
JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 107

Simba: Scaling Deep-Learning
Inference with Chiplet-Based
Architecture
By Yakun Sophia Shao, Jason Cemons, Rangharajan Venkatesan, Brian Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller,
Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,
C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler

DOI:10.1145/3460227

Abstract
Package-level integration using multi-chip-modules (MCMs)
is a promising approach for building large-scale systems.
Compared to a large monolithic die, an MCM combines many
smaller chiplets into a larger system, substantially reducing
fabrication and design costs. Current MCMs typically only
contain a handful of coarse-grained large chiplets due to the
high area, performance, and energy overheads associated with
inter-chiplet communication. This work investigates and
quantifies the costs and benefits of using MCMs with fine-
grained chiplets for deep learning inference, an application
domain with large compute and on-chip storage require-
ments. To evaluate the approach, we architected, imple-
mented, fabricated, and tested Simba, a 36-chiplet prototype
MCM system for deep-learning inference. Each chiplet
achieves 4 TOPS peak performance, and the 36-chiplet MCM
package achieves up to 128 TOPS and up to 6.1 TOPS/W. The
MCM is configurable to support a flexible mapping of DNN
layers to the distributed compute and storage units. To miti-
gate inter-chiplet communication overheads, we introduce
three tiling optimizations that improve data locality. These
optimizations achieve up to 16% speedup compared to the
baseline layer mapping. Our evaluation shows that Simba can
process 1988 images/s running ResNet-50 with a batch size of
one, delivering an inference latency of 0.50 ms.

1. INTRODUCTION
Deep learning (DL) has become critical for addressing com-
plex real-world problems. In particular, deep neural networks
(DNNs) have demonstrated their effectiveness across a wide-
range of applications. State-of-the-art DNNs12 require bil-
lions of operations and hundreds of megabytes to store
activations and weights. Given the trend toward even larger
and deeper networks, the ensuing compute and storage
requirements motivate the large-scale compute capability in
DL hardware, which is currently addressed by a combina-
tion of large monolithic chips and homogeneous multi-chip
board designs.9, 15 Previously proposed multi-chip DL accel-
erators have focused on improving total compute through-
put and on-chip storage size but have not addressed the
scalability challenges associated with building a large-scale
system with multiple discrete components.

Recently, the need for high compute throughput in an era
of slowing transistor scaling has motivated advances in multi-
chip-module (MCM) integration to build large-scale CPUs3

The original version of this paper appeared in the
Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (Columbus, OH, USA, Oct. 2019).

and GPUs.1 MCM packaging approaches can also reduce cost
by employing smaller chiplets connected together postfabri-
cation, as yield losses cause fabrication cost to grow super-
linearly with die size. Packaging technologies such as organic
substrates13 and silicon interposers11 can be used to assemble
a large-scale MCM system. In addition, the recent advances in
package-level signaling offer the necessary high-speed, high-
bandwidth signaling needed for a chiplet-based system.24 As a
result, chiplet-based MCM systems can provide improved
performance more efficiently than the board-level integra-
tion but with lower cost than monolithic chips. Although
MCMs have been used for general compute systems, applying
MCMs to high-performance DNN inference algorithms has
not been previously examined. Specific challenges stem from
the natural nonuniformity between on-chip and on-package
bandwidth and latency. Although multi-chip systems also
exhibit similar forms of nonuniformity, this paper focuses on
the specific characteristics of MCM-based systems as they
provide a natural progression beyond monolithic single-chip
inference accelerators.

This paper presents Simba, a scalable deep-learning infer-
ence accelerator employing multi-chip-module-based integra-
tion. Each of the Simba chiplets can be used as a standalone,
edge-scale inference accelerator, whereas multiple Simba
chiplets can be packaged together to deliver a data-center-
scale compute throughput. To explore the challenges and eval-
uate the benefits of MCM-based inference accelerator
architectures, we designed, implemented, and fabricated a
prototype of Simba, consisting of 36 chiplets connected via a
mesh network in an MCM.25 We specifically examine the
implications of the nonuniform network access (NUNA) archi-
tecture with nonuniform latency and bandwidth for on-chip
and on-package communication that lead to significant
latency variability across chiplets. Such latency variability
results in a long tail latency during the execution of individ-
ual inference layers. As a result, the overall performance for
each layer is restricted by the slowest chiplet in the system,
limiting scalability. To address these challenges, we propose
three tail-latency-aware, nonuniform tiling optimizations tar-
geted at improving locality and minimizing inter-chiplet com-
munication: (1) nonuniform work partitioning to balance

http://dx.doi.org/10.1145/3460227

research highlights

108 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

Mapping DNN layers to a tile-based architecture is a well-
studied research problem.6, 19 The state-of-the-art DNN tiling
typically assumes a flat architecture with uniform latency and
bandwidth across processing elements (PEs) and focuses on
data reuse for reducing global bandwidth demands. This
assumption is acceptable for small-scale systems, as the com-
munication latency variability is small and the computation
is often tolerant of communication latencies. However, as the
DNN inference performance is scaled-up to larger systems,
the execution time decreases and latency-related effects
become more important. Furthermore, in the large-scale sys-
tems with heterogeneous interconnect architectures such as
MCMs, the assumptions of uniform latency and bandwidth
in selecting DNN tiling can degrade the performance and
energy efficiency. Simba is the first work that quantitatively
highlights the challenge of mapping DNN layers to nonuni-
form, MCM-based DNN accelerators and proposes communi-
cation-aware tiling strategies to address the challenge.

3. SIMBA ARCHITECTURE AND SYSTEM
To understand the challenges and opportunities of using
MCMs for building large-scale, deep-learning systems, we
designed, implemented, fabricated, and characterized
Simba, the first chiplet-based deep-learning system. This
section first presents an overview of the Simba architecture
and its default uniform tiling strategy. We then describe
Simba’s silicon prototype and present a detailed character-
ization of the Simba system in Section 4.

3.1. Simba architecture
Tile-based architectures have been frequently proposed for
deep-learning accelerator designs.6, 5, 20 Our design target is
an accelerator scalable to data center inference, where state-
of-the-art data center accelerators deliver around 100 tera-
operations-per-second (TOPS). For example, the first
generation of the tensor processing unit (TPU) delivers 92
TOPS15 and is designed for inference applications. One sim-
ple approach to achieve this design goal is to increase the
number of tiles in a monolithic single chip. However,

compute latency with communication latency; (2) communica-
tion-aware data placement to minimize inter-chiplet traffic;
and (3) cross-layer pipelining to improve resource utilization.

