in
isolation, providing architects with a high degree of separation
of concerns during the design process. Subsequently, Stellar
maps these specifications to hardware representations and
lowers them to synthesizable Verilog implementations, paired
with multi-level programming interfaces for users.

III. SPECIFYING ACCELERATORS IN STELLAR

Stellar is composed of a specification language that de-
scribes spatial accelerators, dense or sparse, and a compiler
that translates these descriptions into Verilog. The specification
language is designed to maximize the architect’s separation
of concerns when designing an accelerator; each of the five
subsections below describes a separate design concern which
users can specify and explore independently.

A. Functionality

Stellar users specify the functionality of their accelerator
with a Halide-like notation which has been used in prior
work for dense accelerator design [37]. The functional notation
defines various tensor inputs and outputs, and how the outputs
are calculated from the inputs.

Consider, for example, Listing 1, which illustrates how a
Stellar-user may define the functional behavior of a matrix-
multiplication accelerator. We will refer back to this example
repeatedly throughout this paper:

Listing 1: Functional specification of a matmul accelerator
1 / / I n p u t s
2 a ( i , j . lowerBound , k ) := A ( i , k )
3 b ( i . lowerBound , j , k ) := B ( k , j )
4 c ( i , j , k . lowerBound ) := 0
5 / / I n t e r m e d i a t e c a l c u l a t i o n s
6 a ( i , j , k ) := a ( i , j −1 , k )
7 b ( i , j , k ) := b ( i −1 , j , k )
8 c ( i , j , k ) := c ( i , j , k −1) +
9 a ( i , j −1 , k ) * b ( i −1 , j , k )

10 / / O u t p u t s
11 C ( i , j ) := c ( i , j , k . upperBound )

Unlike an iterative for-loop, Stellar’s Halide-like notation
involves no state-mutations, and makes no assumptions about
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Fig. 2: Examples of space-time-transforms (each named T ) and the dense matmul dataflows that result from them.

the order, time, or place of each multiply-accumulate operation
within a hardware unit. The i, j, and k indices exist only in
what we call the “tensor iteration space,” and do not directly
correspond to time or space coordinates on a physical hard-
ware accelerator. Neither does the functional notation make
assumptions about the sparsity distributions or sparse data
formats of the input or output tensors. Sections III-B and III-C
describe how we specify such design considerations.

In addition to arithmetic operations, Stellar’s functional
notation also supports data-dependent accesses to input or
output tensors, which are useful for specifying merging and
sorting algorithms for sparse workloads. Stellar can therefore
be used to construct a full pipeline for both sparse and
dense accelerators, including functional units for arithmetic
reductions and data-dependent pre- or post-processing.

B. Dataflow

Users define the dataflow of their accelerator by specifying
a linear transformation (represented by an invertible matrix)
from the tensor iteration space described in Section III-A
to physical space and time coordinates on a spatial array.
Following the example of prior work [37], we call this linear
transformation a “space-time transform”. For example, for the
matmul example in Listing 1, the space-time transform would
be T in the equation below:

T

 i
j
k

 =

xy
t

 (1)

where T is a 3×3 invertible matrix, x and y are space
coordinates, and t is a timestep. Every input, output, and
intermediate MAC operation in the matmul in Listing 1 is
mapped by T to a specific place and time on a two-dimensional
physical spatial array with x rows and y columns. For example,
if T is the identity matrix, then a MAC that takes place when
i = 1, j = 2, and k = 3 would be mapped to the PE at position
(x = 1, y = 2) (i.e. row-1 and column-2 in the spatial array),
and would occur when the time-step, t, equals 3.

Figure 2 illustrates various space-time transforms for mat-
muls and the spatial arrays that result from them. Note that
by simply changing numerical values in the T matrix, users
can create a wide variety of spatial arrays, including input-
stationary, output-stationary, and hexagonal [4] designs.

Each of these space-time-transforms represents a separate
dataflow, covering a superset of the dataflows proposed by
some other dataflow-classification schemes which are instead
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Fig. 3: Different pipelining strategies for the input-stationary
matmul accelerator in Figure 2a.

defined in terms of which tensor iterators are spatially or
temporally unrolled [36], or by which inputs or outputs remain
stationary during execution [5]. For example, a dataflow-
classification scheme which only allows users to decide which
iterators to spatially unroll could only produce 3D spatial
arrays if the user wanted to unroll all three indices (i, j, and
k) in Listing 1. Stellar can express 3D arrays as well, but it
can also express more niche spatial arrays that such dataflow-
classification schemes cannot, such as the hexagonal array in
Figure 2c which spatially unrolls all three indices onto a 2D
plane, yielding shorter wires which are easier to route.

Stellar’s dataflow specifications also give hardware design-
ers more fine-grained control over lower-level hardware design
decisions, such as the number of pipeline registers to place
across different axes of the spatial array. Figure 3 illustrates
how changing individual values in the lowest row (the time
axis) of the dataflow-specification matrix T creates designs
that are more or less aggressively pipelined.

