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Abstract
Package-level integration using multi-chip-modules (MCMs) 
is a promising approach for building large-scale systems. 
Compared to a large monolithic die, an MCM combines many 
smaller chiplets into a larger system, substantially reducing 
fabrication and design costs. Current MCMs typically only 
contain a handful of coarse-grained large chiplets due to the 
high area, performance, and energy overheads associated with 
inter-chiplet communication. This work investigates and 
quantifies the costs and benefits of using MCMs with fine-
grained chiplets for deep learning inference, an application 
domain with large compute and on-chip storage require-
ments. To evaluate the approach, we architected, imple-
mented, fabricated, and tested Simba, a 36-chiplet prototype 
MCM system for deep-learning inference. Each chiplet 
achieves 4 TOPS peak performance, and the 36-chiplet MCM 
package achieves up to 128 TOPS and up to 6.1 TOPS/W. The 
MCM is configurable to support a flexible mapping of DNN 
layers to the distributed compute and storage units. To miti-
gate inter-chiplet communication overheads, we introduce 
three tiling optimizations that improve data locality. These 
optimizations achieve up to 16% speedup compared to the 
baseline layer mapping. Our evaluation shows that Simba can 
process 1988 images/s running ResNet-50 with a batch size of 
one, delivering an inference latency of 0.50 ms.

1. INTRODUCTION
Deep learning (DL) has become critical for addressing com-
plex real-world problems. In particular, deep neural networks 
(DNNs) have demonstrated their effectiveness across a wide-
range of applications. State-of-the-art DNNs12 require bil-
lions of operations and hundreds of megabytes to store 
activations and weights. Given the trend toward even larger 
and deeper networks, the ensuing compute and storage 
requirements motivate the large-scale compute capability in 
DL hardware, which is currently addressed by a combina-
tion of large monolithic chips and homogeneous multi-chip 
board designs.9, 15 Previously proposed multi-chip DL accel-
erators have focused on improving total compute through-
put and on-chip storage size but have not addressed the 
scalability challenges associated with building a large-scale 
system with multiple discrete components.

Recently, the need for high compute throughput in an era 
of slowing transistor scaling has motivated advances in multi-
chip-module (MCM) integration to build large-scale CPUs3 

The original version of this paper appeared in the 
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Symposium on Microarchitecture (Columbus, OH, USA, Oct. 2019).

and GPUs.1 MCM packaging approaches can also reduce cost 
by employing smaller chiplets connected together postfabri-
cation, as yield losses cause fabrication cost to grow super-
linearly with die size. Packaging technologies such as organic 
substrates13 and silicon interposers11 can be used to assemble 
a large-scale MCM system. In addition, the recent advances in 
package-level signaling offer the necessary high-speed, high-
bandwidth signaling needed for a chiplet-based system.24 As a 
result, chiplet-based MCM systems can provide improved 
performance more efficiently than the board-level integra-
tion but with lower cost than monolithic chips. Although 
MCMs have been used for general compute systems, applying 
MCMs to high-performance DNN inference algorithms has 
not been previously examined. Specific challenges stem from 
the natural nonuniformity between on-chip and on-package 
bandwidth and latency. Although multi-chip systems also 
exhibit similar forms of nonuniformity, this paper focuses on 
the specific characteristics of MCM-based systems as they 
provide a natural progression beyond monolithic single-chip 
inference accelerators.