2. BACKGROUND
Package-level MCM integration is a promising alternative for
assembling large-scale systems out of small building blocks
known as chiplets. Such systems consist of multiple chiplets
connected together via on-package links using a silicon
interposer or an organic substrate and employing efficient
intra-package signaling circuits.3, 24 Compared to a large
monolithic die, MCMs can reduce (1) design costs, because
logic design, verification, and physical design are all easier
on a small chip than a large chip; and (2) fabrication costs, as
the much lower manufacturing yield of large chips makes
them far more expensive than small chips. In addition, dif-
ferent scales of systems can be created merely by adjusting
the number of chiplets placed in a package, without requir-
ing a different chip tapeout for each market segment. MCMs
have been recently applied to a general-purpose CPU design3
as an alternative to building multi-core CPUs on reticle-lim-
ited large die. They have also been an active research area for
scaling of multi-CPU16 and multi-GPU systems.1 However,
package-level wires do not provide the same communication
density or energy/bit as on-chip wires. Consequently, MCM
architects and software developers must still consider the
nonuniform bandwidth, latency, and energy present in these
systems to achieve an efficient application performance.

An MCM-based system has a heterogeneous interconnect
architecture, as the available intra-chiplet bandwidth is
expected to be significantly higher than available inter-chiplet
bandwidth. In addition, sending data to remote chiplets incurs
additional latency. This latency may include on-chip wire
delays to move data to the edge of the chiplet, synchronizer
delays for crossing clock domains, serialization and deserial-
ization latency in high-speed communication links, and the
on-package wire delays of inter-chiplet links. As a result, the
communication latency between two elements in an MCM
depends heavily on their spatial locality on the package.

GPIO GRS (N)

PE
RR R R R

PE PE PE

PE
R R R R

PE PE PE

PE
R R R R

PE PE PE

PERISC-V

Global
PE

R

RNoP
R

R

R R R R
PE PE PE

GRS (E)

GRS (W)GPIO GRS (S)

R

Serdes

Addr
Gen

Distributed
Weight Buffer

Buffets

AddrGen

Trunc

Pooling

ReLU

Bias

PPU

Vector
MAC

Vector
MAC

Vector
MAC

Vector
MAC

Vector
MAC

Vector
MAC

Vector
MAC

Vector
MAC

Router Interface

Buffets

Input
Buffer

Accumulation Buffer

+

(c) Simba Processing Element(b) Simba Chiplet(a) Simba Package

Figure 1. Simba architecture from package to processing element (PE).

JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 109

networks with diverse layer dimensions, Simba supports flex-
ible communication patterns across the NoC and NoP. Both
NoC and NoP use a mesh topology with a hybrid wormhole/
cut-through flow control. Specifically, unicast packets use
wormhole flow control for large packet size, whereas multi-
cast packets are cut-through to avoid wormhole deadlocks.
Each Simba PE can unicast to any local or remote PE for cross-
PE partial-sum reduction, to any local or remote Global PE to
transmit output activation values, and to any local or remote
chiplet controller to signal execution completion. A PE does
not need to send multicast packets as its computation
requires only point-to-point communication. In addition to
unicast communication, a Global PE can also send multicast
packets to local and remote PEs for flexible data tiling.

3.2. Simba silicon prototype
We implemented, fabricated, and tested a silicon prototype
of the Simba system, as shown in Figure 2, with the microar-
chitecture parameters listed in the original Simba paper.21
We chose parameters so that a Simba chiplet has area and
power similar to an efficient edge system, such as DianNao5
or Eyeriss,6 whereas a full Simba package is comparable to a
data-center-scale system such as TPU.15 Table 1 shows the
synthesis area breakdown of key components in the Simba
chiplet architecture.

 1 //Package level
 2 for p3 = [0: P3):
 3 for q3 = [0: Q3):
 4 parallel_for k3 = [0: K3):
 5 parallel_for c3 = [0: C3):

building a flat network with hundreds of tiles would lead to
high tile-to-tile communication latency, as examined in
both multi-core CPU7 and accelerator10 research.

Simba adopts a hierarchical interconnect to efficiently
connect different processing elements (PEs). This hierarchi-
cal interconnect consists of a network-on-chip (NoC) that
connects PEs on the same chiplet and a network-on-package
(NoP) that connects chiplets together on the same package.
Figure 1 illustrates the three-level hierarchy of the Simba
architecture: package, chiplet, and PE. Figure 1(a) shows a
Simba package consisting of a 6×6 array of Simba chiplets
connected via a mesh interconnect. Each Simba chiplet, as
shown in Figure 1(b), contains an array of PEs, a global PE, a
NoP router, and a controller, all connected by a chiplet-level
interconnect. To enable the design of a large-scale system, all
communication between the PEs, Global PEs, and controller
is designed to be latency-insensitive4 and is sent across the
interconnection network through the NoC/NoP routers.

Simba PE. Figure 1(c) shows the microarchitecture of the
Simba PE, which includes a distributed weight buffer, an
input buffer, parallel vector MAC units, an accumulation buf-
fer, and a postprocessing unit. Each Simba PE is similar to a
scaled-down version of NVDLA, a state-of-the-art DL accelera-
tor product.22 The heart of the Simba PE is an array of parallel
vector multiply-and-add (MAC) units that are optimized for
efficiency and flexibility. The Simba PE uses a weight-station-
ary dataflow6: weights remain in the vector MAC registers and
are reused across iterations, although new inputs are read
every cycle. Each vector MAC performs an 8:1 dot-product
along the input channel dimension C to exploit an efficient
spatial reduction. To provide flexible tiling options, the Simba
PE also supports cross-PE reduction with configurable pro-
ducers and consumers. If the current PE is the last PE on the
reduction chain, it first sends partial sums to its local postpro-
cessing unit that performs ReLU, truncation and scaling,
pooling, and bias addition. The final output activation is sent
to the target Global PE for computation of the next layer.

Simba global PE. The Global PE serves as a second-level
storage for input/output activation data to be processed by
the PEs. To support flexible partitioning of the computation,
the Global PE can either unicast data to one PE or multicast
to multiple PEs, even across chiplet boundaries. The Global
PE has a multicast manager that oversees these producer-
consumer relationships. The Global PE also serves as a plat-
form for near-memory computation. Many DNNs feature
some computation that has low data reuse, such as element-
wise multiply/add or depth-wise convolution. The Global PE
can perform such computations locally to reduce communi-
cation overhead for these types of operations.

Simba controller. Each Simba chiplet contains a RISC-V
processor core2 that is responsible for configuring and man-
aging the chiplet’s PEs and Global PE states via memory-
mapped registers using an AXI-based communication
protocol. After all states are configured, the RISC-V triggers
the execution in the active PEs and Global PEs and waits for
these blocks to send done notifications via interrupts.
Synchronization of chiplet control processors across the
package is implemented via memory-mapped interrupts.