Stellar uses the dataflow specified by the user’s space-
time transform to construct “baseline” dense accelerators
which maximize PE-to-PE data re-use, as in Figure 2. Later,
Section IV-B describes how these baseline spatial arrays are
modified to skip zero-values in sparse workloads, based on the
sparsity specifications given next in Section III-C.

C. Sparse Data Structures

For sparse accelerators, the sparse data structures of the
input and output tensors are expressed in Stellar in terms of
which iterators in the tensor iteration space may be “skipped”
and under which conditions they may be skipped. For example,
consider the following sparsity structures we define for the
matmul example introduced in Listing 1:
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Listing 2: Specifying sparse data structures in Stellar
1 / / A*B=C where A and B a r e CSC / CSR
2 Skip i when A ( i ,k ) == 0
3 Skip j when B ( k , j ) == 0
4 / / A*B=C where A i s d i a g o n a l
5 Skip i and k when i != k
6 / / A*B=C where rows of A may be a l l 0
7 Skip k when A ( i ,−>) == 0

Note that in Listing 2, we do not specify how exactly the
tensors are stored in memory, or what metadata is associated
with them; these details are irrelevant to the spatial array
design. Listing 2 only specifies which tensor elements are
skipped; e.g. whether we skip elements along rows, as in the
CSR format, or along columns, as in the CSC format. By
contrast, Section III-E describes how users specify how tensors
are actually stored and encoded in memory.

Once a sparsity structure is specified, Stellar determines
which PE-to-PE connections in the baseline dense spatial
array (as illustrated in Figure 2) are no longer guaranteed to
transmit useful non-zero values in every single cycle. Under
the assumption that these PE-to-PE connections are unlikely to
carry useful data (as when the total non-zero density of a tensor
is very low), Stellar removes these PE-to-PE connections and
replaces them with IO connections that access the input- or
output-tensors directly from outer register files.

For example, Figure 4 illustrates how the input-stationary
matmul array in Figure 2a will look after the user specifies
that the input-B matrix has the CSR format, causing Stellar
to remove the vertical PE-to-PE connections which were
previously being used to accumulate partial sums.

However, for some forms of structured sparsity, PE-to-PE
connections should still retained even if the data they carry will
not be used every cycle. For example, Figure 5 illustrates a
Stellar-generated spatial array implementing NVIDIA’s A100
structured sparsity scheme [1], where two out of every four
adjacent DNN weights are zeros. To support such sparsity
structures, Stellar provides the OptimisticSkip keyword,
which, unlike the Skip keyword, does not remove PE-to-PE
connections, but replaces them with wires that carry small
bundles of potentially useful data, rather than scalar values.
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a12 a22b22

b11

b25

b17

c22
c25c12

c15

c21
c27c11

c17

Fig. 4: The input-stationary matmul array from Figure 2a after
the B-matrix is specified as a sparse CSR matrix.

D. Load-Balancing

Spatial array workloads are oftentimes extremely imbal-
anced, causing some PEs to idle while other PEs are per-
forming useful arithmetic operations [13], [14]. Stellar allows
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Fig. 5: The output-stationary matrix from Figure 2b when the
A-matrix conforms to the A100 2:4 sparsity format [1].
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Fig. 6: The sparse matmul array from Figure 4, executing an
imbalanced B-matrix with and without load-balancing.

users to specify whether they want computations that would
normally take place in certain regions of the tensor iteration
space to be shifted towards other “target” iterations if the target
iterations would be idle otherwise. For example, consider
the following load-balancing strategy for a sparse matmul
described using Stellar’s notation:

Listing 3: A simple load-balancing scheme in Stellar
1 S h i f t ( / * i = * / N −> 2*N, j , k ) t o
2 ( / * i = * / 0 −> N, j , k+1)

where the tensor iterators, i, j, and k, are the same as those
introduced for the matmul in Listing 1. For any iterator value
k = K, if the target matmul iterations, where 0 ≤ i < N , are
all idle due to a workload imbalance, then Stellar will shift
future work that has not yet begun where k = K + 1 and
N ≤ i < 2N onto the idle PEs.

Based on the exact dataflow specified, this might mean, for
example, that only direct adjacent rows of the spatial array
can share work, as illustrated in Figure 6. More flexible load-
balancing schemes can share work across broader sets of PEs,
but, as detailed later in Section IV-B, they may require Stellar
to generate hardware with greater area and wiring congestion.

More fine-grained and sophisticated load-balancing schemes
can also be specified. Listing 4 shows an example load-
balancing scheme where only iterations corresponding to a
small subset of PEs will take work from other PEs:

Listing 4: Very flexible load-balancing for a limited set of PEs.
1 S h i f t ( i , j ,k ) t o ( / * i= * / 0 , / * j= * / 0−>4, k )

E. Private Memory Buffers

To generate scratchpad memories and private memory
buffers for their accelerators, Stellar users must specify the
specific dense or sparse data formats they will support. To
specify such data formats, we use the fibertree notation from
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and optimized IRs, to the final Verilog and programming interface outputs.

prior work [31], where users specify a different dense/sparse
format for every axis (i.e. dimension) of a tensor. For example,
the CSR format would be specified by setting the outer-axis of
a two-dimensional matrix to the Dense uncompressed format,
while the innermost axis would be Compressed, composed of
a list of coordinates and data. Stellar supports other formats as
well, such as Bitvectors and Linked-Lists; by composing these
formats to different dimensions of a tensor, a wide variety of
unique sparse tensor formats can be defined.