This paper presents Simba, a scalable deep-learning infer-
ence accelerator employing multi-chip-module-based integra-
tion. Each of the Simba chiplets can be used as a standalone, 
edge-scale inference accelerator, whereas multiple Simba 
chiplets can be packaged together to deliver a data-center-
scale compute throughput. To explore the challenges and eval-
uate the benefits of MCM-based inference accelerator 
architectures, we designed, implemented, and fabricated a 
prototype of Simba, consisting of 36 chiplets connected via a 
mesh network in an MCM.25 We specifically examine the 
implications of the nonuniform network access (NUNA) archi-
tecture with nonuniform latency and bandwidth for on-chip 
and on-package communication that lead to significant 
latency variability across chiplets. Such latency variability 
results in a long tail latency during the execution of individ-
ual inference layers. As a result, the overall performance for 
each layer is restricted by the slowest chiplet in the system, 
limiting scalability. To address these challenges, we propose 
three tail-latency-aware, nonuniform tiling optimizations tar-
geted at improving locality and minimizing inter-chiplet com-
munication: (1) nonuniform work partitioning to balance 
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Mapping DNN layers to a tile-based architecture is a well-
studied research problem.6, 19 The state-of-the-art DNN tiling 
typically assumes a flat architecture with uniform latency and 
bandwidth across processing elements (PEs) and focuses on 
data reuse for reducing global bandwidth demands. This 
assumption is acceptable for small-scale systems, as the com-
munication latency variability is small and the computation 
is often tolerant of communication latencies. However, as the 
DNN inference performance is scaled-up to larger systems, 
the execution time decreases and latency-related effects 
become more important. Furthermore, in the large-scale sys-
tems with heterogeneous interconnect architectures such as 
MCMs, the assumptions of uniform latency and bandwidth 
in selecting DNN tiling can degrade the performance and 
energy efficiency. Simba is the first work that quantitatively 
highlights the challenge of mapping DNN layers to nonuni-
form, MCM-based DNN accelerators and proposes communi-
cation-aware tiling strategies to address the challenge.

3. SIMBA ARCHITECTURE AND SYSTEM
To understand the challenges and opportunities of using 
MCMs for building large-scale, deep-learning systems, we 
designed, implemented, fabricated, and characterized 
Simba, the first chiplet-based deep-learning system. This 
section first presents an overview of the Simba architecture 
and its default uniform tiling strategy. We then describe 
Simba’s silicon prototype and present a detailed character-
ization of the Simba system in Section 4.

3.1. Simba architecture
Tile-based architectures have been frequently proposed for 
deep-learning accelerator designs.6, 5, 20 Our design target is 
an accelerator scalable to data center inference, where state-
of-the-art data center accelerators deliver around 100 tera-
operations-per-second (TOPS). For example, the first 
generation of the tensor processing unit (TPU) delivers 92 
TOPS15 and is designed for inference applications. One sim-
ple approach to achieve this design goal is to increase the 
number of tiles in a monolithic single chip. However, 

compute latency with communication latency; (2) communica-
tion-aware data placement to minimize inter-chiplet traffic; 
and (3) cross-layer pipelining to improve resource utilization.

2. BACKGROUND
Package-level MCM integration is a promising alternative for 
assembling large-scale systems out of small building blocks 
known as chiplets. Such systems consist of multiple chiplets 
connected together via on-package links using a silicon 
interposer or an organic substrate and employing efficient 
intra-package signaling circuits.3, 24 Compared to a large 
monolithic die, MCMs can reduce (1) design costs, because 
logic design, verification, and physical design are all easier 
on a small chip than a large chip; and (2) fabrication costs, as 
the much lower manufacturing yield of large chips makes 
them far more expensive than small chips. In addition, dif-
ferent scales of systems can be created merely by adjusting 
the number of chiplets placed in a package, without requir-
ing a different chip tapeout for each market segment. MCMs 
have been recently applied to a general-purpose CPU design3 
as an alternative to building multi-core CPUs on reticle-lim-
ited large die. They have also been an active research area for 
scaling of multi-CPU16 and multi-GPU systems.1 However, 
package-level wires do not provide the same communication 
density or energy/bit as on-chip wires. Consequently, MCM 
architects and software developers must still consider the 
nonuniform bandwidth, latency, and energy present in these 
systems to achieve an efficient application performance.

An MCM-based system has a heterogeneous interconnect 
architecture, as the available intra-chiplet bandwidth is 
expected to be significantly higher than available inter-chiplet 
bandwidth. In addition, sending data to remote chiplets incurs 
additional latency. This latency may include on-chip wire 
delays to move data to the edge of the chiplet, synchronizer 
delays for crossing clock domains, serialization and deserial-
ization latency in high-speed communication links, and the 
on-package wire delays of inter-chiplet links. As a result, the 
communication latency between two elements in an MCM 
depends heavily on their spatial locality on the package.
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Figure 1. Simba architecture from package to processing element (PE).
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networks with diverse layer dimensions, Simba supports flex-
ible communication patterns across the NoC and NoP. Both 
NoC and NoP use a mesh topology with a hybrid wormhole/
cut-through flow control. Specifically, unicast packets use 
wormhole flow control for large packet size, whereas multi-
cast packets are cut-through to avoid wormhole deadlocks. 
Each Simba PE can unicast to any local or remote PE for cross-
PE partial-sum reduction, to any local or remote Global PE to 
transmit output activation values, and to any local or remote 
chiplet controller to signal execution completion. A PE does 
not need to send multicast packets as its computation 
requires only point-to-point communication. In addition to 
unicast communication, a Global PE can also send multicast 
packets to local and remote PEs for flexible data tiling.

