
Design and Modeling of
Specialized Architectures

a dissertation presented

by

Yakun Sophia Shao

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2016

©2016 – Yakun Sophia Shao

all rights reserved.

Thesis advisor: Professor David Brooks and Gu-Yeon Wei Yakun Sophia Shao

Design and Modeling of Specialized Architectures

Abstract

Hardware acceleration in the form of customized datapath and control circuitry tuned

to specific applications has gained popularity for its promise to utilize transistors more

efficiently. However, architectural research in the area of specialization architectures is

still in its preliminary stages. A major obstacle for such research has been the lack of an

architecture-level infrastructure that analyzes and quantifies the benefits and trade-offs

across different designs options. Existing accelerator design primarily relies on creating

Register-Transfer Level (RTL) implementations, a tedious and time-consuming process,

making early-stage, design space exploration for specialized architecture designs infeasi-

ble.

This dissertation presents the case for early-stage, architecture-level design method-

ologies in specialized architecture design and modeling. Starting with workload charac-

terization, the proposed ISA-independent workload characterization approach demon-

strates its capability to capture application’s intrinsic characteristics without being bi-

ased due to micro-architecture and ISA artifacts. Moreover, to speed up the accelera-

tor design process, this dissertation presents a new modeling methodology for quickly

and accurately estimating accelerator power, performance, and area without RTL gen-

eration. Aladdin, as a working example of this methodology, is 100× faster than the

existing RTL-based simulation, and yet maintains accuracy within 7% of RTL imple-

iii

Thesis advisor: Professor David Brooks and Gu-Yeon Wei Yakun Sophia Shao

mentations. Finally, accelerators are only part of the entire System on a Chip (SoC). To

accurately capture the interactions across CPUs, accelerators, and shared resources, we

developed an integrated SoC simulator based on Aladdin to enable system architects to

study system-level ramifications of accelerator integration.

The techniques presented in this thesis demonstrate some initial steps towards early-

stage, architecture-level infrastructures for specialized architectures. We hope that this

work, and the other research in the area of accelerator modeling and design, will open

up the field of specialized architectures to a wider range of researchers, unlocking new

opportunities for efficient accelerator design.