IV. HARDWARE GENERATION IN STELLAR

After an accelerator’s functionality, dataflow, sparse data
structures, load-balancing schemes, and private memory pa-
rameters are specified in Stellar, our compiler elaborates these
into an IR which represents a set of spatial arrays, register
files, SRAMs, and load-balancers. These are optimized based
on data-access patterns that can be determined at elaboration
time, and the optimized IR is mapped to a set of Chisel [3]
templates which are lowered into Verilog. Figure 7 illustrates
this full hardware generation process.

A. Architectural Overview

Stellar-generated accelerators are composed of spatial ar-
rays, register files, private memory buffers, (optional) load-
balancers, and a DMA. Figure 8 shows the overall hardware
architecture of an example Stellar-generated accelerator that
performs sparse matrix multiplications and merges the scat-
tered partial sums into merged matrix results.

Spatial arrays perform compute operations such as matrix-
multiplications or the merging of scattered output results.
These spatial arrays read and write their input and output
tensors to register files, which may themselves be populated by
or emptied into larger private memory buffers. Load-balancers

monitor the regfile inputs and outputs to determine whether
PEs will be idle or over-utilized. Finally, a DMA transfers
tensors between off-chip DRAM or outer caches and the ac-
celerator’s private memory buffers. The following subsections
describe how the aforementioned hardware components are
generated and optimized by Stellar.

B. Spatial Arrays

Stellar initially constructs dense spatial arrays, based on the
functional description of the accelerator and its dataflow. The
PEs of these spatial arrays will request inputs or issue outputs
when their physical coordinates and current time-step corre-
spond to the indices these inputs/outputs are supposed to occur
at. For example, the PE output on line 11 of Listing 1 occurs
whenever the tensor iterator k is equal to k.upperBound.
By multiplying a PE’s space-time coordinates, (x, y, t) as
in Equation 1, by the inverse of the space-time transform,
T−1, we can find the corresponding value of k; if it is
k.upperBound, then the PE output will be issued.

Figure 9a illustrates how an example spatial array is initially
represented in the Stellar compiler’s internal IR, based purely
on the functional description in Listing 1, before the dataflow
or sparsity specifications are applied to it. Stellar refers to
this IR as an IterationSpace, in which every Point
corresponds to a different set of values for the tensor itera-
tors (i, j, k). Furthermore, the IterationSpace includes
a set of Point2PointConns (point-to-point connections)
describing data dependencies between different points, and
a set of IOConns (IO connections) representing input- or
output-requests to external register files (described later in Sec-
tion IV-D). Finally, every Point has a set of Assignments
representing the arithmetic operations it must perform.

Spatial Array
Merger

  SRAM
  Result

Spatial Array
Matmul

DMADRAM

SRAM
Sparse

Matrix A

SRAM
Sparse

Matrix B

Load-Balancer

RegFile
Sparse Matrix A

RegFile
Sparse Matrix B

RegFile
Scattered 
Results

RegFile
Merged Results

Fig. 8: Hardware architecture overview for an example sparse matrix-multiplication accelerator.
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Fig. 9: The internal representation, called an IterationSpace for an accelerator as it is transformed from a purely functional
description to a physically realizable two-dimensional spatial array.

The baseline, dense spatial array that is initially constructed
by Stellar is modified based on the user’s sparsity structure
specifications. Dense spatial arrays typically achieve high data
reuse by sharing data through PE-to-PE connections. However,
sparse workloads often have much less data reuse, rendering
many of these PE-to-PE connections obsolete. Stellar will
remove the PE-to-PE connections which are no longer guaran-
teed to carry useful data between PEs, and replace them with
direct connections to outer regfiles, as seen by the change
between Figure 2a and Figure 4.

For an example of how Stellar determines which connec-
tions to remove, consider the accumulation of partial sums on
lines 8-9 of Listing 1. We see that a PE at point (i, j, k) in
the tensor iteration space computes the multiply-accumulate-
sum, c(i, j, k), based on c(i, j, k − 1), which means that
the “difference vector” [37] for the variable c is (∆i =
0,∆j = 0,∆k = 1). Multiplying the input-stationary space-
time-transform T in Figure 2a by the difference vector yields
the spacetime difference vector (∆x = 1,∆y = 0,∆t = 1),
which indicates that the partial sums travel vertically down the
spatial array every time-step.