3.2. Simba silicon prototype
We implemented, fabricated, and tested a silicon prototype 
of the Simba system, as shown in Figure 2, with the microar-
chitecture parameters listed in the original Simba paper.21 
We chose parameters so that a Simba chiplet has area and 
power similar to an efficient edge system, such as DianNao5 
or Eyeriss,6 whereas a full Simba package is comparable to a 
data-center-scale system such as TPU.15 Table 1 shows the 
synthesis area breakdown of key components in the Simba 
chiplet architecture.

 1 //Package level
 2 for p3 = [0: P3):
 3   for q3 = [0: Q3):
 4     parallel_for k3 = [0: K3):
 5       parallel_for c3 = [0: C3):

building a flat network with hundreds of tiles would lead to 
high tile-to-tile communication latency, as examined in 
both multi-core CPU7 and accelerator10 research.

Simba adopts a hierarchical interconnect to efficiently 
connect different processing elements (PEs). This hierarchi-
cal interconnect consists of a network-on-chip (NoC) that 
connects PEs on the same chiplet and a network-on-package 
(NoP) that connects chiplets together on the same package. 
Figure 1 illustrates the three-level hierarchy of the Simba 
architecture: package, chiplet, and PE. Figure 1(a) shows a 
Simba package consisting of a 6×6 array of Simba chiplets 
connected via a mesh interconnect. Each Simba chiplet, as 
shown in Figure 1(b), contains an array of PEs, a global PE, a 
NoP router, and a controller, all connected by a chiplet-level 
interconnect. To enable the design of a large-scale system, all 
communication between the PEs, Global PEs, and controller 
is designed to be latency-insensitive4 and is sent across the 
interconnection network through the NoC/NoP routers.

Simba PE. Figure 1(c) shows the microarchitecture of the 
Simba PE, which includes a distributed weight buffer, an 
input buffer, parallel vector MAC units, an accumulation buf-
fer, and a postprocessing unit. Each Simba PE is similar to a 
scaled-down version of NVDLA, a state-of-the-art DL accelera-
tor product.22 The heart of the Simba PE is an array of parallel 
vector multiply-and-add (MAC) units that are optimized for 
efficiency and flexibility. The Simba PE uses a weight-station-
ary dataflow6: weights remain in the vector MAC registers and 
are reused across iterations, although new inputs are read 
every cycle. Each vector MAC performs an 8:1 dot-product 
along the input channel dimension C to exploit an efficient 
spatial reduction. To provide flexible tiling options, the Simba 
PE also supports cross-PE reduction with configurable pro-
ducers and consumers. If the current PE is the last PE on the 
reduction chain, it first sends partial sums to its local postpro-
cessing unit that performs ReLU, truncation and scaling, 
pooling, and bias addition. The final output activation is sent 
to the target Global PE for computation of the next layer.

Simba global PE. The Global PE serves as a second-level 
storage for input/output activation data to be processed by 
the PEs. To support flexible partitioning of the computation, 
the Global PE can either unicast data to one PE or multicast 
to multiple PEs, even across chiplet boundaries. The Global 
PE has a multicast manager that oversees these producer-
consumer relationships. The Global PE also serves as a plat-
form for near-memory computation. Many DNNs feature 
some computation that has low data reuse, such as element-
wise multiply/add or depth-wise convolution. The Global PE 
can perform such computations locally to reduce communi-
cation overhead for these types of operations.

Simba controller. Each Simba chiplet contains a RISC-V 
processor core2 that is responsible for configuring and man-
aging the chiplet’s PEs and Global PE states via memory-
mapped registers using an AXI-based communication 
protocol. After all states are configured, the RISC-V triggers 
the execution in the active PEs and Global PEs and waits for 
these blocks to send done notifications via interrupts. 
Synchronization of chiplet control processors across the 
package is implemented via memory-mapped interrupts.

Simba interconnect. To efficiently execute different neural 

(a) Simba chiplet (b) Simba package
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Figure 2. Simba silicon prototype.