Simba interconnect. To efficiently execute different neural

(a) Simba chiplet (b) Simba package

GRS NTX GPIO

PE PE PE PE

PE PE PE PE

PE
NoP

RISC-V

Global
Buffer

PE PE PE

PE

GRS WTX GRS SRX JTAG GRS STX GRS ERX

PE PE PE

GRS WRX GRS ETXGRS NRX

Figure 2. Simba silicon prototype.

Table 1. Area breakdown of the Simba system.

Partition Component Area (lm)2

PE Vector MACs 12K
Weight Buffer 41K
Input Buffer 11K

Accumulation Buffer 24K
NoC Router 19K

Global PE Distributed Buffer 125K
NoC Routers 27K

RISC-V Processor 109K
NoP NoP Router 42K

research highlights

110 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

tiled temporally, spatially, or both at each level of the system
hierarchy: package, chiplet, PE, and vector MAC. The loop
bounds and orderings in Listing 1 are configurable in Simba
so that users can flexibly map computation to the Simba sys-
tem. In particular, the default dataflow uniformly partitions
weights along the input channel (C) and the output channel
(K) dimensions, as noted in the parallel_for loops. In
addition, Simba can also uniformly partition along the
height (P) and width (Q) dimensions of an output activation
across chiplets and PEs to support flexible tiling. Section 5
highlights the limitations of this approach when mapping
networks onto a large-scale, nonuniform network access
architecture with an MCM-based integration.

We developed a flow that uses Caffe14 to map a DNN infer-
ence application to the Simba system, which primarily deter-
mines an efficient tiling strategy for the dataflow that best
exploits data reuse in the memory hierarchy. To facilitate the
evaluation of different mapping alternatives, we also devel-
oped a fast, analytical energy model for Simba that quantifies
the energy cost of a particular mapping, similar to the meth-
odology discussed in prior work.6, 19 The compilation process
starts with a mapper that is provided with data regarding avail-
able system resources (such as the number of PEs, the num-
ber of Global PEs, and the sizes of buffers in the system) and
the parameters of a given layer from the Caffe specification.
The mapper determines which PE will run each portion of the
loop nest and in which buffers the activations and weights are
stored. As this mapping is a logical one, the mapper is fol-
lowed by a binder which decides in which physical resource in
the Simba topology the loop nests and data structures are
placed. We use a random search algorithm to sample the
mapping space and use the energy and performance models
to select good mappings and placements. Finally, the flow
generates the configuration binaries for each chiplet that
implement the execution created by the mapper and binder.

4. SIMBA CHARACTERIZATION
This section details the performance characterization of
Simba, focusing on achieved scalability using the uniform-
tiling baseline. All evaluation results are measured using the
prototype system.

4.1. Methodology
Figure 3 shows the experimental setup for measuring the
performance and power of the Simba prototype system. The
silicon prototype test board is attached to an x86 host through
PCI-E using a Xilinx FPGA. To measure the performance of
the Simba prototype system, we use software running on the
RISC-V to query cycle counters built into the RISC-V micro-
controllers. Power and performance measurements begin
after the weights have been loaded into each PE’s weight buf-
fer and the inputs have been loaded into the Global PE buf-
fers. Unless otherwise noted, the chiplets operate at a core
voltage of 0.72 V, a PE frequency of 1.03 GHz, and GRS band-
width of 11 Gbps. We use sense resistors on the board power
supplies and a digital acquisition module to measure energy
during experiment execution. As the chiplets support inde-
pendent clock frequencies for different units (PEs, Global
PEs, RISC-V, and NoP routers), we can vary these frequencies

 6 // Chiplet level
 7 for p2 = [0: P2):
 8 for q2 = [0: Q2):
 9 parallel_for k2 = [0: K2):
10 parallel_for c2 = [0: C2):
11 // PE level
12 for r = [0: R):
13 for s = [0: S):
14 for k1 = [0: K1):
15 for c1 = [0: C1):
16 for p1 = [0: P1):
17 for q1 = [0: Q1):
18 // Vector-MAC level
19 parallel_for k0 = [0: K0):
20 parallel_for c0 = [0: C0):
21  p = (p3 * P2 + p2) * P1 + p1;
22  q = (q3 * Q2 + q2) * Q1 + q1;
23 k = ( (k3 * K2 + k2) * K1 + k1) * K0 + k0;
24   c = ( (c3 * C2 + c2) * C1 + c1) * C0 + c0;
25 OA[p,q,k] += IA[p-1+r,q-1+s,c] * W[r,s,c,k];

Listing 1. Simba baseline dataflow.

As shown in Figure 2a, the 2.5 × 2.4 Simba chiplets were
implemented in a TSMC 16 nm FinFET process technol-
ogy.25 Each Simba package (Figure 2b) contains an array 6×6
of chiplets connected on an organic package substrate using
a ground-referenced signaling (GRS) technology for intra-
package communication.24 The top and bottom rows of each
chiplet include eight chiplet-to-chiplet GRS transceiver
macros. Four macros are configured as receivers and four as
transmitters. Each transceiver macro has four data lanes
and a clock lane with configurable speed from 11 Gbps/pin
to 25 Gbps/pin, consuming 0.82–1.75 pJ/bit, with a total
peak chiplet bandwidth of 100 GB/s. We chose GRS as our
communication mechanism because it delivers 3.5× higher
bandwidth per unit area and lower energy per bit compared
to other MCM interconnects.3

The prototype chiplets were implemented using a glob-
ally asynchronous, locally synchronous (GALS) clocking
methodology,8 allowing independent clock rates for indi-
vidual PEs, Global PEs, RISC-V processors, and NoP routers.
Running in a single-chiplet configuration, Simba proto-
types have been measured to operate correctly in the lab at
a minimum voltage of 0.42 V with a 161 MHz PE frequency,
achieving 0.11 pJ/Op (9.1 TOPS/W) core power efficiency on
a peak-utilization convolution micro-benchmark. At 1.2 V,
each chiplet operates with a 2 GHz PE frequency for a peak
throughput of 4 TOPS. The 36-chiplet Simba system is func-
tional over a slightly narrower voltage range, from 0.52 to
1.1 V, achieving 0.16 pJ/op at 0.52 V and 484 MHz; at 1.1 V,
the 36-chiplet system achieves a 1.8 GHz PE frequency and
128 TOPS.

3.3. Simba baseline tiling
To map the DNN layers onto the hierarchical tile-based
architecture, we first use a state-of-the-art DNN tiling strat-
egy that uniformly partitions weights spatially, leveraging
model parallelism.22, 15, 5, 20 Listing 1 shows the default tiling
in a loop-nest form. Each dimension of a DNN layer can be

JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 111

4.2. Performance/energy overview
Figure 4 summarizes the performance and energy measure-
ments across all ResNet-50 layers. Each point represents a
unique mapping for that layer, whereas different colors show

to change the compute-to-bandwidth ratios for our experi-
ments. The NoC and NoP routing tables use dimension-
ordered X-Y routing for all inter-chiplet communication.
Although all 36 Simba chiplets are functional, our evaluation
uses 32 chiplets, as it is easier to partition computation by
powers of two because the number of input channels (C) and
output channels (K) are typically powers of two.