Now, suppose that B is in the CSR format, as in Listing 5:

Listing 5: Making the B-matrix CSR
1 Skip j when B ( k , j ) == 0

In the CSR sparse format, finding the j-coordinate
would require a series of indirect lookups. Stellar ab-
stracts these lookups away by expressing the “expanded”
j-coordinate as some arbitrary function f whose inputs
are k and the compressed j-coordinate: jexpanded =
f(k, jcompresssed). Therefore, the difference vector for c now
becomes (∆i = 0,∆jexpanded = f(k, jcompressed) − f(k −
1, jcompressed),∆k = 1). Because the j-component depends
on indirect data lookups and can no longer be simplified
into a scalar constant, Stellar can no longer assume that the
partial sums will be unconditionally accumulated vertically
across the spatial array. These vertical PE-to-PE connections
are therefore removed, yielding the matmul array in Figure 4
with fewer PE-to-PE connections but more ports to outer
register files. Figure 9b illustrates how the spatial array’s
IterationSpace, appears after its Point2PointConns
are pruned based on the equations described above.

row X+1

row X

…

…
(a) Balancing across entire rows

row X+1

row X

…

…

row X+1

row X

…

…
(b) Balancing across each PE

Fig. 10: More or less flexible load-balancing strategies.

Load-balancing schemes can also affect the design of spatial
arrays. Figure 10b illustrates a load-balancing strategy where
any PE within a row can operate on data that would otherwise
have been sent to the upper row, if that PE would have oth-
erwise been idle. Each PE can independently be redistributed
work from the above row, and therefore it might no longer
receive useful data along its horizontal PE-to-PE connections.
Therefore, since horizontal PE-to-PE connections might no
longer transmit the necessary inputs, Stellar must replace them
with connections to outer regfiles. Contrast this to Figure 10a,
where load balancing operates at the granularity of an entire
row of PEs, preserving the horizontal connections.

After Point2PointConns have been pruned and re-
placed with IOConns based on the sparsity and load-
balancing specifications, the dataflow space-time transform
is applied to generate a final IterationSpace, as in
Figure 9c. Each Point in this new IterationSpace
represents a different PE in the final generated spatial array.
Multiple Points in Figure 9b may map to the same Point
in Figure 9c if they represent different timesteps for the same
PE.

Finally, every Point in Figure 9c is mapped to a Chisel
template of a PE, shown in Figure 11. Every Assignment
of the Point, such as a multiply-accumulate operation, is
translated to Chisel in the “User-Defined Logic” block. How-

Time 
Counter T-1

User-Defined 
Logic (e.g. MACs, 
comparisons, etc.)

IO Request 
Generator 
to RegFiles

Start / Stall

Data from PEs

Data from RFs

Data to PEs

Data to RFs

Addresses for
elements in RFs

Space Coordinates

Fig. 11: The architecture for a Stellar PE.
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ever, a PE may perform different operations in different time-
steps; for example, the variable c is initialized to 0 on line 4
of Listing 1, but is thereafter accumulated every subsequent
cycle on line 8. To calculate which operation to perform at
a specific time-step, every PE includes a “Time Counter”
register; when concatenated to the physical coordinates of
the PE, a space-time vector, (x, y, t), can be generated and
multiplied by the inverse of the space-time transform, T−1

to generate the original tensor iterators (i, j, k). Input- and
output-requests to outer register files are generated in the “IO
Request Generator.”

C. Private Memory Buffers

As described in Section III-E, Stellar users specify the dense
or sparse data formats, capacities, and bandwidths their private
memory buffers will support. The data formats are defined us-
ing the fibertree notation, where different dense/sparse formats
are defined for every axis (i.e. dimension) of a tensor.

Stellar then generates multiple pipeline stages — one for
each axis of the dense or sparse tensors that the buffer
stores — which read/write requests made by programmers
pass through. Dense axes generate simple address generators,
while Compressed, Bitvector, or Linked-List axes may require
indirect lookups to SRAMs which store metadata to determine
the final data addresses to read or write to. Figure 12 shows
example pipeline stages generated for a private memory buffer
holding tensors in the block-CSR [9] format.

For every read or write request, the programmer must
specify at runtime the address, length, and strides for each axis.
However, users can also optionally hardcode certain read/write
request parameters before hardware generation begins in order
to help Stellar make optimizations to both the memory buffers
and For example, Listing 6 shows how a Stellar user hardcodes
certain parameters to specify that a dense tensor memory
buffer will always produce 4×4 dense matrices, as illustrated
in Figure 13a. The address-generators in the memory buffer
can be simplified based on these hardcoded parameters. More
importantly, however, since the order in which the matrix
elements are generated is now known to Stellar’s compiler
ahead of runtime in Figure 13a, important optimizations can
be made to register files as described next in Section IV-D.

Listing 6: Hardcoding memory buffer read parameters
1 d e f hardCoded ( x : MemPipel ine ) = Map(
2 x . r e a d r e q . s p a n s ( 0 ) −> 4 .U,
3 x . r e a d r e q . s p a n s ( 1 ) −> 4 .U,

Axis-2 
Addr-Gen

Axis-1 
Addr-Gen 

Axis-0 
Addr-Gen 

RowId
Mem

Coord
Mem

Data
Mem

Addrs
Strides
Lengths

Compressed Dense Dense

Fig. 12: The read/write pipeline stages for a private memory
buffer holding block-CSR [9] tensors.