Table 1. Area breakdown of the Simba system.

Partition Component Area (lm)2

PE Vector MACs 12K
Weight Buffer 41K
Input Buffer 11K

Accumulation Buffer 24K
NoC Router 19K

Global PE Distributed Buffer 125K
NoC Routers 27K

RISC-V Processor 109K
NoP NoP Router 42K
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tiled temporally, spatially, or both at each level of the system 
hierarchy: package, chiplet, PE, and vector MAC. The loop 
bounds and orderings in Listing 1 are configurable in Simba 
so that users can flexibly map computation to the Simba sys-
tem. In particular, the default dataflow uniformly partitions 
weights along the input channel (C) and the output channel 
(K) dimensions, as noted in the parallel_for loops. In 
addition, Simba can also uniformly partition along the 
height (P) and width (Q) dimensions of an output activation 
across chiplets and PEs to support flexible tiling. Section 5 
highlights the limitations of this approach when mapping 
networks onto a large-scale, nonuniform network access 
architecture with an MCM-based integration.

We developed a flow that uses Caffe14 to map a DNN infer-
ence application to the Simba system, which primarily deter-
mines an efficient tiling strategy for the dataflow that best 
exploits data reuse in the memory hierarchy. To facilitate the 
evaluation of different mapping alternatives, we also devel-
oped a fast, analytical energy model for Simba that quantifies 
the energy cost of a particular mapping, similar to the meth-
odology discussed in prior work.6, 19 The compilation process 
starts with a mapper that is provided with data regarding avail-
able system resources (such as the number of PEs, the num-
ber of Global PEs, and the sizes of buffers in the system) and 
the parameters of a given layer from the Caffe specification. 
The mapper determines which PE will run each portion of the 
loop nest and in which buffers the activations and weights are 
stored. As this mapping is a logical one, the mapper is fol-
lowed by a binder which decides in which physical resource in 
the Simba topology the loop nests and data structures are 
placed. We use a random search algorithm to sample the 
mapping space and use the energy and performance models 
to select good mappings and placements. Finally, the flow 
generates the configuration binaries for each chiplet that 
implement the execution created by the mapper and binder.

4. SIMBA CHARACTERIZATION
This section details the performance characterization of 
Simba, focusing on achieved scalability using the uniform-
tiling baseline. All evaluation results are measured using the 
prototype system.

4.1. Methodology
Figure 3 shows the experimental setup for measuring the 
performance and power of the Simba prototype system. The 
silicon prototype test board is attached to an x86 host through 
PCI-E using a Xilinx FPGA. To measure the performance of 
the Simba prototype system, we use software running on the 
RISC-V to query cycle counters built into the RISC-V micro-
controllers. Power and performance measurements begin 
after the weights have been loaded into each PE’s weight buf-
fer and the inputs have been loaded into the Global PE buf-
fers. Unless otherwise noted, the chiplets operate at a core 
voltage of 0.72 V, a PE frequency of 1.03 GHz, and GRS band-
width of 11 Gbps. We use sense resistors on the board power 
supplies and a digital acquisition module to measure energy 
during experiment execution. As the chiplets support inde-
pendent clock frequencies for different units (PEs, Global 
PEs, RISC-V, and NoP routers), we can vary these frequencies 

 6 // Chiplet level
 7 for p2 = [0: P2):
 8   for q2 = [0: Q2):
 9     parallel_for k2 = [0: K2):
10       parallel_for c2 = [0: C2):
11 // PE level
12 for r = [0: R):
13   for s = [0: S):
14     for k1 = [0: K1):
15       for c1 = [0: C1):
16         for p1 = [0: P1):
17           for q1 = [0: Q1):
18 // Vector-MAC level
19 parallel_for k0 = [0: K0):
20   parallel_for c0 = [0: C0):
21     p = (p3 * P2 + p2) * P1 + p1;
22     q = (q3 * Q2 + q2) * Q1 + q1;
23     k = ( (k3 * K2 + k2) * K1 + k1) * K0 + k0;
24      c = ( (c3 * C2 + c2) * C1 + c1) * C0 + c0;
25    OA[p,q,k] += IA[p-1+r,q-1+s,c] * W[r,s,c,k];

Listing 1. Simba baseline dataflow.