iv

Contents

Title Page 1

Copyright 2

Abstract iii

Table of Contents ix

List of Figures xiv

Previous Work xv

Acknowledgements xvi

Dedication xx

1 Introduction 1

1.1 What is an accelerator? . 1

1.2 A tale of two scalings . 2

1.2.1 Moore scaling . 2

1.2.2 Dennard scaling . 4

1.3 The combination of Moore and Dennard scaling 5

v

1.3.1 Moore + Dennard—where we were 6

1.3.2 Moore Scaling only—where we are 6

1.3.3 Dennard only—where we are unlikely to be 8

1.3.4 A future without scaling: “The winter of despair” 8

1.4 To live without scaling: “A spring of hope” 10

1.4.1 Why not architectural scaling? . 11

1.4.2 Specialization makes a difference 12

1.5 Challenges in Specialized Architecture Design 15

1.6 Thesis Contributions . 15

1.6.1 Accelerator Workload Characterization (Chapter 3). 16

1.6.2 Accelerator Pre-RTL Modeling (Chapter 4). 16

1.6.3 Accelerator-System Co-Design (Chapter 5). 17

1.7 Thesis Organization . 18

2 Background and Related Work 19

2.1 Accelerator taxonomy . 19

2.1.1 Accelerators that are part of the pipeline. 22

2.1.2 Accelerators that are attached to cache 26

2.1.3 Accelerators that are attached to the memory bus 30

2.1.4 Accelerators that are attached to the I/O bus 34

2.2 Standard RTL Design Flow . 34

2.3 High-Level Synthesis . 35

2.4 Putting it Together . 39

3 WIICA: ISA-Independent Workload Characterization for Acceler-

ators 40

vi

3.1 Introduction . 40

3.2 Motivation . 42

3.2.1 Stack Overhead. 42

3.2.2 Complex Operations. 44

3.2.3 Calling Convention. 44

3.3 Methodology and background . 45

3.3.1 Compiler’s IR. 46

3.3.2 ISA-Dependent. 47

3.3.3 Sampling. 47

3.3.4 Benchmark Suite. 48

3.4 Wordload Characteristics Analysis . 48

3.4.1 Compute . 48

3.4.2 Memory . 53

3.4.3 Control . 57

3.5 Putting it all together . 59

4 Aladdin: Pre-RTL, Power-Performance-Area Accelerator Modeling 61

4.1 Introduction . 62

4.2 Background and Motivation . 63

4.2.1 Accelerator Design Flow . 63

4.2.2 Accelerator Design Space . 64

4.2.3 State-of-the-art Accelerator Research Infrastructure 65

4.2.4 Contributions . 66

4.3 The Aladdin Framework . 66

4.3.1 Modeling Methodology . 66

vii

4.3.2 Optimization Phase . 68

4.3.3 Realization Phase . 70

4.3.4 Integration with Memory System 75

4.3.5 Limitations . 76

4.4 Aladdin Validation . 77

4.4.1 Validation Flow . 77

4.4.2 Applications . 78

4.4.3 Validation . 81

4.4.4 Algorithm-to-Solution Time . 82

4.5 Case Study: GEMM Design Space . 82

4.5.1 Execution Time Decomposition . 83

4.5.2 Accelerator Design Space . 85

4.5.3 Resource-Sharing Effects in Heterogeneous SoC 86

5 gem5-Aladdin: Accelerator-System Co-Design 88

5.1 Introduction . 88

5.2 Motivation and Background . 90

5.2.1 Co-design: A Motivating Example 90

5.2.2 Typical CPU-Accelerator Communication 91

5.3 Modeling infrastructure . 92

5.3.1 Overview . 93

5.3.2 Accelerator Modeling . 94

5.3.3 DMA Engine . 94

5.3.4 Caches and Virtual Memory . 95

5.3.5 CPU-Accelerator Interface . 95

viii

5.3.6 Performance Validation . 95

5.4 Memory System Opportunities . 97

5.4.1 Primary design considerations . 97

5.4.2 DMA Optimizations . 98

5.4.3 DMA Evaluation . 100

5.4.4 Cache-Based Accelerators . 103

5.4.5 Cache Evaluation . 104

5.5 Accelerator Design Choices . 105

5.5.1 DMA vs. Caches . 106

5.5.2 Design Decision Comparison . 108

5.6 Related Work . 111

6 Conclusions and Future Directions 113

References 132

ix

Listing of figures

1.1 In 1965, Gordon Moore predicted that the number of transistors per integrated

circuit would double every year (later revised to every two years)115. . . . 3

1.2 The minimum cost per transistor can be reached by balancing the density of

transistors and the yield rate of fabrication115. 3

1.3 Four relations of Moore and Dennard scaling. 5

1.4 Transistor size34. 6

1.5 Transistor count34. 6

1.6 Cost per transistor116. 6

1.7 Supply voltage stops scaling59. 7

1.8 Clock frequency stops scaling59. 7

1.9 Achievable speedup with respect to the parallel portion of the program ac-

cording to Amdahl’s Law22. 8

1.10 Achievable multi-core speedup across technology generations compared to Moore’s

law scaling64. 8

1.11 Intel historical technology scaling trend and projections9,10. 9

1.12 Cost per transistor stops scaling2. 10

1.13 Performance increase is more than technology scaling59. 11

1.14 Specialization makes a difference. 12

x

1.15 An annotated die photo of an Apple A8 (iPhone 6) SoC. The yellow box on

the lower right is a dual-core CPU, and the red box on the lower left is a quad-

core GPU. More than half of the die area is dedicated to non-CPU, non-GPU

blocks (white boxes), most of which are application-specific accelerators. The

original die photo is from Chipworks4. 13

1.16 Die photo analysis across generations of Apple’s SoCs. Left: Die area break-

down. Right: Number of specialized IP blocks. 14

1.17 Future Heterogeneous Architecture. 14

2.1 DySER pipeline74. 23

2.2 Neural processing unit65. 24

2.3 An example of 10x10 architecture47. 24

2.4 Convolution engine system overview129. 25

2.5 An example of the Tensilica processor pipeline149. 26

2.6 An example of Hwacha vector accelerators122. 27

2.7 CHARM architecture54. 27

2.8 A C-core-enabled system159. 28

2.9 SNNAP117. 29

2.10 The overall Memcached architecture103. 29

2.11 Hardware acceleration of database operations system overview40. 30

2.12 Area/power/delay characteristics of Q100 tiles compared to a Xeon core165. 31

2.13 LINQits hardware overview48. 31

2.14 Accelerator store design110. 32

2.15 The Sonic Millip3De Hardware Overview136. 32

2.16 Diannao Accelerator43. 33

xi

2.17 A 2-core system w/ HARP integration164. 33

2.18 (a) Catapult FPGA block diagram. (b) Manufactured board. (c) The server

that hosts the FPGA board.128. 34

2.19 Synthesis flow. 35

2.20 High-level synthesis landscape. 36

3.1 WIICA Overview. 42

3.2 The percentage of stack instructions of total dynamic instructions for 32-bit

and 64-bit x86 binaries. 43

3.3 Instruction breakdown of complex (top three bars) and single (bottom bar)

operation instructions. 45

3.4 The instruction breakdown for x86, IR and Simplified-IR (S-IR). 49

3.5 The instruction breakdown for x86, IR and Simplified-IR (S-IR). 50

3.6 x86 . 51

3.7 IR . 51

3.8 Cumulative distribution of the number of unique opcodes of 179.art. The in-

tersecting lines show the number of unique opcodes that cover 90% of dynamic

instructions. 51

3.9 Number of unique opcodes to cover 90% of dynamic instructions. “All” rep-

resents the global superset. 52

3.10 Number of unique static instructions to cover 90% of dynamic instructions. 52

3.11 Number of unique memory addresses to cover 100% of dynamic memory ac-

cesses. 54

3.12 Number of unique memory addresses to cover 90% of dynamic memory ac-

cesses. 54

xii

3.13 Memory address entropy of x86, x86 without stack, and IR traces. Lower val-

ues indicate more regularity in the access stream. 56

3.14 Example of Local Entropy . 57

3.15 179.art . 57

3.16 255.vortex . 57

3.17 Local memory entropy as a function of low-order bits omitted in calculation.

A faster dropping curve indicates more spatial locality in the address stream. 57

3.18 Number of unique branch instructions to cover 90% of dynamic branches. . 58

3.19 Branch entropy per workload. Lower values imply better branch predictabil-

ity. 58

3.20 Comparison of five ISA-independent metrics across SPEC benchmarks, or-

dered by the area of the polygon. The lower right kiviat plot provides the leg-

end, and smaller values indicate more regularity in the metric. 59

4.1 GEMM design space w/ and w/o memory hierarchy. 64

4.2 The Aladdin Framework Overview. 66

4.3 C, IR, Resource Constrained DDDG, and Activity. 73

4.4 Cycle-by-Cycle FU and Memory Activity of FFT. 75

4.5 Validation Flow. 77

4.6 Unoptimized vs. Tuned Scan. 78

4.7 Performance (top), Power (middle), and Area (bottom) Validation. 80

4.8 Energy Characterization of SHOC. 81

4.9 GEMM Time and Power Decomposition 83

4.10 GEMM design space. 85

4.11 Design Space of GEMM without and with contention in L2 cache. 86

xiii

5.1 Isolated and co-designed EDP optimal design points for stencil3d. 90

5.2 Data movement overheads on MachSuite. 92

5.3 An example SoC that can be modeled using gem5-Aladdin. The table shows

the set of design parameters that we swept and their values; this is just a small

subset of what can be changed. 93

5.4 Error between Zedboard and gem5-Aladdin cycles. 96

5.5 A demonstration of the DMA latency reduction techniques, using reduction

as an example workload. 99

5.6 Cumulatively applying each technique reduces the additional cycles spent on

DMA, with some benchmarks seeing more benefit than others. After apply-

ing all techniques, increasing parallelism through loop unrolling reduces com-

pute cycles until near-complete overlap is achieved, causing performance to

saturate. 101

5.7 Effect of datapath parallelism on cache-based accelerator performance. . . 104

5.8 Power-performance Pareto curves for DMA- and cache-based accelerators. EDP

optimal design points are shown as stars. Benchmarks are ordered left-to-right,

top-down by preference for a DMA-based vs. a cache-based memory system.106

5.9 Comparison of accelerator microarchitectural parameters across four design

scenarios. The vertices of the kiviat plots represent the number of datapath

lanes, SRAM sizes, and local memory bandwidth, normalized to the maxi-

mum across the four scenarios for each benchmark. 109

5.10 Energy delay product improvement of co-designed accelerators in different sce-

narios compared to the isolated designs. The design parameters of each op-

timal design points are illustrated in Figure 5.9. 110

xiv

Previous Work

Portions of this dissertation appeared in the following:

Y. Shao and D. Brooks, “ISA-Independent Workload Characterization and Its Impli-
cations for Specialized Architectures”, Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2013.

Y. Shao and D. Brooks, “Energy Characterization and Instruction-Level Energy Model
of Intel’s Xeon Phi Processor”, Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED), September 2013.

B. Reagen, Y. Shao, G. Wei and D. Brooks, “Quantifying Acceleration: Power Perfor-
mance Trade-Offs of Application Kernels in Hardware”, Proceedings of the Interna-
tional Symposium on Lower Power Electronics and Design (ISLPED), September 2013.

Y. Shao, B. Reagen, G. Wei and D. Brooks, “Aladdin: A Pre-RTL, Power-Performance
Accelerator Simulator Enabling Large Design Space Exploration of Customized Ar-
chitectures”, Proceedings of the International Symposium on Computer Architecture
(ISCA), June 2014.

B. Reagen, R. Adolf, Y. Shao, G. Wei and D. Brooks, “MachSuite: Benchmarks for Ac-
celerator Design and Customized Architectures”, Proceedings of the International Sym-
posium on Workload Characterization (IISWC), October 2014.

Y. Shao, B. Reagen, G. Wei and D. Brooks, “The Aladdin Approach to Accelerator De-
sign and Modeling,” Proceedings of IEEE Micro’s Top Picks in Computer Architecture
Conferences (TopPicks), May 2015.

Y. Shao and D. Brooks, “Research Infrastructures for Hardware Accelerators”, Syn-
thesis Lectures on Computer Architecture, Morgan & Claypool Publishers, November
2015.

Y. Shao, S. Xi, V. Srinivasan, G. Wei and D. Brooks, “Co-Designing Accelerators and
SoC Interfaces using gem5-Aladdin,” Proceedings of the International Symposium on
Microarchitecture (MICRO), October 2016.

xv

Acknowledgments

Finally, this is the end. I still remember when I first started my PhD, David sent me to

a summer school on computer architecture and compiler design in Barcelona. Enjoying

the amazing architecture and wonderful food there, I was joking with David that if grad

school is like this, I would love to be in grad school forever. After spending seven years

in grad school, I am relieved that it does not come true:). Looking back, it has been an

amazing journey since then, and I am grateful for all the help and support I have re-

ceived over the years. I would not be who I am today without so many special people in

my life.

First and foremost, I am extremely fortunate to have two amazing advisors to interact

with on a daily basis: David Brooks and Gu-Yeon Wei. They have a tremendous impact

on who I am today. As a fresh-out-of-undergrad student with close to zero knowledge

about how to do good research, David and Gu courageously took me in their group and

taught me everything from thinking critically in research to aligning objects in Power-

Point. I thank them for seeing potential in me that I did not know I had, for teaching

me how to do good research and effectively communicate my ideas to others, and for

always being available to chat whenever I need advice. They heard me out when I was

confused, and have guided me through all the ups and downs of my PhD. I could not

have asked for better advisors other than David and Gu.

I would like to thank Margo Seltzer for serving on my dissertation committee. I first

xvi

met Margo when I took her operating system class during my first semester at Harvard.

It was an interesting but also challenging course for me back then. I am grateful for her

support and confidence in me not only during the class but also throughout my PhD. I

also thank her for the detailed feedback she gives me on my work, which has enriched my

dissertation as well as my vision for future directions. I also want to express my grati-

tude to Eddie Kohler and Stephen Chong for serving on my qualification committee. I

appreciate all the early feedback that they have given me to improve my dissertation re-

search.

I am also thankful for many of the mentors I have outside Harvard over the years.

I thank Victor Lee and Pradeep Dubey for hosting my internship at Intel Labs. I also

thank Viji Srinivasan, Hillery Hunter, Pradip Bose, and Jeff Burns for hosting my two

internships at IBM T.J. Waston Research Center. I am also grateful to IBM for award-

ing me the prestigious IBM PhD Fellowship. Moreover, I would like to thank Margaret

Martonosi for encouraging me to write the Synthesis Lecture book. I also want to thank

Joel Emer for his support and feedback on my work. I am looking forward to working

with him at NVIDIA Research afterwards.

My PhD journey would not be complete without the past and present amazing mem-

bers of the VLSI-Arch group. I especially thank Glenn Holloway for his invaluable help

whenever I run into any machine problems. I am also grateful for the editing he has done

for almost all my papers and writings. I will miss the mid-night phone calls and emails

from Glenn about me using up vlsiarch space. I would like to thank Mike Lyons for

helping me settling down when I first joined the group. I also thank him for the great

coffee he made, for the trips we took together for good Asian food, for Om Nom, and

for the free Dropbox space he has given me. I also want to thank Vijay Janapa Reddi

for his confidence in me. I never really worked with VJ so far, but he always tells me

xvii

that he sees potential in me. Maybe he just say that to everybody, but I took it seri-

ously. I thank him for being a cheerleader for all my accomplishments. I also want to

thank Simone Campanoni for introducing me to the compiler world with his awesome

ILDJIT tool. His passion and persistence towards research have been a source of inspi-

ration that keeps me motivated. Moreover, I would like to thank my two major collab-

orators, Brandon Reagen and Sam Xi, for the wonderful collaborations we have dur-

ing the past years. They have brought so much energy to the projects and powered me

through all the tough times during the process. I also thank many other members of the

group: Meeta, Krishna, Jud, Kevin, Emma, Saketh, Bob, Paul, Svilen, Rafael, Ankur,

Wonyoung, Mario, Simon, Saekyu, Hyunkwang, Siming, Tao, and Silvia. I have shared

so many great memories with them, and each and every one of them has made it fun to

come to the lab every day.