We focus our application measurements on ResNet-50,12
a state-of-the-art, representative deep-learning network, and
evaluate its layers running on the Simba system with a batch
size of one, as low-latency inference is a highly critical
deployment scenario for data center inferencing.15 We com-
pile and run each layer independently, except when we map
multiple layers to different physical partitions of Simba and
execute them in a pipelined manner. Networks are pre-
trained and quantized to 8-bit using TensorRT without accu-
racy loss. We believe that the diversity of layers in ResNet-50
provides a sufficient breadth to cover a wide range of behav-
iors across different convolutional networks.

Figure 4. Measured performance and energy and running ResNet-50 on the fabricated Simba prototype. Each point is a valid workload
mapping onto the system; each column cluster shows the different performance and energy achieved by different mappings of the same
workload. Each symbol shape represents a different number of active chiplets used for the mapping.

(a)

1000

re
s2

[b
-c

]_
bra

nch
2a

re
s2

a_
bra

nch
2a

re
s2

[a
-c

]_
bra

nch
2b

re
s2

[a
-c

]_
bra

nch
2c

re
s3

a_
bra

nch
1

re
s3

[b
-d

]_
bra

nch
2a

re
s3

a_
bra

nch
2a

re
s3

[a
-d

]_
bra

nch
2b

re
s3

[a
-d

]_
bra

nch
2c

re
s4

a_
bra

nch
1

re
s4

[b
-f]

_b
ra

nch
2a

re
s4

[a
-f]

_b
ra

nch
2b

re
s4

a_
bra

nch
2a

re
s4

[a
-f]

_b
ra

nch
2c

re
s5

a_
bra

nch
1

re
s5

[b
-c

]_
bra

nch
2a

re
s5

a_
bra

nch
2a

re
s5

[a
-c

]_
bra

nch
2b

re
s[

a-
c]

_b
ra

nch
2c

fc1
000

Chiplet Count
1 4 8 32

100

La
te

nc
y

(n
or

m
al

iz
ed

)
E

ne
rg

y
(p

j/o
p)

10

10

1

(b)
re

s2
[b

-c
]_

bra
nch

2a

re
s2

a_
bra

nch
2a

re
s2

[a
-c

]_
bra

nch
2b

re
s2

[a
-c

]_
bra

nch
2c

re
s3

a_
bra

nch
1

re
s3

[b
-d

]_
bra

nch
2a

re
s3

a_
bra

nch
2a

re
s3

[a
-d

]_
bra

nch
2b

re
s3

[a
-d

]_
bra

nch
2c

re
s4

a_
bra

nch
1

re
s4

[b
-f]

_b
ra

nch
2a

re
s4

[a
-f]

_b
ra

nch
2b

re
s4

a_
bra

nch
2a

re
s4

[a
-f]

_b
ra

nch
2c

re
s5

a_
bra

nch
1

re
s5

[b
-c

]_
bra

nch
2a

re
s5

a_
bra

nch
2a

re
s5

[a
-c

]_
bra

nch
2b

re
s[

a-
c]

_b
ra

nch
2c

fc1
000

Figure 3. Bench measurement setup for the Simba prototype.

VCU118 FPGA Host
and DRAM

Power
Measurement

36-chiplet Simba
Package and CoolingHost PC Power Supply

Generation

research highlights

112 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

the number of chiplets active for that mapping. Latency is
normalized to a hypothetical best-achievable latency that
would be realized if each of the 576 PEs of the system oper-
ated with 100% utilization and no communication or syn-
chronization overheads. Simba provides a large number of
mapping options with drastically different performance and
energy profiles, highlighting the importance of strategies for
efficiently mapping DNNs to hardware. The figure also dem-
onstrates the highly variable behavior of different layers. For
example, the most energy-efficient configurations of layer
res3[b-d]_branch2b achieve almost an order of magni-
tude better efficiency than those of res3a_branch2a. The
degree of data reuse highly influences the efficiency; layers
with high reuse factors, for example, 3×3 the convolution in
3[b-d]_branch2b, tend to perform computation more effi-
ciently than layers that require more data movement. Finally,
although increasing the number of chiplets used in the sys-
tem improves performance, it also leads to increased energy
cost for chiplet-to-chiplet communication and synchroniza-
tion. Efficiency can drop by nearly an order of magnitude for
some layers, which further emphasizes the effect of data
movement on overall efficiency. To better understand the sys-
tem-level trade-offs, the remainder of this section character-
izes the sensitivity of Simba to mapping alternatives, layer
parameters, bandwidth, latency, and weak scaling, and
includes a comparison to modern GPUs.

4.3. Layer sensitivity
Figure 5 shows the performance scalability of running three
different layers in ResNet-50 across different numbers of
chiplets. Although the performance of res2[a-c]_branch2b
initially improves with increased chiplet count, the perfor-
mance gains cease beyond eight chiplets. As one of the early
layers of the network, the number of weights in this layer is so
small that it cannot fully utilize the compute throughput of
Simba. The performance degrades with 32 chiplets because
the inter-PE communication costs overwhelm the limited par-
allelism. By contrast, the performance of the res2a_branch1
layer improves when increasing the number of chiplets from 1
to 8, though it stops improving from 8 to 32 chiplets. This layer
has more compute parallelism than res2[a-c]_
branch2b, but it still does not have enough to fully over-

come the overheads of inter-chiplet communication.
The res5[a-c]_branch2b layer demonstrates the best

performance scaling, with improvements observed up to 32
chiplets. However, the performance scaling slows down signifi-
cantly past eight chiplets due to communication overheads. Of
the 53 layers of ResNet-50, 12 follow the behavior of res3a_
branch1, 24 follow that of res5[a-c]_branch2b, and the
remaining 17 have behavior similar to res2[a-c]_branch2b.
These measurements demonstrate that the amount of com-
pute parallelism that an MCM can leverage varies from layer to
layer, and that the cost of communication can hinder the ability
to exploit that parallelism, even on a single chiplet.

4.4. NoP bandwidth sensitivity
Figure 6 shows how execution time is affected by NoP band-
width for two representative ResNet layers when mapped to
32 chiplets. We adjusted the bandwidth of the NoP relative to
the intra-chiplet compute performance to measure the net-
work bandwidth sensitivity. For res3[a-d]_branch2b, the
increased bandwidth between chiplets results in only a 5%
decrease in execution time, indicating that this layer is not
bound by the NoP bandwidth or inter-chiplet communication
latency. However, for res3a_branch1, the increased

Layer1.0

0.8

N
or

m
al

iz
ed

 L
at

en
cy

Chiplet Count

0.6

0.4

0.2

1 2 4 8 16 32

res2[a-c]_branch2b
res3a_branch1
res5[a-c]_branch2b

Figure 5. Simba scalability across different layers from ResNet-50.
Latency is normalized to the latency of the best-performing tiling
with one chiplet.