As shown in Figure 2a, the 2.5 × 2.4 Simba chiplets were 
implemented in a TSMC 16 nm FinFET process technol-
ogy.25 Each Simba package (Figure 2b) contains an array 6×6 
of chiplets connected on an organic package substrate using 
a ground-referenced signaling (GRS) technology for intra-
package communication.24 The top and bottom rows of each 
chiplet include eight chiplet-to-chiplet GRS transceiver 
macros. Four macros are configured as receivers and four as 
transmitters. Each transceiver macro has four data lanes 
and a clock lane with configurable speed from 11 Gbps/pin 
to 25 Gbps/pin, consuming 0.82–1.75 pJ/bit, with a total 
peak chiplet bandwidth of 100 GB/s. We chose GRS as our 
communication mechanism because it delivers 3.5× higher 
bandwidth per unit area and lower energy per bit compared 
to other MCM interconnects.3

The prototype chiplets were implemented using a glob-
ally asynchronous, locally synchronous (GALS) clocking 
methodology,8 allowing independent clock rates for indi-
vidual PEs, Global PEs, RISC-V processors, and NoP routers. 
Running in a single-chiplet configuration, Simba proto-
types have been measured to operate correctly in the lab at 
a minimum voltage of 0.42 V with a 161 MHz PE frequency, 
achieving 0.11 pJ/Op (9.1 TOPS/W) core power efficiency on 
a peak-utilization convolution micro-benchmark. At 1.2 V, 
each chiplet operates with a 2 GHz PE frequency for a peak 
throughput of 4 TOPS. The 36-chiplet Simba system is func-
tional over a slightly narrower voltage range, from 0.52 to 
1.1 V, achieving 0.16 pJ/op at 0.52 V and 484 MHz; at 1.1 V, 
the 36-chiplet system achieves a 1.8 GHz PE frequency and 
128 TOPS.

3.3. Simba baseline tiling
To map the DNN layers onto the hierarchical tile-based 
architecture, we first use a state-of-the-art DNN tiling strat-
egy that uniformly partitions weights spatially, leveraging 
model parallelism.22, 15, 5, 20 Listing 1 shows the default tiling 
in a loop-nest form. Each dimension of a DNN layer can be 
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4.2. Performance/energy overview
Figure 4 summarizes the performance and energy measure-
ments across all ResNet-50 layers. Each point represents a 
unique mapping for that layer, whereas different colors show 

to change the compute-to-bandwidth ratios for our experi-
ments. The NoC and NoP routing tables use dimension-
ordered X-Y routing for all inter-chiplet communication. 
Although all 36 Simba chiplets are functional, our evaluation 
uses 32 chiplets, as it is easier to partition computation by 
powers of two because the number of input channels (C) and 
output channels (K) are typically powers of two.

We focus our application measurements on ResNet-50,12 
a state-of-the-art, representative deep-learning network, and 
evaluate its layers running on the Simba system with a batch 
size of one, as low-latency inference is a highly critical 
deployment scenario for data center inferencing.15 We com-
pile and run each layer independently, except when we map 
multiple layers to different physical partitions of Simba and 
execute them in a pipelined manner. Networks are pre-
trained and quantized to 8-bit using TensorRT without accu-
racy loss. We believe that the diversity of layers in ResNet-50 
provides a sufficient breadth to cover a wide range of behav-
iors across different convolutional networks.

Figure 4. Measured performance and energy and running ResNet-50 on the fabricated Simba prototype. Each point is a valid workload 
mapping onto the system; each column cluster shows the different performance and energy achieved by different mappings of the same 
workload. Each symbol shape represents a different number of active chiplets used for the mapping.
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Figure 3. Bench measurement setup for the Simba prototype.
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the number of chiplets active for that mapping. Latency is 
normalized to a hypothetical best-achievable latency that 
would be realized if each of the 576 PEs of the system oper-
ated with 100% utilization and no communication or syn-
chronization overheads. Simba provides a large number of 
mapping options with drastically different performance and 
energy profiles, highlighting the importance of strategies for 
efficiently mapping DNNs to hardware. The figure also dem-
onstrates the highly variable behavior of different layers. For 
example, the most energy-efficient configurations of layer 
res3[b-d]_branch2b achieve almost an order of magni-
tude better efficiency than those of res3a_branch2a. The 
degree of data reuse highly influences the efficiency; layers 
with high reuse factors, for example, 3×3 the convolution in 
3[b-d]_branch2b, tend to perform computation more effi-
ciently than layers that require more data movement. Finally, 
although increasing the number of chiplets used in the sys-
tem improves performance, it also leads to increased energy 
cost for chiplet-to-chiplet communication and synchroniza-
tion. Efficiency can drop by nearly an order of magnitude for 
some layers, which further emphasizes the effect of data 
movement on overall efficiency. To better understand the sys-
tem-level trade-offs, the remainder of this section character-
izes the sensitivity of Simba to mapping alternatives, layer 
parameters, bandwidth, latency, and weak scaling, and 
includes a comparison to modern GPUs.