I would also like to thank my friends and mentors outside the lab. Iris, thank you

for always finding the most amazing restaurants no matter whether we are in Boston,

Beijing or Taipei. I will definitely miss all the fun lunch conversations we had together.

Jun, thank you for being the sweetest roommate in our lovely apartment during the past

years. Dongxing, thank you for being a great friend and mentor with whom I can share

my thoughts. Pamala, thank you for working with me on my English when I first came

to the US. I also want to thank my undergraduate advisors, Wen Xu, Bingtao Ruan, and

Mansun Chan for keeping in touch with me throughout my PhD and always having faith

in me since we first met.

A special thank you goes to my wonderful boyfriend, Zhongnan Fang. It is hard to be-

lieve that it has been almost nine years since we first met in Hangzhou. Since then, we

have been to so many beautiful places and shared so many wonderful memories together.

I thank him for always being there for me, for believing in me no matter what happens,

xviii

and for all the adventures and laughs he has brought into my life. It has been a fun jour-

ney, and I am looking forward to sharing more wonderful experiences with you!

Last but not the least, I thank my parents for their unconditional love and support

throughout my life, even when we are continents away. I owe all my accomplishments to

them.

xix

Dedicated to my family, friends, and mentors.

xx

“It was the best of times, it was the worst of
times, it was the age of wisdom, it was the age
of foolishness, it was the epoch of belief, it was
the epoch of incredulity, it was the season of
Light, it was the season of Darkness, it was the
spring of hope, it was the winter of despair.”

Dickens, 1859 1
Introduction

The era of heterogeneous computing is upon us. Heterogeneity comes in many forms, in-
cluding domain-specific processors and application-specific accelerators. Almost all major
semiconductor vendors have chips that include accelerators, big or small, for a variety of
applications. Research in this space has grown in popularity, and there is a vibrant com-
munity of researchers in the fields of computer architecture and VLSI-CAD that seek to
embrace this new era. But what exactly is an accelerator and why do we need accelera-
tors now? In the following sections, we define accelerators and discuss how fundamental
changes in the semiconductor industry have brought about the emergence of this new era
of hardware accelerators.

1.1 What is an accelerator?

An accelerator is a specialized hardware unit that performs a set of tasks with higher
performance or better energy efficiency than a general-purpose CPU. Examples of accel-
erators include digital signal processors (DSPs), graphics processing units (GPUs) and
fixed-function application-specific integrated circuits (ASICs), such as video decoders.
The use of accelerators is not a new idea; the deployment of floating point co-processors
in the 1980s marked one of the early adoptions of accelerators, and accelerators have
been a common feature of system-on-chip (SoC) architectures for embedded systems for

1

decades. However, accelerator research and deployment in mainstream computer archi-
tectures has not been embraced until very recently. This raises the question: why accel-
erators, now?

To answer this question, let us first look at the interaction between computer archi-
tecture and semiconductor technology. Computer architecture sits as a layer between
the semiconductor fabrication and circuit technology used to produce chips and the
high-level system software and applications that run on them. Hence, every major ar-
chitectural breakthrough is deeply rooted in the advance of underlying technology and
the quest for better performance or energy efficiency for applications. In the rest of this
chapter, we discuss the historical scaling trends that have driven the growth of the semi-
conductor industry and how disruption in these trends has led to the growing popularity
of accelerators.

1.2 A tale of two scalings

The semiconductor industry has been driven by two scaling laws: Moore’s Law and Den-
nard scaling. It is these two scaling trends that have resulted in the popularity of CMOS
technology and subsequent advances in computing technology over the past several decades.

1.2.1 Moore scaling

The semiconductor industry has recorded impressive achievements since 1965 when Gor-
don Moore published the observation that would become the industry’s guiding standard
for the subsequent five decades115. Moore’s law states that the number of transistors
that can economically be fit onto an integrated circuit doubles every two years, demon-
strated in the well-known plot shown in Figure 1.1. This simple plot set the pace for
progress in the semiconductor industry, although Moore’s scaling prediction is purely
an empirical observation of technological progress.

Moore’s law is about more than just shrinking transistor sizes and better integration
capability. It is fundamentally a cost-scaling law. Moore derived the law as he was ulti-
mately interested in shrinking transistor costs. Figure 1.2 is also from Moore’s original
paper, and is an often overlooked observation that is every bit as important as transistor
density trends:

“For simple circuits, the cost per component is nearly inversely proportional

2

Figure 1.1: In 1965, Gordon Moore
predicted that the number of transistors
per integrated circuit would double every
year (later revised to every two years)115.

Figure 1.2: The minimum cost per
transistor can be reached by balancing
the density of transistors and the yield

rate of fabrication115.

to the number of components, the result of the equivalent piece of semicon-
ductor in the equivalent package containing more components. But as com-
ponents are added, decreased yields more than compensate for the increased
complexity, tending to raise the cost per component. Thus there is a mini-
mum cost at any given time in the evolution of the technology.”

What Moore observed is that the cost per transistor depends on two factors. One is
the density of transistors that we can cram onto a single chip, and the other one is the
yield rate of the fabrication, i.e., the fraction of working chips on a wafer. On the one
hand, increasing the number of transistors per silicon area makes each individual transis-
tor cheaper on average. On the other hand, as chip design becomes more complex with
more transistors, the chances of a chip being rendered inoperable by defects found on the
wafers also increase, driving up the cost per transistor.

Over the years, Moore’s law has driven the semiconductor industry to lower the cost
per transistor by scaling the sizes of transistors and wafers together with a combination
of other innovative “circuit and device cleverness” to increase the yield137. Specifically,
scaling the sizes of transistor and wafer affects the transistor cost in the following ways:

• Transistor size—the smaller the better since we can cram more transistors on the
same die area;

3

Device or Circuit Parameter Scaling Factor
Device dimension tox, L,W 1/k
Doping concentration Na k
Voltage V 1/k
Current I 1/k
Capacitance eA/t 1/k
Delay time per circuit V C/I 1/k
Power dissipation per circuit V I 1/k2

Power density V I/A 1

Table 1.1: Dennard scaling detailed how device and circuit parameters follow the scaling of
transistor dimensions60.

• Wafer size—the larger the better since we can produce more chips from a fixed
number of processing steps. Also, empirically defects are more likely to occur at
the edge of a wafer, so a larger wafer also means smaller defective densities.

1.2.2 Dennard scaling

Moore’s analysis only stated that we need to make transistors smaller but it did not
touch on how to make this happen. It is Dennard scaling that outlined how we make
smaller transistors at each technology generation. Robert Dennard addressed this in his
seminal paper on metal-oxide semiconductor (MOS) device scaling in 197460. In that pa-
per, Dennard showed that when voltages are scaled along with transistor dimensions, a
device’s electric fields remain constant, and most device characteristics are preserved.
Table 1.1 summarizes how transistor and circuit parameter changes under ideal scal-
ing conditions, where k is a unit-less scaling constant. In a new technology generation,
the transistor dimensions, e.g., gate oxidide thickness (tox), length (L), and width (W),
become smaller compared to the previous generation by a factor of 1/k. As transistors
get smaller, they switch faster, use less power but achieve the same power density. Den-
nard’s scaling has set the roadmap for the semiconductor industry for each generation of
process technology, with a concrete transistor scaling formula to move each generation
forward.

4

1.3 The combination of Moore and Dennard scaling

As we discussed earlier, Moore’s scaling fundamentally is about cost scaling: the more
transistors that can be packed into a given silicon area, the cheaper it is to fabricate
a transistor. On the other hand, Dennard’s scaling is about performance scaling. It
demonstrated how transistors have better delay and power characteristics as they get
smaller. Eventually, every scaling theory faces two possibilities: to continue or to end.
By combining the two possibilities with Moore’s and Dennard’s scaling theories, we end
up with a combination of four scaling trends, shown in Figure 1.3.

Scale for
performance and cost

(I)

Scale for
performance

(III)

Scale for
cost
(II)

No more scaling.
(IV)

Continues Ends

Continues

Ends

Moore’s Scaling

Dennard’s
Scaling

Figure 1.3: Four relations of Moore and Dennard scaling.