NoP Speedup

res 3[a-b]_branch2b

N
or

m
al

iz
ed

 P
E

 C
yc

le
s

res 3a_branch1

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1.0 1.5 2.0

Figure 6. Simba scalability with different chiplet-to-chiplet
communication bandwidths.

2.5

2.0

1.5

0.5

1.0

La
te

nc
y

(n
or

m
al

iz
ed

)

0.0

Figure 7. Simba scalability with different chiplet-to-chiplet
communication latencies running re+s4a_branch1 with four
chiplets (using the same tiling). Different bars represent different
selections of the active four chiplets, as shown under the X-axis;
the active chiplets are highlighted in blue.

JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 113

improvement of Simba compared to V100 (5.4×) and T4 (2.9×).
When running ResNet-50 with a larger batch size, instead of
exploiting the batch-level parallelism like GPUs, Simba would
run each batch sequentially. As a result, we expect that the
throughput of Simba is close to that of running with a batch
size of one.

5. SIMBA NONUNIFORM TILING
This section presents the details of two novel DNN workload
tiling techniques that target the nonuniform latency and
bandwidth presented by large-scale MCM-based systems,
nonuniform work partitioning and communication-aware
data placement. Our results indicate the importance of com-
munication-latency-aware tiling when mapping DNN work-
loads to large-scale, hierarchical systems.

5.1. Nonuniform work partitioning
Efficient use of parallel systems requires proper load balanc-
ing among the components in the system. Failure to prop-
erly balance the load on the system leads to higher latency
and energy caused by resources waiting for the slowest unit
to complete, that is, increased tail latency. The total execu-
tion time can be subdivided into two major components:
communication latency and compute latency. The state-of-
the-art DNN tiling strategies typically assign the same
amount of the work to each of the available resources.23
However, this approach breaks down for large-scale sys-
tems, especially when the PEs are spatially distributed with
different communication latencies among them.

To address this limitation, we propose a nonuniform work
partitioning strategy that considers communication latencies.
Instead of uniformly assigning the same amount of work to
each PE, we nonuniformly partition the work across the PEs.
PEs closer to the data producers will perform more work to

bandwidth decreases execution time by 27%, indicating that
this layer is bottlenecked by communication between
chiplets. Because an MCM-based system intrinsically has a
nonuniform network architecture between intra-chiplet and
inter-chiplet PEs, mapping policies must consider the differ-
ent latency and bandwidth parameters to deliver good perfor-
mance and efficiency.

4.5. NoP latency sensitivity
In addition to lower bandwidth, the NoP has higher latency
than the NoC due to inter-chiplet signaling overheads. To
isolate the effect of NoP latency, we ran experiments map-
ping layers to four chiplets, but adjusted the locations of the
selected chiplets in the package to modulate latency. Figure 7
shows the effect of increasing the longest inter-chiplet
latency from 2 hops to 12 hops for res4a_branch1. The
figure shows the execution time normalized to a configura-
tion of adjacent chiplets, with the chiplet selection shown
under each bar. With active chiplets further apart, the over-
all execution time increases by up to 2.5× compared to exe-
cution on adjacent chiplets. Communication latency is
typically less pronounced for small-scale systems but plays a
significant role in achieving good performance and energy
efficiency for a large-scale, MCM-based system like Simba.

4.6. Comparisons with GPUs
Figure 8 compares Simba to NVIDIA’s V100 and T4 GPUs.
We run ResNet-50 with different batch sizes and compare to
the GPU results that are published.18 Due to Simba’s limited
on-package storage capacity for input activations, we only
run Simba at batch size one and two. Unlike GPUs, Simba is
designed for low-latency inference with a small batch size,
which motivates the use of distributed and persistent weight
storage to reduce data movement. The Simba package, such
as the MCM interface, has substantially a smaller total sili-
con area (216) than T4 (525) or V100 (815), due to differences
in math precision, on-chip storage, DRAM interface, and
types of computation supported in these architectures.

Figure 8a shows the throughput of Simba, V100, and T4
running ResNet-50. Simba delivers 1.8× and 1.9× better through-
put at batch size one compared to V100 and T4, respectively.
Figure 8b illustrates the corresponding energy efficiency

Figure 8. Throughput and efficiency of Simba, V100, and T4 running
ResNet-50 with different batch sizes.

(a)

Simba
7000 70

60

50

40

30

20

10

6000

E
ffi

ci
en

cy
 (i

m
ag

es
/5

/W
)

T
hr

ou
gh

pu
t

(im
ag

es
/s

)

5000

4000

3000

2000

1000

0 0
1 4 16

Batch Size Batch Size
64 1 4 16 64

T4
V100

(b)

Weights

Cchip

Cchip

Cchip

Cchip
Cchip

Cchip

Cchip

Chiplet0

Chiplet2
Output
Activations (OA)

Input
Activations (IA)

K

Chiplet1

Chiplet3

Kleft Kright

Kleft

Kleft

Kleft

Kright

Kright

Kright

C

Figure 9. Illustration of communication-aware, nonuniform work
partitioning. The top green tensors represent weights (W), the left
blue tensors represent input activations (IA), and the bottom red
tensors represent the output activation (OA). In this example, IA is
stored in Chiplet0 and Chiplet2.

research highlights

114 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

improvement is highly sensitive to the compute-and-commu-
nication ratio in a given mapping. For example, when either
compute or communication is significantly dominating the
overall execution latency, as in the case of res5a_branch1,
incrementally modulating the amount of work each PE per-
forms provides little performance improvement. However,
when compute and communication latencies are more com-
parable, which are typically desired to achieve good mapping,
the performance improvement is more pronounced, as in the
case of res2[b-c]_branch2c.