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

t=0
t=1
t=2
t=3

Addresses

(a) Generated by memory buffer.

(0,0)
(0,1)

(0,2)
(0,3)

(1,0)
(1,1)

(1,2)
(1,3)

(2,0)
(2,1)

(2,2)
(2,3)

(3,0)
(3,1)

(3,2)
(3,3)

t=0
t=1
t=2
t=3

Addresses

t=4
t=5
t=6

(b) Consumed by spatial array.

Fig. 13: The hardcoded order of the addresses of the elements
generated by a memory buffer or consumed by a spatial array,

4 x . r e a d r e q . d a t a s t r i d e s ( 0 ) −> 1 .U,
5 x . r e a d r e q . d a t a s t r i d e s ( 1 ) −> 4 .U)

D. Register Files

All spatial arrays in Stellar read from and write into register
files (regfiles). For the matmul example in Listing 1, every
input and output variable (A, B and C) must be stored in a
separate register file before being accessed by the spatial array.

However, the default, baseline register file design in Stellar
is quite expensive, as illustrated in Figure 14a. Every input
port and output port has access to all entries in the register
file simultaneously, and outputs are performed by searching
the coordinates of all entries.

The baseline register file design is expensive because Stel-
lar’s functional specifications (described in Section III-A) are
highly flexible and support indirect accesses whose coordi-
nates may not be known until runtime. The baseline design
therefore functions as a worst-case fallback for spatial arrays
with complicated and unpredictable regfile access patterns.
Fortunately, for most accelerators, Stellar’s optimization passes
can enormously reduce these overheads.

For example, to reduce the overhead of each individual input
or output port, optimization passes might determine that it is
sufficient for inputs and outputs to occur only at the edges of a
regfile as in Figure 14b. Further optimizations can narrow the
number of elements that need to be searched even further,
as in Figure 14c, where each output port observes only a
single element of the register file, to produce a simple feed-
forward array of shift registers. By selecting which edges to
designate as entry and exit points for the regfile, Stellar regfiles
can even perform various data layout transformations, such as
transpositions, as illustrated by Figure 14d.

To make all these optimizations, Stellar observes the order
in which inputs are requested and outputs are produced by a
spatial array depending on its dataflow, or by a private memory
buffer based on its hardcoded parameters.

For example, consider a register file which buffers inputs
in between a dense memory buffer storing the dense matrix
B from Listing 1, and a spatial array with the dataflow in
Figure 2b. Based on the IOConns in the spatial array’s
IterationSpace, described above in Section IV-B, Stel-
lar’s compiler can determine that elements of B are consumed
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(a) Unoptimized baseline regfile (b) Inputs/outputs only at edges (c) Each I/O port connecting to
only a single regfile entry at edges

(d) Regfile tranposing inputs

Fig. 14: Various register files generated by Stellar, with more or less aggressive optimizations. Observe that when input/output
ports can only connect to regfile edges, elements must travel through the regfile entries so they can reach the output ports.

by the spatial array in the order shown in Figure 13b; further-
more, if the memory buffer’s read parameters are hardcoded
as in Listing 6, Stellar’s compiler can determine that elements
of B exit the memory buffer in the order shown previously
in Figure 13a. Stellar’s compiler includes a number of hand-
written optimization passes; one of these passes checks if the
inputs to a regfile always enter it in the exact same order that
they exit it. If so, that regfile’s entry and exit options are set
such that it matches the efficient feedfordward regfile shown
in Figure 14c.

Similar optimization passes exist for other spatial arrays
with indirect accesses, or regfiles which perform transposi-
tions. Stellar’s compiler performs such optimization passes
sequentially, checking if progressively less efficient regfiles
can be generated, until finally falling back on the baseline,
default regfile when no potential optimizations can be found.

E. Load Balancers

To support load-balancing, Stellar generates load-balancer
modules which monitor regfile inputs to determine whether the
PEs that read from those regfiles have enough inputs available
to do useful work, or whether they will be idle.

Once the load-balancers determine that work should be
redistributed between PEs, they calculate space-time biases
to apply at runtime to the space-time transforms of the PEs to
which work will be redistributed. A space-time bias is a vector
addition, as seen in Equation 2, which modifies the unbalanced
space-time transform in Equation 1 from Section III-B:

T

 i
j
k

+

b1b2
b3

 =

xy
t

 (2)

where b1, b2, and b3 are scalar offsets which are calculated
based on the user’s load-balancing specification. When the
space-time bias gives the PEs new space-time coordinates at
runtime, they behave as if they were other PEs in other parts of
the spatial array, allowing them to take some of their workload.