1. Both Moore and Dennard scalings continue—Scale for both performance and cost
(Region I). This is the ideal scaling region, which the semiconductor industry en-
joyed up until the 2000s, resulting in both faster and cheaper transistors.

2. Moore scaling only—Scale for cost (Region II). The state of the semiconductor in-
dustry since the mid 2000s: Dennard scaling stops but we still have cheaper tran-
sistors per generation.

3. Dennard scaling only—Scale for performance (Region III). This scaling region has
not been realized in an economically practical way.

5

1970 1980 1990 2000 2010
0.01

0.1

1

10
M

in
im

um
Fe

at
ur

e
S

iz
e

(u
m

)

130 nm
90 nm

65 nm

Figure 1.4: Transistor
size34.

1970 1980 1990 2000 2010
1K

100K

10M

1B

Tr
an

si
st

or
C

ou
nt

Figure 1.5: Transistor
count34.

1970 1975 1980 1985 1990 1995 2000

10E-6

10E-3

1

C
os

tP
er

Tr
an

si
st

or
($

)

Figure 1.6: Cost per
transistor116.

4. No more scaling—Scale for nothing (Region IV). CMOS technology will become a
commodity, likely resulting in lower profit margins for fabrication companies. In
this case, there will be little motivation to devote any efforts to continue scaling
until a new transistor technology emerges to displace end-of-CMOS devices.

We will discuss each of the four trends and how they have shaped the evolution of the
computing industry.

1.3.1 Moore + Dennard—where we were

The semiconductor industry reaped the benefits from scaling in Region I for a long while,
where both Moore and Dennard scaling provided nearly ideal benefits to chip designers.
Figure 1.4 shows that the minimum feature size scaled consistently over a 30 year period
from the mid-1970s to the mid-2000s, closely tracking with Dennard scaling projections
and providing designers with smaller, faster transistors. At the same time, Moore scal-
ing, represented by a doubling of the number of transistors every two years (Figure 1.5),
led to an exponential decrease in cost per transistor (Figure 1.6).

1.3.2 Moore Scaling only—where we are

By the middle part of the 2000s, the semiconductor industry realized that scaling trends
had created a major problem with power consumption that made it difficult to econom-
ically cool microprocessors. The fundamental reason is that while the industry was suc-
cessful in matching Dennard scaling projections in producing smaller transistors, the chip
supply voltage had not kept pace with the theoretical projections.

6

10 2.37 0.56 0.13 0.03
Transistor size (um)

1

2

3

4

5
V

dd
(V

)

Figure 1.7: Supply voltage stops
scaling59.

1985 1990 1995 2000 2005 2010 2015
10M

100M

1G

10G

Fr
eq

ue
nc

y
(H

z)

Figure 1.8: Clock frequency stops
scaling59.

Figure 1.7 shows historically how supply voltage scales with transistor feature size.
The data here is collected from CPU DB59, an open database that aggregates detailed
processor specifications of more than 790 processors from 17 manufacturers over the past
40 years. We notice that from the 0.13 um generation on, supply voltage scaling has
slowed down, which is tightly coupled to the lack of threshold voltage scaling in devices
to counter sub-threshold leakage current. At the same time, we also observed an abrupt
end to the clock frequency scaling era in the early 2000s, illustrated in Figure 1.8. The
reason behind this is power. As voltage scaling stops, in order to keep power density con-
stant, the industry has moved away from deep-pipelined, high-frequency machines and is
now designing machines with relatively fixed frequencies80,83,150.

After loosing the benefits of clock frequency scaling, with the increasing number of
transistors provided by Moore’s scaling, the microprocessor industry adopted multicore
architectures that use many simpler processors to keep power density low while increas-
ing the aggregated performance of the entire chip through thread-level parallelism. How-
ever, the multicore approach does not fundamentally extend Dennard’s performance scal-
ing.

First, as illustrated by Amdahl’s Law, the overall speedup is still heavily limited by
the sequential portion of the application22. Figure 1.9 shows the ideal speedup with re-
spect to the number of cores for applications with different parallelism. For extreme par-
allel workloads, e.g., more than 95% portion of the program is parallelizable, the achiev-
able speedup for 256 cores is less than 20 ×. Second, the worsening energy and speed
scaling of transistors further limits the number of transistors that can be powered on at

7

1 16 256 4036 65536
Core Counts

0

5

10

15

20
S

pe
ed

up

95% Parallel
90% Parallel
75% Parallel
50% Parallel

Figure 1.9: Achievable speedup with
respect to the parallel portion of the

program according to Amdahl’s Law22.

45 32 22 16 11 8
Transistor Node (nm)

0

8

16

24

32

S
pe

ed
up

Moore’s Law
Multi-core Scaling

Figure 1.10: Achievable multi-core
speedup across technology generations

compared to Moore’s law scaling64.

the same time, leading to transistor under-utilization (i.e., dark silicon64). Figure 1.10
illustrates the overall achievable speedup over technology generations. Due to the par-
allelism and power limitation, a significant gap exists between what is achievable with
multi-core scaling and what is expected from Moore’s Law (i.e., doubling performance
with every technology generation). The question for architects now is: what’s next?

1.3.3 Dennard only—where we are unlikely to be

Although it is unlikely that we will enter a regime of Dennard-only scaling, it could exist
if there were a new device technology that scaled in performance and energy, but not in
the economic dimension of Moore scaling. For the sake of discussion, such a technology
would likely be confined to niche applications that need ultra high performance or low
energy consumption and are not cost sensitive. Thus, it is likely that only a small sub-
set of semiconductor players would be interested in exploring such technologies, as the
capital and R&D expenses of maintaining scaling would be hard to overcome.

1.3.4 A future without scaling: “The winter of despair”

A return of Region I scaling is unlikely in the medium term given device technology
trends and projections over the next decade. At the same time, traditional Moore scal-
ing is already measurably slowing down. Figure 1.11 shows Intel’s historical technology
scaling trend based on the release date of the first microprocessor in each technology

8

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20

Years

0

25

50

75

100

125

150

175

200

Te
ch

no
lo

gy
N

od
e

(n
m

) 180 nm

130 nm

90 nm

65 nm

45 nm
32 nm

22 nm
14 nm 10 nm

Figure 1.11: Intel historical technology scaling trend and projections9,10.

node, along with projections for the arrival of the 10 nm node. Over the past decade,
Intel has been following its famous tick-tock development cycle: first releasing processors
with an existing architecture but a new technology node (tick), and then the following
year releasing processors with a new architecture on the then-mature technology node
(tock). In this way, Intel can release new products every year, alternating architecture
and technology improvements. However, the introduction of Intel’s 14 nm process in
the fourth quarter of 2014 was a disruption of this rhythm as it was delayed for half of
a year beyond the original projection of the second quarter. Moreover, in July 2015, Intel
announced that the 10 nm node will not be ready until the second half of 2017, which is
another significant delay10. In this case, there will be three generations of products using
the same 14 nm technology.

Intel’s latest delay is part of a larger trend in semiconductor manufacturing. Switching
to a new process node is getting more complex and more expensive than ever. There has
been a drastic increase in the following two categories of fabrication costs.

First, the R&D cost for developing next generation CMOS transistors is increasing
rapidly. Innovations like FinFETs have allowed the semiconductor industry to continue
to scale transistor feature sizes. However, the fabrication process is getting significantly
more complex due to techniques such as multi-patterning157,171. Such costs overcome
lithography bottlenecks at the expense of more fabrication steps, expensive tools, and

9

2005 2007 2009 2011 2013 2015 2017
0.1

0.4

0.7

1
N

or
m

al
iz

ed
Tr

an
si

st
or

C
os

t
80nm
55nm
40nm
28nm
20nm
14nm

Figure 1.12: Cost per transistor stops scaling2.

higher mask design costs. Several semiconductor companies have become fabless in the
past several years due to the increasing cost of maintaining state-of-the-art fabrication
facilities7, and it is likely that we will see even more consolidation in the industry.

Second, it is also getting harder to increase the wafer size. Larger wafer size can lower
fabrication costs by increasing the number of dies per wafer and providing better yields.
However, the cost of equipment grows significantly with larger wafer sizes. Migrating
from today’s 300 mm wafers to full-scale 450 mm fabrication lines will cost $10 billion to
$15 billion, and thus this transition is is not expected to occur until 202014.

Figure 1.12 shows the cost of transistors over different technology generations in re-
cent years. The data, provided by Nvidia2, shows that there is a minimal projected cost-
benefit after migrating past 28 nm technology, as the projected curves have normalized
cost to 28 nm. Thus, scaling to smaller feature sizes will no longer provide an economic
benefit for fabless IC companies. If this comes to pass, it will effectively mean the end of
the economic scaling projection of Moore’s Law.