5.2. Communication-aware data placement
The communication latency in a parallel system can have a
large effect on the overall system performance, as observed
in multi-core and multi-GPU characterizations.17 Due to the
limited scale of today’s deep-learning accelerators, most
have one unified global buffer that supplies data to all of the
PEs.6, 5, 22 However, in large-scale MCM systems where on-
chip buffers are spatially distributed among the chiplets, the
communication latency becomes highly sensitive to the
physical location of data. Figure 11 illustrates how data
placement affects communication distances and latencies.
For example, if the Src chiplet in Figure 11(a) broadcasts
data to the other chiplets, the arrival time of the data will vary
greatly depending the distance of the receiving chiplets from
the Src. Depending on the amount of computation each

maximize physical data locality, whereas PEs that are further
away will do less work to decrease the tail latency effects. Figure 9
illustrates an example of nonuniform work partitioning using
a 4-chiplet system. In this example, we assume that the input
activation (IA) is physically stored in the Global PEs of
Chiplet0 and Chiplet2, whereas the weights (W) and the
work are partitioned across all the four chiplets. During execu-
tion, the Global PE of Chiplet0 will multicast a slice of IA to
PEs in both Chiplet0 and Chiplet1. Because the commu-
nication latencies from the Chiplet0 Global PE to the PEs in
Chiplet0 and Chiplet1 are different, Chiplet1 will fall
behind. To prevent the longer communication to Chiplet1
from increasing the tail latency of the execution, we can adjust
the amount of computation that each chiplet is assigned in a
manner inversely proportional to its communication distance
from the source. In the example as shown in Figure 9,
Chiplet0 and Chiplet2 are provided with larger chunks of
work (Kleft), whereas Chiplet1 and Chiplet3 get the smaller
chunks (Kright). This work schedule evens out the completion
time across the chiplets, thereby improving overall system per-
formance. For simplicity, this example only shows nonuni-
form partitioning with respect to input activations. A similar
technique can be used to mitigate the communication latency
for output activations to the destination chiplets by using non-
uniform partitioning along the C dimension.

The variation in communication latency is quite pronounced
in large-scale systems such as Simba, with hundreds of
spatially distributed PEs. To dynamically adjust the amount
of work that each PE performs, we use the performance
counters within each PE to collect accurate latency and utili-
zation information during the initial execution of a layer. We
then adjust the work distribution for the subsequent execu-
tions of each layer based on the latency variation across PEs.

Figure 10 illustrates the measured performance improve-
ment using nonuniform work partitioning. For each of the lay-
ers, we pick the highest performance uniform tiling from
Figure 5 as the baseline. We then measure the execution time
of different chiplets and identify layers with a large tail latency.
For these layers, we use nonuniform work partitioning to shift
the computation from the tail PEs to the PEs that are closer to
the data. Depending on layer dimensions, we achieve up to
15% performance improvement compared to the best uni-
form tiling for a given layer. The achievable performance

1.20

1.15

1.10

S
pe

ed
up

1.05

1.00

re
s2

a_
bra

nch
2a

re
s2

[a
-c

]_
bra

nch
2b

re
s2

[a
-c

]_
bra

nch
2c

re
s3

[b
-c

]_
bra

nch
2a

re
s3

a_
bra

nch
2a

re
s3

[a
-d

]_
bra

nch
2b

re
s3

[a
-d

]_
bra

nch
2c

re
s3

a_
bra

nch
1

re
s3

[b
-d

]_
bra

nch
2a

re
s4

[a
-f]

_b
ra

nch
2b

re
s4

[a
-f]

_b
ra

nch
2c

re
s4

a_
bra

nch
2a

re
s4

a_
bra

nch
1

re
s4

[b
-f]

_b
ra

nch
2a

re
s5

a_
bra

nch
2a

re
s5

[a
-c

]_
bra

nch
2b

re
s5

[a
-c

]_
bra

nch
2c

re
s5

a_
bra

nch
1

re
s5

[b
-c

]_
bra

nch
2a

Figure 10. Nonuniform work partition for ResNet-50 with speedup
normalized to the best-performing tiling.

(a) Latency Profile

Latency

(b) Initial Placement

Input

Src

Output Input Output Input Output

(c) Input Placement (d) Output Placement

Figure 11. Data placement on the Simba system. (a) Assessment of the relative latency to different chiplets that receive data from Src.
(b) Default input activation (IA) and output activation (OA) placement where data is sequentially placed from the Global PE of the first
chiplet. (c) An improved IA placement at the center of the package so that data can be multicast to all chiplets. (d) OA placement with even
distribution along the periphery of the package to minimize OA communication latency.

JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 115

chiplet performs, such variations in communication dis-
tance could significantly limit the achievable speedup in a
distributed, tile-based system like Simba, motivating the
need for data placement optimizations.

Although optimal data placement is an NP-hard prob-
lem, we use a practical greedy algorithm to iteratively deter-
mine where input and output activation data should be
placed in the Simba system. The algorithm starts by per-
forming a placement of the input activation data blocks.
Once the input activations are placed, the same greedy algo-
rithm is executed for tiles of output activations. Because a
previous stage of the mapping process has already deter-
mined the data tiling, this stage need only focus on data
placement and not re-tiling. Figure 11(b) shows a naive data
placement with a sequential allocation of input activations
to the chiplets on the top row and output activations in the
next six chiplets. Figure 11(c) shows a better assignment of
IAs to chiplets, selecting the four in the middle that mini-
mize aggregate multicast hop-count to all chiplets. Finally,
Figure 11(d) shows a placement of output activations on
chiplets in regions where OA accumulation can occur.

Figure 12 shows the performance improvement of ResNet-50
layers with optimized data placement. Although all of the lay-
ers use 32 chiplets, many of them have different communica-
tion patterns. For example, layers like res2[a-c]_branch2c
communicate frequently within a group of eight chiplets.
In this case, it is better to group those chiplets together to
minimize communication cost. In contrast, layer res4a_
branch1 must broadcast from a single chiplet to all 32 chiplets.
In this case, instead of placing the source chiplet sequen-
tially at the upper left corner, placing it at the center of the
package leads to a 5% performance improvement. Data
placement optimization results in up to 15% improved per-
formance compared to the best achieved baseline.

6. CONCLUSION
This work presented Simba, a scalable MCM-based deep-
learning inference accelerator architecture. Simba is a hetero-
geneous tile-based architecture with a hierarchical
interconnect. We developed a silicon prototype system con-
sisting of 36 chiplets that achieves up to 128 TOPS at high
energy efficiency. We used the prototype to characterize the

overheads of the nonuniform network of an MCM-based
architecture, observing that load imbalance and communica-
tion latencies contribute to noticeable tail-latency effects. We
then showed how considering the nonuniform nature of sys-
tem can help improve performance through techniques such
as nonuniform work partitioning, communication-aware
data placement, and cross-layer pipelining. Applying these
optimizations results in performance increases of up to 16%
compared to naive mappings.

Acknowledgments
The authors would like to thank Frans Sijstermans, Dan
Smith, Don Templeton, Guy Peled, Jim Dobbins, Ben
Boudaoud, Randall Laperriere, Borhan Moghadam, Sunil
Sudhakaran, Zuhair Bokharey, Sankara Rajapandian, James
Chen, John Hu, and Vighnesh Iyer for package, PCB, signal
integrity, fabrication, and prototyping support. This research
was, in part, funded by the U.S. government under the DARPA
CRAFT program. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or
implied, of the U.S. government. Distribution Statement “A”
(Approved for Public Release, Distribution Unlimited).�

References
	 1.	 Arunkumar, A., Bolotin, E., Cho, B., Milic, U.,

Ebrahimi, E., Villa, O., Jaleel, A., Wu, C.-J.,
Nellans, D. MCM-GPU: Multi-chip-module
GPUs for continued performance
scalability. In Proceedings of the
International Symposium on Computer
Architecture (ISCA) (Toronto, ON, Canada,
2017), Association for Computing
Machinery, New York, NY, USA.