4.3. Layer sensitivity
Figure 5 shows the performance scalability of running three 
different layers in ResNet-50 across different numbers of 
chiplets. Although the performance of res2[a-c]_branch2b 
initially improves with increased chiplet count, the perfor-
mance gains cease beyond eight chiplets. As one of the early 
layers of the network, the number of weights in this layer is so 
small that it cannot fully utilize the compute throughput of 
Simba. The performance degrades with 32 chiplets because 
the inter-PE communication costs overwhelm the limited par-
allelism. By contrast, the performance of the res2a_branch1 
layer improves when increasing the number of chiplets from 1 
to 8, though it stops improving from 8 to 32 chiplets. This layer 
has more compute parallelism than res2[a-c]_
branch2b, but it still does not have enough to fully over-

come the overheads of inter-chiplet communication.
The res5[a-c]_branch2b layer demonstrates the best 

performance scaling, with improvements observed up to 32 
chiplets. However, the performance scaling slows down signifi-
cantly past eight chiplets due to communication overheads. Of 
the 53 layers of ResNet-50, 12 follow the behavior of res3a_
branch1, 24 follow that of res5[a-c]_branch2b, and the 
remaining 17 have behavior similar to res2[a-c]_branch2b. 
These measurements demonstrate that the amount of com-
pute parallelism that an MCM can leverage varies from layer to 
layer, and that the cost of communication can hinder the ability 
to exploit that parallelism, even on a single chiplet.

4.4. NoP bandwidth sensitivity
Figure 6 shows how execution time is affected by NoP band-
width for two representative ResNet layers when mapped to 
32 chiplets. We adjusted the bandwidth of the NoP relative to 
the intra-chiplet compute performance to measure the net-
work bandwidth sensitivity. For res3[a-d]_branch2b, the 
increased bandwidth between chiplets results in only a 5% 
decrease in execution time, indicating that this layer is not 
bound by the NoP bandwidth or inter-chiplet communication 
latency. However, for res3a_branch1, the increased 
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improvement of Simba compared to V100 (5.4×) and T4 (2.9×). 
When running ResNet-50 with a larger batch size, instead of 
exploiting the batch-level parallelism like GPUs, Simba would 
run each batch sequentially. As a result, we expect that the 
throughput of Simba is close to that of running with a batch 
size of one.

5. SIMBA NONUNIFORM TILING
This section presents the details of two novel DNN workload 
tiling techniques that target the nonuniform latency and 
bandwidth presented by large-scale MCM-based systems, 
nonuniform work partitioning and communication-aware 
data placement. Our results indicate the importance of com-
munication-latency-aware tiling when mapping DNN work-
loads to large-scale, hierarchical systems.

5.1. Nonuniform work partitioning
Efficient use of parallel systems requires proper load balanc-
ing among the components in the system. Failure to prop-
erly balance the load on the system leads to higher latency 
and energy caused by resources waiting for the slowest unit 
to complete, that is, increased tail latency. The total execu-
tion time can be subdivided into two major components: 
communication latency and compute latency. The state-of-
the-art DNN tiling strategies typically assign the same 
amount of the work to each of the available resources.23 
However, this approach breaks down for large-scale sys-
tems, especially when the PEs are spatially distributed with 
different communication latencies among them.

To address this limitation, we propose a nonuniform work 
partitioning strategy that considers communication latencies. 
Instead of uniformly assigning the same amount of work to 
each PE, we nonuniformly partition the work across the PEs. 
PEs closer to the data producers will perform more work to 

bandwidth decreases execution time by 27%, indicating that 
this layer is bottlenecked by communication between 
chiplets. Because an MCM-based system intrinsically has a 
nonuniform network architecture between intra-chiplet and 
inter-chiplet PEs, mapping policies must consider the differ-
ent latency and bandwidth parameters to deliver good perfor-
mance and efficiency.