1.4 To live without scaling: “A spring of hope”

The computing industry has begun to adjust to the loss of Dennard scaling, and the loss
of Moore scaling is on the near-term horizon. Without either kind of scaling, there is the
risk of stagnation in the overall computing industry. One possible outcome of this is that
transistors will become a commodity with potentially lower profits for fabrication compa-
nies. This will likely lead to additional consolidation in the semiconductor industry, e.g.,
the recent Intel-Altera and Avago-Broadcom acquisitions3,8, and fabrication companies

10

1.5 1.0 0.68 0.5 0.35
0.25

0.18
0.13

0.09
0.065

0.045
0.032

Feature size (um)

1

10

100

1000

10000
Performance / Performance of 386
FO4 of 386 / FO4

Figure 1.13: Performance increase is more than technology scaling59.

will rely on “More-than-Moore” technologies to provide differentiation23.
At the same time, technology disruptions often mean new opportunities, and in this

case, there is a significant opportunity for innovation at the design and architecture level.
Companies will increasingly differentiate their products based on vertically integrated
solutions that leverage new applications mapped to innovative hardware architectures.
In this context, application- and domain-specific hardware accelerators are one of the
most promising solutions for improving computing performance and energy efficiency in
a future with little benefit from device technology innovation.

1.4.1 Why not architectural scaling?

Even with both Moore and Dennard scaling, architecture-level innovations have already
contributed significantly to the performance increase of computing systems. Figure 1.13
illustrates the normalized performance of multiple generations of processors since Intel’s
80386 microprocessor, also from CPU DB59. To estimate the performance of a processor
if it were manufactured using a newer technology without micro-architecture changes,
the authors use the delay of an inverter driving four equivalent inverters (a fanout of
four, or FO4) to quantify the speedup achieved through frequency scaling. We see that
roughly half of the overall performance improvement is due to faster transistors; the
other half is mostly from architectural innovations. With the increasing number of tran-

11

Figure 1.14: Specialization makes a difference.

sistors on a chip, computer architects have been working hard to make use of these tran-
sistors for better performance. Examples include superscalar and out-of-order scheduling
to increase instruction-level parallelism, better cache hierarchies to overcome memory
bottlenecks, multi-core architecture to harness thread-level parallelism, and specialized
units, like SIMD, to increase the performance of applications with data-level parallelism.

Figure 1.13 suggests that to overcome the loss of FO4 scaling over the next decade,
computer architects will need to deliver an additional order of magnitude performance
improvement for the computing industry to enjoy the same amount of performance dif-
ferentiation that we achieved over the past decade. However, it is unlikely that we will
see these same increases in performance and efficiency for traditional general-purpose
cores going forward, as many of the above techniques have reached the plateau of perfor-
mance improvement and already incurred unwanted power overheads.

1.4.2 Specialization makes a difference

Hardware acceleration in the form of datapath and control circuitry customized to par-
ticular algorithms or applications has surfaced as a promising approach, as it delivers
orders of magnitude performance and energy benefits compared to general-purpose solu-
tions. Figure 1.14 shows the energy efficiency comparison between general-purpose pro-
cessors, DSPs, and dedicated application-specific accelerators172. The data was collected
from 20 different chips across different architectures. These chips were originally pub-
lished at the International Solid State Circuits Conference (ISSCC) between 1998 and

12

Figure 1.15: An annotated die photo of an Apple A8 (iPhone 6) SoC. The yellow box on the
lower right is a dual-core CPU, and the red box on the lower left is a quad-core GPU. More than
half of the die area is dedicated to non-CPU, non-GPU blocks (white boxes), most of which are

application-specific accelerators. The original die photo is from Chipworks4.

2002. Compared to general-purpose processors, customized processors like DSPs deliver
from 10× to 100× more energy efficiency, while dedicated application-specific accelera-
tors are 1000× more energy efficient.

Specialized architectures were first adopted in the power-constrained mobile market.
Figure 1.15 shows a die photo of an Apple’s A8 SoC. We notice that the CPU (the yel-
low box on the lower right) takes only 15% of the die area, while the GPU (the red box
on the lower left) takes 25% of the die area. More than half of the SoC area is dedicated
to non-CPU, non-GPU blocks, most of which are application-specific hardware accelera-
tors. This area allocation is interestingly common. Analysis of die photos146 from three
generations of Apple’s SoCs: A6 (iPhone 5), A7 (iPhone 5S), and A8 (iPhone 6), iden-
tifies the same trend, as illustrated in Figure 1.16 (left). In addition, we also observe an
increasing diversity in these specialized blocks. Figure 1.16 (right) shows that the num-
ber of specialized IP blocks across five generations of Apple SoCs has been growing con-
sistently over the past decade.

13

18%

22% 60%

14%

22% 64%

CPU GPU

Apple A7

Others

Apple A8

16%

18% 66%

Apple A6 A4 A5 A6 A7 A80

10

20

30

#
of

S
pe

ci
al

iz
ed

IP
B

lo
ck

s

Figure 1.16: Die photo analysis across generations of Apple’s SoCs. Left: Die area breakdown.
Right: Number of specialized IP blocks.

Moreover, the need for specialized architectures is no longer solely associated with the
mobile market. The lack of device scaling has motivated the need for specialization in
virtually every type of computing system, ranging from mobile SoCs, desktops, and even
data centers88,111,128,143. The natural evolution of the increasing number of accelerators
will lead to a growing volume and diversity of customized accelerators in future systems.
We envision future heterogeneous architectures would include CPUs, GPUs, and a di-
verse set of specialized accelerators, all of which are connected through shared memory
and network on chip (NoC), as illustrated in Figure 1.17.

GPGPU

Big Core

Shared LLC and NoC

Private L1$ Private L1$

Little
Core

Little
Core

Private L1$

Private L1$/
Scratchpad

reg_a reg_b

Accelerator
Specific

Datapath

Sea of Accelerators

Figure 1.17: Future Heterogeneous Architecture.

14

1.5 Challenges in Specialized Architecture Design

It is an exciting era for specialized architectures. We are seeing accelerators being de-
signed and deployed for machine learning, databases, networking processing, and a va-
riety of other applications45,128,133,144,165. CAD vendors are introducing new high-level
synthesis tools to lower the barriers of accelerator designs1,20,28,93. Intel’s acquisition of
Altera with $16 billion, Intel’s largest purchase to date, marks growing excitement for in-
tegrated CPU-FPGA SoCs in servers and desktops8. However, architectural research in
the area of specialization architectures is still in its preliminary stages. A major obstacle
for such research has been the lack of an architecture-level infrastructure that analyzes
and quantifies the benefits and trade-offs across different designs options.

Historically, the computer architecture community has focused on general-purpose pro-
cessors, and extensive research infrastructure has been developed to support research ef-
forts in this domain, such as workload characterization61,71,82,107, benchmarking31,41,151,158,
and power-performance modeling26,32,35,102,166. However, existing accelerator design pri-
marily relies on creating Register-Transfer Level (RTL) implementations, a tedious and
time-consuming process. This slow process poses two major problems for accelerator-
related research at the architectural level. First, RTL-based design flow is extremely
slow. It takes hours, if not days, to generate, simulate, and synthesize RTL to get the
power and performance of a single accelerator design, even with the help of high-level
synthesis (HLS) tools. Such a low-level, RTL infrastructure cannot support large design
space exploration to identify optimal accelerator design options. Second, architecture-
level studies are generally performed in the planning stages of the design, before RTL de-
signs have begun to take shape. This RTL-based design flow makes early-stage, architecture-
level design space exploration infeasible. Hence, as the industry dives further into this
era of specialization, there is a clear need for architecture-level design methodologies for
early-stage accelerator studies.

1.6 Thesis Contributions

This dissertation is one of the first efforts in the computer architecture community to
abstract the traditional, RTL-based design methodology to the architectural level. I have
developed a series of research infrastructures, ranging from workload characterization142,
benchmarking131, power-performance-area modeling145,146,141, and system integration167

15

to help researchers study key issues in these domains. Specifically, this research has had
the following three major contributions.

1.6.1 Accelerator Workload Characterization (Chapter 3).

Specialized accelerators, especially fixed-function accelerators, are designed only for spe-
cific applications or domains of applications. Understanding intrinsic workload char-
acteristics is a key, first step to deciding whether an application is amenable to accel-
eration. Workload characterization has been an active field of computer architecture
research, though with a strong focus on general-purpose designs. Typically, hardware
performance counter statistics, e.g., IPC, cache miss rates, and branch misprediction
rates, are collected to characterize an application’s behavior. Such an approach is useful
in identifying performance bottlenecks for different applications on a specific platform,
but it does not unveil applications’ intrinsic characteristics, because many machine-
dependent features, such as cache size and pipeline depth, can strongly affect the perfor-
mance counter statistics. Hence, new workload characterization methodology is needed
to help designers quickly understand the intrinsic of acceleration for applications.

To address this, we were the first to propose an ISA-independent workload charac-
terization approach, called WIICA, for accelerators. WIICA leverages the existing ISA-
independent nature of a compiler intermediate representation (IR). WIICA includes a
compiler pass to generate a dynamic IR trace for applications of interest and profiles
ISA-independent program characteristics within the broad categories of program com-
pute, memory activity, and control flow, all of which are relevant to the design and ac-
celerators. We also quantify the differences between ISA-dependent and -independent
analysis and demonstrate that program characteristics profiled without ISA-independent
analysis could be significantly biased due to microarchitecture and ISA artifacts.