	 2.	 Asanovic, K., Avizienis, R., Bachrach, J.,
Beamer, S., Biancolin, D., Celio, C., Cook,
H., Dabbelt, D., Hauser, J., Izraelevitz,
A., Karandikar, S., Keller, B., Kim, D.,
Koenig, J., Lee, Y., Love, E., Maas, M.,
Magyar, A., Mao, H., Moreto, M., Ou, A.,
Patterson, D.A., Richards, B., Schmidt,
C., Twigg, S., Vo, H., Waterman, A. The
Rocket Chip Generator. Technical
Report, EECS Department, University of
California, Berkeley, 2016.

	 3.	 Beck, N., White, S., Paraschou, M.,
Naffziger, S. Zeppelin: An SoC for
multichip architectures. In Proceedings
of the International Solid State Circuits
Conference (ISSCC) (2018), IEEE, San
Francisco, CA, USA.

	 4.	 Carloni, L.P., McMillan, K.L., Saldanha,
A., Sangiovanni-Vincentelli, A.L. A
methodology for correct-by-construction
latency insensitive design. In Design
Automation Conference (1999), IEEE,
San Jose, CA, USA.

	 5.	 Chen, T., Du, Z., Sun, N., Wang, J., Wu, C.,
Chen, Y., Temam, O. DianNao: A
small-footprint high-throughput
accelerator for ubiquitous machine-
learning. In Proceedings of the
International Conference on
Architectural Support for Programming
Languages and Operation Systems
(ASPLOS) (Salt Lake City, Utah, USA,
2014), Association for Computing
Machinery, New York, NY, USA.

	 6.	 Chen, Y.-H., Emer, J., Sze, V. Eyeriss: A
spatial architecture for energy-efficient
dataflow for convolutional neural
networks. In Proceedings of the
International Symposium on Computer
Architecture (ISCA) (2016), IEEE,
Seoul, South Korea.

	 7.	 Das, R., Eachempati, S., Mishra, A.K.,

Narayanan, V., Das, C.R. Design and
evaluation of a hierarchical on-chip
interconnect for next-generation CMPs.
In Proceedings of the International
Symposium on High-Performance
Computer Architecture (HPCA) (2009),
IEEE, Raleigh, NC, USA.

	 8.	 Fojtik, M., Keller, B., Klinefelter, A.,
Pinckney, N., Tell, S.G., Zimmer, B., Raja,
T., Zhou, K., Dally, W.J., Khailany, B. A
fine-grained GALS SoC with pausible
adaptive clocking in 16nm FinFET. In
International Symposium on
Asynchronous Circuits and Systems
(ASYNC) (2019), IEEE, Hirosaki, Japan.

	 9.	 Fowers, J., Ovtcharov, K., Papamichael,
M., Massengill, T., Liu, M., Lo, D., Alkalay,
S., Haselman, M., Adams, L., Ghandi, M.,
Heil, S., Patel, P., Sapek, A., Weisz, G.,
Woods, L., Lanka, S., Reinhardt, S.,
Caulfield, A., Chung, E., Burger, D. A
configurable cloud-scale DNN processor
for real-time AI. In Proceedings of the
International Symposium on Computer
Architecture (ISCA) (2018), IEEE, Los
Angeles, CA, USA.

	10.	 Gao, M., Yang, X., Pu, J., Horowitz, M.,
Kozyrakis, C. Tangram: Optimized
coarse-grained dataflow for scalable
NN accelerators. In Proceedings of
the International Conference on
Architectural Support for Programming
Languages and Operation Systems
(ASPLOS) (2019), Association for
Computing Machinery, New York, NY, USA.

	11.	 Greenhill, D., Ho, R., Lewis, D., Schmit, H.,
Chan, K.H., Tong, A., Atsatt, S., How, D.,
McElheny, P., Duwel, K., Schulz, J.,
Faulkner, D., Iyer, G., Chen, G., Phoon,
H.K., Lim, H.W., Koay, W.-Y., Garibay, T.
A 14nm 1GHz FPGA with 2.5D
transceiver integration. In Proceedings
of the International Solid State Circuits
Conference (ISSCC) (2017), IEEE, San
Francisco, CA, USA.

	12.	 He, K., Zhang, X., Ren, S., Sun, J. Deep
residual learning for image
recognition. In Proceedings of the
Conference on Computer Vision and
Pattern Recognition (CVPR) (2016),
IEEE, Las Vegas, NV, USA.

	13.	 Iyer, S.S. Heterogeneous integration

1.20

1.15

1.10

S
pe

ed
up

1.05

1.00

re
s2

a_
bra

nch
2a

re
s2

[a
-c

]_
bra

nch
2b

re
s2

[a
-c

]_
bra

nch
2c

re
s3

[b
-c

]_
bra

nch
2a

re
s3

a_
bra

nch
2a

re
s3

[a
-d

]_
bra

nch
2b

re
s3

[a
-d

]_
bra

nch
2c

re
s3

a_
bra

nch
1

re
s3

[b
-d

]_
bra

nch
2a

re
s4

[a
-f]

_b
ra

nch
2b

re
s4

[a
-f]

_b
ra

nch
2c

re
s4

a_
bra

nch
2a

re
s4

a_
bra

nch
1

re
s4

[b
-f]

_b
ra

nch
2a

re
s5

a_
bra

nch
2a

re
s5

[a
-c

]_
bra

nch
2b

re
s5

[a
-c

]_
bra

nch
2c

re
s5

a_
bra

nch
1

re
s5

[b
-c

]_
bra

nch
2a

Figure 12. Data placement for ResNet-50 layers with speedup
normalized to the best performing tiling.

research highlights

116 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

for performance and scaling. IEEE
Transactions on Components,
Packaging and Manufacturing
Technology (2016), IEEE.

	14.	 Jia, Y., Shelhamer, E., Donahue, J., Karayev,
S., Long, J., Girshick, R.B., Guadarrama, S.,
Darrell, T. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings
of the 22nd ACM International Conference
on Multimedia (2014), Association for
Computing Machinery, New York, NY, USA.