F. Limitations

Although Stellar’s front-end specification language and
backend hardware generator support a wide variety of sparse
and dense accelerator designs, the existing tool is limited in its
ability to express or generate certain sophisticated cache hier-
archies found in prior work [38], [39]. Stellar’s private memory

buffers are explicitly managed by the programmer; however
some accelerators benefit most from hardware-managed caches
with unusual eviction policies [39]. Fortunately, this limitation
is mitigated to a degree by Stellar’s integration with the Chip-
yard [2] framework, which can provision Stellar-generated
SoCs with large L2 caches which can be shared by both
CPUs and accelerators, although support for custom eviction
or prefetching policies are left for future work.

For spatial arrays on the other hand, Stellar’s dataflow
descriptions (Section III-B) can currently only express affine
transformations, and cannot express recursive or hierarchi-
cal transformations such as tree-reductions. However, our
functionality specification language (Section III-A) is still
general enough that such compute structures can be manually
implemented by Stellar’s users, though at the cost of blurring
the separation of concerns between the functional behavior
of an accelerator and the scheduling of operations spatially
or temporally on it. For example, we were able with Stellar
to express the complex hierarchical mergers described in
SpArch [39]. After synthesis, we found that these mergers
consumed 13× the area of simpler, non-hierachical mergers
from OuterSPACE [26]. Therefore, even for recursive opera-
tions which don’t map easily to Stellar’s dataflow abstractions,
our experience indicates that such designs can still be specified
by the user and explored for area or performance tradeoffs.

V. PROGRAMMING INTERFACE

Stellar-generated accelerators are programmed using custom
RISC-V instructions, summarized in Table II. All instructions
revolve around data transfers from one memory unit to an-
other; for example, from DRAM to a private memory buffer,
or from a memory buffer to a register file. Spatial arrays begin
execution as soon as their input register files are filled.

When moving data from a source memory to a destination
memory, users set certain values, such as addresses, strides,
and fibertree axis types [31] for the source and destination.
For example, to move a sparse CSR matrix from DRAM into
a private memory buffer, programmers specify the addresses
of the matrix’s data and metadata arrays in DRAM, as well as
the address within the accelerator’s private memory that the
data will be copied to. To illustrate, Listing 7 shows two code
snippets in C using Stellar’s ISA: one moving a dense matrix
from DRAM into a private memory buffer called SRAM_A,
and another which moves a CSR matrix into SRAM_B.
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Opcode Rs1[19:16] Rs1[15:0] Rs2
set_address For src, dst, or both Axis DRAM/SRAM address, or regfile
set_span For src, dst, or both Axis Number of elements to move
set_data_stride For src, dst, or both Axis Stride
set_metadata_stride For src, dst, or both Axis and metadata type (e.g. ROW_ID or COORD) Stride
set_axis_type For src, dst, or both Axis “Dense”, “Compressed”, etc.

set_constant N/A ID of scalar or boolean constant to set: e.g.
should_trail_reads, should_interleave, etc.

True/false if boolean, scalar
integer otherwise

TABLE II: A representative subset of the commands in Stellar’s 64-bit RISC-V ISA

Listing 7: Moving matrices from DRAM into local memory.
1 // Moving in dense matrix
2 float matrix_A[DIM][DIM];
3
4 set_src_and_dst(DRAM, SRAM_A);
5
6 set_data_addr(FOR_SRC, matrix_A);
7
8 for (int axis = 0, axis < 2; axis++) {
9 set_span(FOR_BOTH, axis, DIM);

10 set_axis(FOR_BOTH, axis, DENSE);
11 }
12
13 set_stride(FOR_BOTH, /*addr-gen-axis=*/0, 1);
14 set_stride(FOR_BOTH, /*addr-gen-axis=*/1, DIM);
15
16 stellar_issue();
17
18 // Moving in CSR matrix
19 float matrix_B_data[DATA_SIZE];
20 int matrix_B_coords[DATA_SIZE];
21 int matrix_B_row_ids[N_ROWS];
22
23 set_src_and_dst(DRAM, SRAM_B);
24
25 set_data_addr(FOR_SRC, matrix_B);
26
27 set_metadata_addr(FOR_SRC, /*axis=*/0, ROW_ID,
28 matrix_B_row_ids);
29 set_metadata_addr(FOR_SRC, /*axis=*/0, COORDS,
30 matrix_B_coords);
31
32 set_span(FOR_BOTH, /*axis=*/0, ENTIRE_AXIS);
33 set_span(FOR_BOTH, /*axis=*/1, N_ROWS);
34
35 set_stride(FOR_BOTH, /*addr-gen-axis=*/0, 1);
36 set_metadata_stride(FOR_BOTH,
37 /*addr-gen-axis=*/0, /*axis=*/0,
38 COORDS, 1);
39 set_metadata_stride(FOR_BOTH,
40 /*addr-gen-axis=*/1, /*axis=*/0,
41 ROW_IDS, 1);
42
43 set_axis(FOR_BOTH, /*axis=*/0, COMPRESSED);
44 set_axis(FOR_BOTH, /*axis=*/1, DENSE);
45
46 stellar_issue();

VI. EVALUATION

Stellar allows users to efficiently express state-of-the-art
accelerator designs, and then automatically synthesizes RTL
for them comparable in performance and area consumption
to hand-designed accelerators. By generating actual hardware,
Stellar also enables architects to make insights into perfor-
mance bottlenecks which are caused by low-level interactions
between hardware, memory layouts, and data distributions
which are not always visible in higher-level simulators.