1.6.2 Accelerator Pre-RTL Modeling (Chapter 4).

The increasing volume and diversity of accelerators in every generation of processors re-
quires rolling out new designs quickly with relatively low design cost. The International
Technology Roadmap for Semiconductors (ITRS) predicts hundreds to thousands of cus-
tomized accelerators by 202218. However, state-of-the-art accelerator research projects
only contain a handful of accelerators because the cumbersome design flow inhibits com-

16

puter architects from evaluating large accelerator-centric systems. Such inadequacy in
infrastructure has confined the exploratory scope of accelerator research.

This led to the development of Aladdin, a pre-RTL, power-performance-area simulator
for accelerators. Aladdin takes high-level language descriptions of algorithms as inputs
and uses dynamic data dependence graphs (DDDG) as a representation of an accelera-
tor without having to generate RTL. Starting with an unconstrained program DDDG,
which corresponds to an initial representation of accelerator hardware, Aladdin applies
optimizations as well as constraints to the graph to create a realistic model of acceler-
ator activity. We rigorously validated Aladdin against RTL implementations of accel-
erators from both handwritten Verilog and a commercial HLS tool for a range of appli-
cations, including accelerators in Memcached103, HARP164, NPU65, and a commonly
used throughput-oriented benchmark suite, SHOC58. Our results show that Aladdin can
model performance within 0.9%, power within 4.9%, and area within 6.6% compared to
accelerator designs generated by traditional RTL flows. In addition, Aladdin provides
these estimates over 100× faster.

1.6.3 Accelerator-System Co-Design (Chapter 5).

Specialized architectures comprising CPUs, GPUs, and accelerators are widely adopted
in the mobile market and are beginning to emerge in the broad server and desktops.
Typically, accelerators are often designed as standalone IP blocks that communicate with
the rest of the system using a Direct Memory Access (DMA) interface. This modular-
ity simplifies IP design and integration with the rest of the system, leaving tasks like
data movement and coherency management to software device drivers. Such simplifica-
tion may work fine with a handful of accelerators, but it is hard to scale with a grow-
ing number of accelerators actively requesting and operating on data at the same time.
Moreover, designing each accelerator in an isolated fashion also excludes itself from tak-
ing into account possible higher-level coordination and optimization across accelerators,
general-purpose cores, and shared resources such as cache hierarchies, resulting in less
optimal designs.

This has motivated us to expand the Aladdin framework with other architecture-level
simulators to help system architects study the interactions between accelerators and the
rest of the system. Hence, we integrated Aladdin with the gem5 system simulator32, a
widely-used system simulator with configurable CPUs and memory systems. Our valida-

17

tion of gem5-Aladdin against the Xilinx Zynq SoC platform achieves less than 6.5% er-
ror. We demonstrate that co-designing accelerators with system-level considerations has
two major ramifications for accelerator microarchitectures that are not yet fully under-
stood in the literature. First, datapaths should be less aggressively parallel, which results
in more balanced designs and improved energy efficiency compared to accelerators de-
signed in isolation. Second, the choice of local memory interfaces is highly dependent on
the dynamic memory characteristics of the accelerated workload, the system architecture,
and the desired power/performance targets. We show that accelerator-system co-design
can improve energy-delay-product by up to 7.4× and on average 2.2×.

1.7 Thesis Organization

The landscape of accelerator research has changed dramatically in the past decade. Chap-
ter 2, therefore, takes some time to thoroughly review the efforts that both the archi-
tecture and the HLS communities have made over the years towards specialized archi-
tecture designs. Chapter 3 describes the WIICA workload characterization tool. Chap-
ter 4 discusses the methodology and validations of the Aladdin framework for pre-RTL,
power-performance-area modeling. Chapter 5 focuses on issues with accelerator-system
co-design, enabled by the gem5-Aladdin infrastructure. We conclude the thesis with a
discussion of future work in Chapter 6.

18

“A new scientific truth does not triumph by
convincing its opponents and making them see
the light, but rather because its opponents even-
tually die and a new generation grows up that is
familiar with it.”

Max Planck

2
Background and Related Work

This section serves as an overview of state-of-the-art accelerator research and recent ad-
vances in accelerator design flow.

2.1 Accelerator taxonomy

We characterize the space of accelerator designs with two dimensions: coupling and gran-
ularity.

Coupling defines where accelerators are deployed in the system. Today’s system hier-
archy typically includes a pipelined processor core with multiple levels of caches attached
to the memory bus and then connected to I/O devices through the I/O bus. Conceptu-
ally, accelerators can be attached to all levels of this hierarchy, though with unique chal-
lenges and opportunities: tightly coupled accelerators require more modifications of the
host processor designs, but promise lower invocation latency, while loosely coupled accel-
erators often incur high invocation cost, but they are freer from the design constraints of
the host core. Here we discretize the degree of coupling into the following categories:

1. Accelerators that are part of the pipeline.

2. Accelerators that are attached to cache.

19

3. Accelerators that are attached to the memory bus.

4. Accelerators that are attached to the I/O bus.

Granularity defines what kinds of computation are offloaded to accelerators. Finer-
grained accelerators are more likely to be used by a variety of applications, but they re-
quire certain changes to the software stack (i.e., ISAs, OSes, compilers, or programming
languages), to allow applications to be decomposed into fine-grained regions that can be
implemented by hardware accelerators when appropriate. On the other hand, coarser-
grained accelerators are intended to accelerate specific functions or kernels where achiev-
ing high efficiency supersedes the need to accommodate more programs. As chips acquire
more transistors than can be powered simultaneously64, using some of those transistors
to speed up an application that really matters becomes more affordable. Here we break
down the computation granularity into three categories:

1. Instruction-level accelerators designed for single primitives, such as arithmetic op-
erators (including sqrt, sin/cos).

2. Kernel-level accelerators that compose key parts of important applications. Exam-
ples include matrix multiply, stencil, and FFT.

3. Application-level accelerators that execute the entire applications such as H.264
video decoding and deep neural networks (DNN).

The Taxonomy

Table 2.1 presents the taxonomy of the state-of-the-art accelerator architecture space.
Accelerators in bold are industry products, and the rest are research prototypes. Inter-
estingly, we notice that industry products tend to reside at the top left and the bottom
right corners of the table (the only exception being cryptography accelerators at the bot-
tom left) while research projects are sprinkled almost everywhere. The reason behind
this trend lies in the cost of integration.

Industry has been fairly successful in providing loosely coupled, application-level accel-
erators, such as GPUs or FPGA accelerators connected to the PCIe bus. Such accelera-
tors provide off-the-shelf solutions that minimally interfere with the hardware design of
general-purpose cores or the existing CPU software stack. On the hardware side, today’s

20

Part of the
Pipeline

Attached to
Cache

Attached to the
Memory Bus

Attached to the
I/O Bus

Instruction-
Level

FPU,
SIMD,

DySER74,

Hwacha100,122,161,
CHARM54,51,

Kernel-
Level

NPU65,
10x1047,

Convolution Engine129,
H.26478,

DANA62,
SNNAP117,
C-Cores159,

Database40,
Q100165,

LINQits48,
AccStore110,

Application-
Level

x86 AES11,
Oracle/Cavium

Crypto Acc15,90,

Key-Value Stores112,
Memcached103,

Sonic3D136,
DianNao43,44,

HARP164,
TI OMAP519,

IBM PowerEN94,
IBM POWER7+33,

GPU,
Catapult128,
IBM Power8
CAPI Acc5,

Table 2.1: Accelerator taxonomy.

commercial accelerators require minimal changes in general-purpose core designs; accel-
erators either reside on a separate chip, as in the case of GPUs or FPGA accelerators, or
they are plugged in as standalone IP blocks, as in the case of today’s SoCs. On the soft-
ware side, the software stack is also more or less intact: the entire workload is offloaded
to accelerators, and no additional management is needed.

Industry has also been good at providing tightly coupled, instruction-level accelera-
tors, such as FPU and SIMD units, a category located at the opposite corner of the table
from loosely coupled, application-level accelerators. The wide adoption of accelerators
in this category also stems from the relative ease with which they can be integrated. Of
course, certain modifications to ISAs and compilers are needed to allow applications to
leverage accelerators inside the pipeline, such as auto vectorization for vector units, and
hardware designers need to balance the new execution units with the rest of the pipeline.
However, the changes are well-contained inside the pipeline, with little impact on the
memory system.