	15.	 Jouppi, N.P., Young, C., Patil, N.,
Patterson, D., Agrawal, G., Bajwa, R.,
Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., luc Cantin. P., Chao, C.,
Clark, C., Coriell, J., Daley, M., Dau, M.,
Dean, J., Gelb, B., Ghaemmaghami, T.V.,
Gottipati, R., Gulland, W., Hagmann, R.,
Ho, C.R., Hogberg, D., Hu, J., Hundt, R.,
Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A.,
Kaplan, A., Khaitan, H., Killebrew, D.,
Koch, A., Kumar, N., Lacy, S., Laudon, J.,
Law, J., Le, D., Leary, C., Liu, Z., Lucke, K.,
Lundin, A., MacKean, G., Maggiore, A.,
Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie,
T., Omernick, M., Penukonda, N., Phelps,
A., Ross, J., Ross, M., Salek, A., Samadiani,
E., Severn, C., Sizikov, G., Snelham, M.,
Souter, J., Steinberg, D., Swing, A., Tan, M.,
Thorson, G., Tian, B., Toma, H., Tuttle, E.,
Vasudevan, V., Walter, R., Wang, W., Wilcox,
E., Yoon, D.H. In-datacenter performance
analysis of a tensor processing unit. In
Proceedings of the International
Symposium on Computer Architecture
(ISCA) (Toronto, ON, Canada, 2017),
Association for Computing Machinery, New
York, NY, USA.

	16.	 Loh, G.H., Jerger, N.E., Kannan, A., Eckert,
Y. Interconnect-memory challenges for
multi-chip, silicon interposer systems. In
Proceedings of the International

Symposium on Memory System
(MEMSYS) (Washington DC, USA, 2015),
Association for Computing Machinery,
New York, NY, USA.

	17.	 Mirhoseini, A., Pham, H., Le, Q.V., Steiner,
B., Larsen, R., Zhou, Y., Kumar, N.,
Norouzi, M., Bengio, S., Dean, J. Device
placement optimization with
reinforcement learning. In Proceedings
of the International Conference on
Machine Learning (ICML) (2017),
JMLR.org, Sydney, NSW, Australia.

	18.	 NVIDIA. NVIDIA Tesla deep learning
product performance. https://
developer.nvidia.com/deep-learning-
performance-training-inference, 2019.

	19.	 Parashar, A., Raina, P., Shao, Y.S., Chen,
Y.-H., Ying, V.A., Mukkara, A., Venkatesan,
R., Khailany, B., Keckler, S.W., Emer, J.
Timeloop: A systematic approach to DNN
accelerator evaluation. In Proceedings of
the International Symposium on
Performance Analysis of Systems and
Software (ISPASS) (2019), IEEE,
Madison, WI, USA.

	20.	 Parashar, A., Rhu, M., Mukkara, A.,
Puglielli, A., Venkatesan, R., Khailany,
B., Emer, J., Keckler, S.W., Dally, W.J.
SCNN: An accelerator for compressed-
sparse convolutional neural networks.
In Proceedings of the International
Symposium on Computer Architecture
(ISCA) (Toronto, ON, Canada, 2017),
Association for Computing Machinery,
New York, NY, USA.

	21.	 Shao, Y.S., Clemons, J., Venkatesan, R.,
Zimmer, B., Fojtik, M., Jiang, N., Keller, B.,
Klinefelter, A., Pinckney, N., Raina, P.,
Tell, S.G., Zhang, Y., Dally, W.J., Emer,
J.S., Gray, C.T., Keckler, S.W., Khailany, B.
Simba: Scaling deep-learning inference
with multi-chip-module-based
architecture. In Proceedings of the

International Symposium on
Microarchitecture (MICRO) (Columbus,
OH, USA, 2019), Association for
Computing Machinery, New York, NY, USA.

	22.	 Sijstermans, F. The NVIDIA deep
learning accelerator. In Hot Chips (2018).

	23.	 Venkataramani, S., Ranjan, A., Banerjee, S.,
Das, D., Avancha, S., Jagannathan, A.,
Durg, A., Nagaraj, D., Kaul, B., Dubey, P.,
Raghunathan, A. ScaleDeep: A scalable
compute architecture for learning and
evaluating deep networks. In Proceedings
of the International Symposium on
Computer Architecture (ISCA) (Toronto,
ON, Canada, 2017), Association for
Computing Machinery, New York, NY, USA.

	24.	 Wilson, J.M., Turner, W.J., Poulton, J.W.,
Zimmer, B., Chen, X., Kudva, S.S., Song, S.,
Tell, S.G., Nedovic, N., Zhao, W.,
Sudhakaran, S.R., Gray, C.T., Dally, W.J.
A 1.17pJ/b 25Gb/s/pin ground-referenced

single-ended serial link for off- and
on-package communication in 16nm
CMOS using a process- and temperature-
adaptive voltage regulator. In Proceedings
of the International Solid State Circuits
Conference (ISSCC) (2018), IEEE, San
Francisco, CA, USA.

	25.	 Zimmer, B., Venkatesan, R., Shao, Y.S.,
Clemons, J., Fojtik, M., Jiang, N., Keller,
B., Klinefelter, A., Pinckney, N., Raina,
P., Tell, S.G., Zhang, Y., Dally, W.J., Emer
J.S., Gray, C.T., Keckler, S.W., Khailany,
B. A 0.11 pJ/Op, 0.32–128 TOPS,
scalable multi-chip-module-based
deep neural network accelerator with
ground-reference signaling in 16nm. In
Proceedings of the International
Symposia on VLSI Technology and
Circuits (VLSI) (2019), IEEE, Kyoto,
Japan, Japan.

Yakun Sophia Shao* ({ysshao}@berkeley.
edu), UC Berkeley, CA, USA.

Jason Cemons, Nathaniel Pinckney,
Brucek Khailany, and Stephen W. Keckler
({jclemons, npinckney, bkhailany, skeckler}@
nvidia.com), NVIDIA, Austin, TX, USA.

Rangharajan Venkatesan, Brian Zimmer,
Ben Keller, and Yanqing Zhang
({rangharajanv, bzimmer, benk, yanqingz}@
nvidia.com), NVIDIA, Santa Clara, CA, USA.

Matthew Fojtik, Alicia Klinefelter,
Stephen G. Tell, and Tom Gray ({mfojtik,
aklinefelter, stell, tgray}@nvidia.com),
NVIDIA, Durham, NC, USA.

Nan Jiang ({tedj}@nvidia.com), NVIDIA,
Westford, MA, USA.

Priyanka Raina ({praina}@stanford.edu),
Stanford University, Stanford, CA, USA.

William J. Dally ({bdally}@nvidia.com),
NVIDIA, Incline Village, NV, USA/Stanford
University, Stanford, CA, USA.

Joel Emer ({jemer}@nvidia.com),
Massachusetts Institute of Technology,
Cambridge, MA, USA/NVIDIA, Westford,
TX, USA.

*Work done at NVIDIA

This work is licensed under a Creative Commons
Attribution International 4.0 License.