4.5. NoP latency sensitivity
In addition to lower bandwidth, the NoP has higher latency 
than the NoC due to inter-chiplet signaling overheads. To 
isolate the effect of NoP latency, we ran experiments map-
ping layers to four chiplets, but adjusted the locations of the 
selected chiplets in the package to modulate latency. Figure 7 
shows the effect of increasing the longest inter-chiplet 
latency from 2 hops to 12 hops for res4a_branch1. The 
figure shows the execution time normalized to a configura-
tion of adjacent chiplets, with the chiplet selection shown 
under each bar. With active chiplets further apart, the over-
all execution time increases by up to 2.5× compared to exe-
cution on adjacent chiplets. Communication latency is 
typically less pronounced for small-scale systems but plays a 
significant role in achieving good performance and energy 
efficiency for a large-scale, MCM-based system like Simba.

4.6. Comparisons with GPUs
Figure 8 compares Simba to NVIDIA’s V100 and T4 GPUs. 
We run ResNet-50 with different batch sizes and compare to 
the GPU results that are published.18 Due to Simba’s limited 
on-package storage capacity for input activations, we only 
run Simba at batch size one and two. Unlike GPUs, Simba is 
designed for low-latency inference with a small batch size, 
which motivates the use of distributed and persistent weight 
storage to reduce data movement. The Simba package, such 
as the MCM interface, has substantially a smaller total sili-
con area (216) than T4 (525) or V100 (815), due to differences 
in math precision, on-chip storage, DRAM interface, and 
types of computation supported in these architectures.

Figure 8a shows the throughput of Simba, V100, and T4 
running ResNet-50. Simba delivers 1.8× and 1.9× better through-
put at batch size one compared to V100 and T4, respectively. 
Figure 8b illustrates the corresponding energy efficiency 

Figure 8. Throughput and efficiency of Simba, V100, and T4 running 
ResNet-50 with different batch sizes.
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improvement is highly sensitive to the compute-and-commu-
nication ratio in a given mapping. For example, when either 
compute or communication is significantly dominating the 
overall execution latency, as in the case of res5a_branch1, 
incrementally modulating the amount of work each PE per-
forms provides little performance improvement. However, 
when compute and communication latencies are more com-
parable, which are typically desired to achieve good mapping, 
the performance improvement is more pronounced, as in the 
case of res2[b-c]_branch2c.

5.2. Communication-aware data placement
The communication latency in a parallel system can have a 
large effect on the overall system performance, as observed 
in multi-core and multi-GPU characterizations.17 Due to the 
limited scale of today’s deep-learning accelerators, most 
have one unified global buffer that supplies data to all of the 
PEs.6, 5, 22 However, in large-scale MCM systems where on-
chip buffers are spatially distributed among the chiplets, the 
communication latency becomes highly sensitive to the 
physical location of data. Figure 11 illustrates how data 
placement affects communication distances and latencies. 
For example, if the Src chiplet in Figure 11(a) broadcasts 
data to the other chiplets, the arrival time of the data will vary 
greatly depending the distance of the receiving chiplets from 
the Src. Depending on the amount of computation each 

maximize physical data locality, whereas PEs that are further 
away will do less work to decrease the tail latency effects. Figure 9 
illustrates an example of nonuniform work partitioning using 
a 4-chiplet system. In this example, we assume that the input 
activation (IA) is physically stored in the Global PEs of 
Chiplet0 and Chiplet2, whereas the weights (W) and the 
work are partitioned across all the four chiplets. During execu-
tion, the Global PE of Chiplet0 will multicast a slice of IA to 
PEs in both Chiplet0 and Chiplet1. Because the commu-
nication latencies from the Chiplet0 Global PE to the PEs in 
Chiplet0 and Chiplet1 are different, Chiplet1 will fall 
behind. To prevent the longer communication to Chiplet1 
from increasing the tail latency of the execution, we can adjust 
the amount of computation that each chiplet is assigned in a 
manner inversely proportional to its communication distance 
from the source. In the example as shown in Figure 9, 
Chiplet0 and Chiplet2 are provided with larger chunks of 
work (Kleft), whereas Chiplet1 and Chiplet3 get the smaller 
chunks (Kright). This work schedule evens out the completion 
time across the chiplets, thereby improving overall system per-
formance. For simplicity, this example only shows nonuni-
form partitioning with respect to input activations. A similar 
technique can be used to mitigate the communication latency 
for output activations to the destination chiplets by using non-
uniform partitioning along the C dimension.