The accelerator space that requires more attention in the next decade lies in cache-
attached, kernel-level accelerators. These are the areas where we see little industry pres-

21

ence yet and mostly early work from research projects. In terms of coupling, tightly cou-
pled cache-attached accelerators free programmers from worrying about low-level data
movement between accelerators and cores, as is the case of loosely coupled accelerators
with DMA, but they need to cope with non-uniform memory latency, virtual memory,
and cache coherence on their own147. In terms of granularity, kernel-level accelerators
attempt to strike a balance between speedups and programmability by carving out sig-
nificant chunks of computation, while providing reuse across applications. To decompose
applications into kernel-level accelerators, detailed workload characterization is needed to
understand the speedup potential for different kernels.

Here we discuss some recent projects on hardware accelerators in each category of the
taxonomy. The list of examples is not intended to be exhaustive.

2.1.1 Accelerators that are part of the pipeline.

One philosophy of integrating accelerators holds that if the accelerator is important
enough, it should be put inside the pipeline as an execution unit. A classic example is
the floating point unit (FPU). The advantage of integrating accelerators into the pipeline
is that the accelerator design does not need to worry about the accelerator’s interac-
tion with the rest of the system: accelerators are just new functional units inside the
pipelines, and they can leverage a core’s load/store units and TLB for memory accesses.
On the other hand, the performance of accelerators in this category can easily be limited
by constraints of the cores, e.g., the bandwidth of the register files. These benefits and
limitations are true for all the pipeline-attached accelerators. In this section, we have a
representative accelerator design for each granularity in this category.

Instruction-Level

We start with instruction-level accelerators that are part of the pipeline.

FPU and SIMD. In early Intel chips, there were no floating point units. If the pro-
gram required floating-point computing, programmers needed to emulate those computa-
tions in software, which was very slow. Eventually, with the increasing need for floating-
point capability, floating-point processing was built into hardware. However, the first
floating point unit was shipped as a co-processor on another chip (8087), which users
could attach to the main CPU chip (8086) if desired. Not until the 80486 did Intel start

22

integrating the floating-point unit with the CPU. Now the floating-point unit is a de-
fault component in a most processor core pipelines. Similar evolution also happened with
Single Instruction Multiple Data (SIMD) units that speed up data-parallel computation.

Figure 2.1: DySER pipeline74.

DySER. Dynamically Specialized Execution Resource (DySER) is a hardware-compiler
co-design approach to dynamically wire a mesh of functional units for different phases of
program execution. Each phase is roughly tens to hundreds of instructions. The key idea
of DySER is to speed up commonly-used computation paths without incurring repeated
fetch, decode, and register access costs. DySER proposed an accelerator architecture
integrated into the host processor’s pipeline, shown in Figure 2.1, as a special execution
unit. The DySER accelerator is composed of a heterogeneous array of functional units
(FUs) connected with a mesh network. The granularity of the functional units in DySER
is similar to the complexity of instructions in CPUs. Examples of FUs include integer
ALU, multiply, and divide, as well as floating-point add/subtract, multiply, and divide74.

Kernel-Level

Compared to instruction-level accelerators, kernel-level accelerators implement large,
more semantically rich functions, e.g., multiple basic blocks, of computation.

NPU. The neural processing unit (NPU) is a low-power, neural networks accelerators
targeted at emerging approximate applications that can tolerate inexact computation in

23

Figure 2.2: Neural processing unit65.

substantial portions of their executions65. The NPU is tightly coupled to the processor
pipeline, shown in Figure 2.2, to accelerate small kernels, e.g., fft and sobel edge detec-
tor, in approximate applications. When a programmer writes their code for NPU, they
explicitly annotate functions that are amenable to approximate execution. During com-
pilation time, a NPU compatible compiler trains a neural network for the candidate re-
gion based on input-output training data, and generates codes that configures the NPU
before its invocation. The NPU configuration and invocation is done through ISA exten-
sions that are added to the core.

Figure 2.3: An example of 10x10 architecture47.

10x10. The 10x10 project envisions a customized, but general-purpose architecture,
that exploits the benefits of customization for energy efficiency and performance, but
maintains programmability and parallel scalability47. The goal of the project is to iden-
tify 10 most important kernels and then accelerate each kernel to be 10× more energy
efficient and 10× faster46. The application coverage is achieved by optimizing ten dis-
tinct, but commonly used kernels. An example of the 10x10 architecture is shown in
Figure 2.3. It has six kernel-level accelerators (micro-engines), including FFT, sort, and
pattern matching (GenPM), and one RISC core. Each of the micro-engines is basically a

24

specialized core with a customized functional units for the target kernels. New instruc-
tions are added to the ISA to invoke these specialized functional units.

Convolution Engine. Convolution engines (CEs) are specialized for convolution-like
dataflow kernels that are common in computational photography, image and video pro-
cessing applications129. CE is developed as a specialized functional unit to Tensilica’s
extensible RISC cores86. Specific CE instructions are added to the ISA. The host RISC
core decodes instructions in its instruction fetch unit and routes the appropriate con-
trol signals to CE if a CE instruction is encountered. The host core is also responsible
for memory address generation, but the data is sent/returned directly from the internal
register files in CE.

Figure 2.4: Convolution engine system overview129.

H.264 Accelerators. A recent project from Stanford asked an interesting question:
what are the sources of inefficiency in general-purpose processors78. The authors started
from a 720p H.264 encoder running on a general-purpose processor, where the corre-
sponding ASIC implementation is 500× more efficient than the general-purpose baseline.
The paper then explores methods to eliminate general-purpose overheads by gradually
transforming the CPU into a specialized system for H.264 encoding. Customized func-
tional units, e.g., SIMD and fused operations, and customized storage, e.g., shift regis-
ters, are added to speedup important kernels inside the H.264 encoder. Similar to the
Convolution Engine approach, this work also leverages the capabilities of Tensilica pro-
cessors to add customized instructions into the host ISA. An example of the Tensilica
processor is shown in Figure 2.5.

25

Figure 2.5: An example of the Tensilica processor pipeline149.

Application-Level

The most common application-level accelerators that are being integrated into the pipeline
are cryptography accelerators11,15,90. Encryption/decryption algorithms are usually
quite suitable for acceleration because of their high computational requirements and
mature standardization. Implementations of the AES instruction set integrate the en-
cryption/decryption accelerators into the processor pipeline and provide nearly an order
of magnitude improvement in AES throughput. The Advanced Encryption Standard In-
struction Set (AES-NI) is an extension of the x86 ISA for encryption and decryption
using AES11. Oracle’s SPARC and Cavium OCTEON II also include cryptography ac-
celerators inside the core to accelerate security applications15,90.

2.1.2 Accelerators that are attached to cache

Both pipeline- and cache-coupled accelerators have an address space unified with the
host cores. However, an important distinction between them is that cache-coupled accel-
erators need to access the shared-coherent cache hierarchy without assistance from the
host core’s TLB or load-store unit. Typically, accelerators in this category also need to
implement their own units for data movement and address translation.

Instruction-Level

Hwacha. The Hwacha project focuses on vector processing for data-parallel applica-
tions100,122,161. Figure 2.6 shows an example of a Hwacha accelerator. The Rocket scalar
core in Figure 2.6 is a RISC-V core from UC Berkeley. A Hwacha accelerator is a vector
co-processor that has its own instruction cache, but shares a data cache with the host

26

Figure 2.6: An example of Hwacha vector accelerators122.

core. As a good example of cache-coupled accelerators, a Hwacha accelerator has its own
internal TLB, managed by the OS, for address translation and a load-store unit for cache
access.

Figure 2.7: CHARM architecture54.

CHARM and CAMEL. The Composable Heterogeneous Accelerator-Rich Micropro-
cessor (CHARM) project focuses on composable accelerator blocks at instruction gran-
ularity that can be dynamically composed for different workloads54. Figure 2.7 shows
an overview of the CHARM architecture. CHARM is a heterogeneous architecture with
cores, L2 caches, memory controllers, accelerator building block (ABB) islands (I), and
an accelerator block composer (ABC) that dynamically connects different ABBs together
for different functionalities. Inside each ABB is a dedicated scratchpad memory (SPM),
a DMA engine, a NoC interface, and a set of fine-grained accelerators, such as recipro-
cal, square-root, polynomial-16, and divide. CHARM supports a unified address space

27

across the entire architecture, where a small, internal TLB is included in the DMA en-
gine of each ABB. In the event of a TLB miss, the TLB request is forwarded to a shared
TLB inside the accelerator block composer. If it also misses the shared TLB, the request
is forwarded to the host core. CAMEL extends the CHARM architecture from ASIC to
FPGA for better reconfigurability51.

Kernel-Level

Figure 2.8: A C-core-enabled system159.