A. Methodology

To demonstrate that Stellar-generated designs are compet-
itive with hand-written implementations, we generate two
DNN accelerators from prior work: a dense DNN accelerator
modeled after Gemmini [12], which performs convolutions

and 8-bit quantized matrix multiplications with a 16×16
weight-stationary systolic array, and SCNN [28], which targets
convolutional networks which have been pruned for unstruc-
tured weight and activation sparsity. Using cycle-accurate
simulators [18], we compare the performance of both the
hand-written and Stellar-generated implementations on the
DNN workloads they were originally evaluated on in prior
work: an end-to-end ResNet50 [15] inference for Gemmini,
and AlexNet [20] for SCNN. For area and frequency compar-
isons, we synthesize designs using the ASAP7 PDK, and we
evaluate energy consumption on Joules using Intel 22nm.

B. Performance and Area Overheads

The Stellar-generated Gemmini accelerator achieved 90% of
the utilization of the handwritten Gemmini accelerator when
both were synthesized to 500 MHz, as shown by Figure 16a.
However, the Stellar-generated accelerator was successfully
synthesized at up to 1 GHz, while the handwritten Gemmini
could only reach 700 MHz. The handwritten Gemmini in-
cludes complicated, centralized loop-unrollers, whose address
generators failed to meet timing at higher frequencies; Stellar’s
more distributed memory-buffer address-generators were more
scalable.

Furthermore, the Stellar-generated Gemmini accelerator
only consumed 13% more area than the hand-designed ac-
celerator when both were synthesized to 500 MHz, as shown
in Table III, demonstrating that Stellar’s support for sparse
accelerators does not compromise the competitiveness and
efficiency of the dense accelerators that it generates. The area
overhead for the matmul array comes partially from the larger
amount of internal state in a Stellar-generated PE (such as
the “time” register in Figure 11), compared to handwritten
Gemmini PEs which have no internal counters. Furthermore,
Stellar-generated spatial arrays include global signals that start
and stall all PEs simultaneously. While this is useful for many
workloads, it is not needed in Gemmini-like workloads where
the memory buffers consuming partial sums from the matmul
array will always be ready to consume spatial array outputs.
These long global signals add further area overhead.
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Fig. 15: PE utilization of SCNN on AlexNet.
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Fig. 16: The performance of Stellar-generated accelerators on dense and sparse workloads.

Original Stellar-Generated
Area (µm2) Area (%) Area (µm2) Area (%)

Matmul array 334K 10% 420K 11%
SRAMs 2,225K 68% 2,247K 61%
Regfiles 25K 1% 104K 3%
Loop unrollers 259K 8% 482K 13%
Dma 102K 3% 109K 3%
Host CPU 337K 10% 337K 9%
Total 3,282K 100% 3,699K 100%

TABLE III: Area comparison between Gemmini accelerators.

Stellar’s power overhead ranges from 7% at best to 30%
at worst compared to the handwritten Gemmini on various
layers of ResNet50, as illustrated in Figure 17 when both were
synthesized to 500 MHz with the Intel 22nm node.

Finally, as illustrated in Figure 15, the Stellar-generated
SCNN achieved 83%-94% of the hand-designed accelerator’s
reported performance when executing a sparse, pruned model
of AlexNet. SCNN has a sophisticated design including a four-
dimensional PE topology, conversions back-and-forth between
dense and sparse data formats, and a heavily distributed
memory system, but Stellar’s abstractions easily covered this
design space while Stellar’s hardware generation flow deliv-
ered efficient and programmable RTL.

C. Identifying Sparse Accelerator Performance Bottlenecks

In addition to generating performant and efficient accelera-
tors, Stellar also enables architects to discover performance
bottlenecks which are only visible on real-world hardware
implementations. To illustrate, we generate a sparse matrix-
multiplication accelerator based upon OuterSPACE from prior
work [26], and we show how Stellar can provide insights into
how scattered accesses to pointers in DRAM can limit total
performance for certain irregular workloads.

Our Stellar-generated accelerator initially achieved an av-
erage throughput of only 1.42 GFLOP/s while performing
the highly-sparse matmuls that OuterSPACE was originally
evaluated on [8]; as shown in Figure 16b. OuterSPACE’s paper
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Fig. 17: Energy consumed per MAC on layers of ResNet50.

does not report performance for individual matmuls, but the
average throughput reported – 2.9 GFLOP/s – was noticeably
higher than that of the initial Stellar-generated one.