The variation in communication latency is quite pronounced 
in large-scale systems such as Simba, with hundreds of 
spatially distributed PEs. To dynamically adjust the amount 
of work that each PE performs, we use the performance 
counters within each PE to collect accurate latency and utili-
zation information during the initial execution of a layer. We 
then adjust the work distribution for the subsequent execu-
tions of each layer based on the latency variation across PEs.

Figure 10 illustrates the measured performance improve-
ment using nonuniform work partitioning. For each of the lay-
ers, we pick the highest performance uniform tiling from 
Figure 5 as the baseline. We then measure the execution time 
of different chiplets and identify layers with a large tail latency. 
For these layers, we use nonuniform work partitioning to shift 
the computation from the tail PEs to the PEs that are closer to 
the data. Depending on layer dimensions, we achieve up to 
15% performance improvement compared to the best uni-
form tiling for a given layer. The achievable performance 
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Figure 10. Nonuniform work partition for ResNet-50 with speedup 
normalized to the best-performing tiling.
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Figure 11. Data placement on the Simba system. (a) Assessment of the relative latency to different chiplets that receive data from Src.  
(b) Default input activation (IA) and output activation (OA) placement where data is sequentially placed from the Global PE of the first 
chiplet. (c) An improved IA placement at the center of the package so that data can be multicast to all chiplets. (d) OA placement with even 
distribution along the periphery of the package to minimize OA communication latency.
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chiplet performs, such variations in communication dis-
tance could significantly limit the achievable speedup in a 
distributed, tile-based system like Simba, motivating the 
need for data placement optimizations.

Although optimal data placement is an NP-hard prob-
lem, we use a practical greedy algorithm to iteratively deter-
mine where input and output activation data should be 
placed in the Simba system. The algorithm starts by per-
forming a placement of the input activation data blocks. 
Once the input activations are placed, the same greedy algo-
rithm is executed for tiles of output activations. Because a 
previous stage of the mapping process has already deter-
mined the data tiling, this stage need only focus on data 
placement and not re-tiling. Figure 11(b) shows a naive data 
placement with a sequential allocation of input activations 
to the chiplets on the top row and output activations in the 
next six chiplets. Figure 11(c) shows a better assignment of 
IAs to chiplets, selecting the four in the middle that mini-
mize aggregate multicast hop-count to all chiplets. Finally, 
Figure 11(d) shows a placement of output activations on 
chiplets in regions where OA accumulation can occur.

Figure 12 shows the performance improvement of ResNet-50 
layers with optimized data placement. Although all of the lay-
ers use 32 chiplets, many of them have different communica-
tion patterns. For example, layers like res2[a-c]_branch2c 
communicate frequently within a group of eight chiplets. 
In this case, it is better to group those chiplets together to 
minimize communication cost. In contrast, layer res4a_
branch1 must broadcast from a single chiplet to all 32 chiplets. 
In this case, instead of placing the source chiplet sequen-
tially at the upper left corner, placing it at the center of the 
package leads to a 5% performance improvement. Data 
placement optimization results in up to 15% improved per-
formance compared to the best achieved baseline.

6. CONCLUSION
This work presented Simba, a scalable MCM-based deep-
learning inference accelerator architecture. Simba is a hetero-
geneous tile-based architecture with a hierarchical 
interconnect. We developed a silicon prototype system con-
sisting of 36 chiplets that achieves up to 128 TOPS at high 
energy efficiency. We used the prototype to characterize the 

overheads of the nonuniform network of an MCM-based 
architecture, observing that load imbalance and communica-
tion latencies contribute to noticeable tail-latency effects. We 
then showed how considering the nonuniform nature of sys-
tem can help improve performance through techniques such 
as nonuniform work partitioning, communication-aware 
data placement, and cross-layer pipelining. Applying these 
optimizations results in performance increases of up to 16% 
compared to naive mappings.
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Figure 12. Data placement for ResNet-50 layers with speedup 
normalized to the best performing tiling.
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