The Stellar-generated accelerator’s performance was
severely impacted by scattered accesses made to DRAM
when reading and writing partial sums. OuterSPACE stores
partial sums as small contiguous vectors scattered through
DRAM. To access a partial sum vector, the pointer to that
vector must first be read non-contiguously from DRAM.
Despite comprising less than 10% of the total memory traffic
in a typical matmul, we found that accesses to these pointers
initially posed a severe memory bottleneck for the accelerator,
due to control-dependencies imposed by the pointer accesses.
Any inefficiency in their reads or writes caused further
latency-sensitive stalls in the accelerator’s DMA.

This issue is compounded by simpler DMAs, such as
Stellar’s default DMA, which can only make one new memory
load/store request per cycle. Such DMAs are sufficient for
accelerators such as SCNN. However, when accessing scat-
tered pointers, one read request can only return a single scalar
pointer, causing costly stalls and underutilized bandwidth.

Fortunately, Stellar’s rapid generation of real RTL makes it
easy for users to explore and evaluate such design complexities
without hand-writing complicated, high-fidelity simulators.
Furthermore, Stellar’s strong separation of concerns enabled us
to mitigate this bottleneck with only minor modifications to the
DMA, without any changes to the memory buffers or spatial
arrays. We updated the DMA to generate up to 16 independent
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Fig. 19: Spatial arrays that merge scattered partial matrices.

DRAM read requests per cycle without changing total DRAM
bandwidth, increasing our throughput to 2.1 GFLOP/s.

D. Area and Performance Tradeoffs in Sparse Mergers

Stellar’s generation of real RTL also enables architects to
investigate performance, area, and hardware efficiency trade-
offs which cannot be explored by more abstract, higher-level
simulators. To illustrate, in this section, we show how Stellar
can be used to significantly reduce the area of partial matrix
mergers without compromising their performance on a variety
of sparse matrix multiplications.

Prior work [26], [38], [39] introduces various spatial arrays
that merge the scattered partial matrices produced by sparse
matrix multiplier arrays. Some works, such as GAMMA [38],
merge each row of a partial matrix on a different PE, each
generating one element every cycle as shown in Figure 19a.
Other accelerators, such as SpArch [39], do not partition
merging tasks in this way, but instead flatten the different
rows in a partial matrix into a single contiguous fiber, and pop
multiple elements from this fiber every cycle, as in Figure 19b.

The mergers which operate on different rows separately,
such as with GAMMA, take up far less area than the ones
which flatten partial matrices, such as the one used in SpArch.
For example, SpArch’s mergers consume over 60% of it’s
area, with 128 64-bit comparators used for a maximum
throughput of 16 elements per cycle, while GAMMA-like
mergers, when synthesized with Stellar, consume 13× less
area. However, the cheaper, row-partitioned mergers are more
sensitive to imbalances in the lengths of different rows of
the partial matrices. SpArch’s loop execution order generates
many small partial matrices which can have highly imbalanced
row-lengths, causing severe underutilization on GAMMA-like
mergers.

The original SpArch work [39] does not explore the po-
tential performance and area tradeoffs of using cheaper, row-
partitioned mergers at the cost of greater sensitivity to row-

length imbalances. However, for accelerators with severe area
or resource constraints, this trade-off may be worthwhile.

To investigate, we generated row-partitioned, low-area
mergers for SpArch with a maximum throughput of 32,
and compared their performance to the more expensive flat-
tened mergers from the handwritten accelerator, which have
a smaller maximum throughput of 16 but more comparators
in total in the mergers. As shown in Figure 18, the row-
partitioned mergers achieve at least 80% of the flattened
merger’s performance on over a third of the SuiteSPARSE
matrices that SpArch was tested on in its original publication.
In fact, on four of the matrices, the smaller, row-partitioned
merger performed better than the larger, flattened merger from
the original SpArch work, due to the row-partitioned merger’s
greater maximum theoretical throughput. Architects who face
area constraints and who expect that the matrices they merge
will be similar to poisson3Da or cop20k_A, may prefer
the row-partitioned mergers when building accelerators that
merge matrices in the same order that SpArch does.

As noted previously in Section IV-F, SpArch’s flattened
mergers, illustrated in Figure 19b, are not the best fit for
Stellar’s dataflow specification language. However, despite
this limitation, Stellar’s functionality specification language
was still generalizable enough to enable SpArch’s flattened
mergers to be implemented so that they could be compared to
the simpler, row-partitioned mergers more commonly used in
accelerators such as GAMMA. Furthermore, Stellar’s compiler
was capable of generating the RTL for the memory buffers,
regfiles, DMAs, and programming interfaces necessary to run
these matrix merging and sorting workloads without writing
custom Verilog for hardware components or testbenches.

VII. CONCLUSION

Stellar enables the rapid design, exploration, and generation
of both dense and sparse spatial accelerators, by allowing
architects to cleanly separate the different concerns that go
into designing an accelerator, and then generating synthe-
sizable RTL implementations and software interfaces which
are comparable to hand-written designs from prior work.
Our codebase, including our frontend specification language,
compiler and optimization passes, and software libraries, are
open-sourced. Stellar is also fully compatible with the Chip-
yard [2] chip design framework, enabling users to integrate
their designs into complete, programmable SoCs.
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