C-core, ECOcore, and QsCore. A series of efforts from the University of Cali-
fornia, San Diego, focuses on energy-efficient, but not necessarily better performing,
accelerators called Conservation Cores (C-cores)159,135,160. C-cores efficiently execute
hot regions of specific applications that represent significant fractions of the target sys-
tem’s workload. An example of C-core architecture is shown in Figure 2.8. The entire
C-core tool chain starts with extracting the most frequently used code regions and syn-
thesizing them into C-core hardware. In order to generate code for the C-core augmented
processor, it extends a compiler framework with a combination of OpenIMPACT and
GCC with knowledge of existing C-core on chip. The compiler uses a matching algorithm
to find similarities between the input code and the C-core specifications. In the case of
matching, the compiler generates a C-core-enabled binary that makes use of the C-core.
The C-core accelerator shares the L1 cache of the host core, though the host CPU and
C-cores do not simultaneously access the cache. The design assumes a coherent cache in-
terface to enable communication between the C-core accelerator and the host core, but it
does not mention how address translation is supported.

28

SNNAP. SNNAP is an FPGA prototype for neural network accelerators117. Instead of
adding a neural network accelerator into a processor’s pipeline, as in the case of NPU65,
SNNAP implements accelerators on an on-chip FPGAs, avoiding changes to the pro-
cessor’s ISA and microarchitecture. To program a SNNAP accelerator, application pro-
grammers can either use a high-level, compiler-assisted mechanism that automatically
transforms regions of approximate code to offload them to SNNAP accelerators, or a
low-level, explicit interface that can batch multiple invocations together for pipelined
processing. In the runtime, when a SNNAP-compatible program starts, it first config-
ures the SNNAP accelerator with its topology and weights using the General Purpose
I/Os (GPIOs) interface. Then, the program sends inputs through ARM Accelerator
Coherency Port (ACP). The host processor then uses the ARMv7 SEV/WFE signaling
instructions to invoke the SNNAP accelerator. The accelerator writes outputs back to
the processor’s cache via the ACP interface, and, when finished, signals the processor to
wake up.

Application-Level

Memcached. In-memory, key-value stores are an important component of modern
data center services103,112. Memcached is implemented using a hash table, with a unique
key that indexes the stored data. Figure 2.10 depicts a recent design of a memcached
accelerator, called Thin Servers with Smart Pipes (TSSP). TSSP is designed for cost-
effective, high-performance memcached deployment. It couples an embedded-class low-
power core to a memcached accelerator that can process GET requests entirely in hard-
ware. A system MMU translates virtual addresses to physical addresses that can be

Figure 2.9: SNNAP117. Figure 2.10: The overall Memcached
architecture103.

29

shared between the accelerators and the cores.

2.1.3 Accelerators that are attached to the memory bus

Accelerators that are attached to the memory bus are usually coarser-grained accelera-
tors since the invocation and offloading cost is more significant. Accelerators proposed
in this category usually do not have much interaction with the host cores: they can ac-
cess their own physical memory directly without worrying about address translation and
coherence.

Kernel-Level

Figure 2.11: Hardware acceleration of database operations system overview40.
Database Acceleration. Database processing is an emerging area for acceleration.
Its high memory bandwidth requirement makes it a perfect candidate for near-memory
accelerators. Casper and Olukotun present an FPGA prototype using hardware to ac-
celerate three important in-memory database primitives: selection, merge join, and sort-
ing40, all of which are connected directly to memory, as shown in Figure 2.11.

Q100. The Q100 is a Database Processing Unit (DPU) that can efficiently handle
data-analytic applications165. It has a collection of heterogeneous fixed-function ASIC
tiles, listed in Figure 2.12. Each of the tiles implements a database relational operator,
such as a joiner or sorter, that resemble a common SQL operator. These tiles commu-
nicate with each other through an on-chip interconnect and load (store) data from (to)
off-chip memory.

LINQits. The LINQits framework provides a pre-tuned accelerator template to ac-
celerate a domain-specific query language, i.e., Language-Integrated Query (LINQ)48.

30

Figure 2.12: Area/power/delay characteristics of Q100 tiles compared to a Xeon core165.

Figure 2.13: LINQits hardware overview48.

LINQ supports a set of operators based on functional programming patterns and has
been used to implement a variety of applications. Unlike other query languages, LINQ
operators accept user-defined operators through a functional declaration as part of its
processing. LINQits builds LINQ operators onto an SoC accelerator framework and pro-
vides a reconfigurable template to express user-defined functions. Figure 2.13 shows an
overview of the LINQits framework. Data is streamed from main memory through the
partition reader, which is a specialized DMA engine responsible for reading bulk data.

Accelerator Store. The Accelerator Store project proposed a shared memory
framework for many-accelerator architectures. An accelerator characterization of a di-
verse pool of accelerators reveals that each accelerator contains significant amounts of
SRAM memory (40% to 90% of the total area)110. The characterization also shows that
large private SRAM memories embedded within accelerators tend to have modest band-
width and latency requirements. Figure 2.14 gives an example of accelerator store de-
sign. An accelerator store is a pool of SRAM memories connected through the memory
bus. The pool can be shared by multiple accelerators. The handle table provides virtual

31

Figure 2.14: Accelerator store design110.

memory support between them. An accelerator store can reduce the amount of on-chip
memory for many-accelerator architectures with low overhead in terms of performance
and energy.

Application-Level

Figure 2.15: The Sonic Millip3De Hardware Overview136.

Sonic3D. Figure 2.15 gives an overview of a standalone ASIC accelerator for 3D ul-
trasound beam formation—the most computationally intensive aspect of image forma-
tion136. The accelerator reads the input image from memory and writes the resulting
updated image back to memory.

DianNao. Machine learning is another emerging area where specialized accelerators
could significantly improve performance and energy efficiency. One example of on-going

32

Figure 2.16: Diannao Accelerator43.

projects in this area is the Diannao project43,44. Diannao is an accelerator design for
neural network algorithms, i.e., convolution neural networks (CNNs) and deep neural
networks (DNNs), shown in Figure 2.16. DMA engines transfer data between accelerator
buffers and memory.

Figure 2.17: A 2-core system w/ HARP integration164.

HARP. HARP is a hardware accelerator for range partitioning, which is central to
modern database systems, especially for big-data analytics164. Figure 2.17 shows a block
diagram of the major components in a system with HARP accelerators. The HARP ac-
celerator is connected to the memory bus through two buffers; software moves data in
and out of the buffers. A set of instructions is added to the host ISA for data movement
orchestration between memory and HARP buffers. With data streaming in, the range
partitioning is accelerated in the hardware accelerator.

33

2.1.4 Accelerators that are attached to the I/O bus

Here we move beyond the chip boundary: from on-chip accelerators to off-chip accelera-
tors. A good example of programmable accelerators in this category is off-chip GPU with
its own DRAM. Accelerators in this category are loosely coupled with the host without
much fine-grained communication. Usually significant speedup from the accelerator is
expected to offset the communication cost.

Figure 2.18: (a) Catapult FPGA block diagram. (b) Manufactured board. (c) The server that
hosts the FPGA board.128.

Catapult. Catapult is a prototype FPGA-based accelerator for the Bing web search
engine from Microsoft128. Catapult FPGAs, each with their own DRAM, are embedded
into a half-rack of 48 machines. FPGAs are directly connected to each other in a 6x8
two-dimensional torus through general-purpose I/Os. Catapult is used to accelerate part
of Microsoft Bing’s ranking algorithm. When a server needs to rank a document, the
software converts the document into a Catapult-compatible format and injects the docu-
ment into its local FPGA. The FPGA pipeline computes the score for the document and
sends the result back to the requesting server. Catapult was deployed with 1,632 servers
running with mirrored Bing search traffic. Compared to a software-only implementation,
Catapult achieves a 95% improvement in throughput with an equivalent latency distribu-
tion. On the other hand, it reduces the tail latency by 29% at the same throughput.

2.2 Standard RTL Design Flow

34

Verilog/VHDL

Algorithm

Gate-Level
Netlist

Physical
Layout

Manual or HLS

Logic Synthesis

Place & Route

Figure 2.19: Synthesis flow.

Despite the increasing popularity of hardware accelera-
tors, the standard accelerator design flow is still quite low-
level and requires the use of complex and time-consuming
electronic design automation (EDA) tools. Figure 2.19 il-
lustrates the design flow for ASIC accelerators. It starts
with a high-level description of an algorithm, then design-
ers either manually implement the algorithm in Register-
Transfer Level (RTL) using Verilog or VHDL or use high-
level synthesis (HLS) tools, to compile the high-level pro-
grams to RTL. Hardware description languages such as
Verilog and VHDL date back to the 1980’s. They allow
hardware designers to describe circuits using low-level
building blocks, such as multipliers, registers, and multi-
plexers. Functional verification tests whether the resulting
RTL design agrees with specifications. When all the blocks are implemented and veri-
fied, designers use commercial logic synthesis tools to map their designs to the gate level.
Tools such as Synopsys Design Compiler take as input RTL in Verilog or VHDL, target
technology libraries, and constraints, and they produce a gate-level netlist. This netlist
is then transformed by place-and-route tools, such as Cadence SoC Encounter into the
physical circuit layout. The whole process illustrated in Figure 2.19 is iterative, requiring
a lot of tuning and refining at each stage.

2.3 High-Level Synthesis

Today’s hardware designs are predominantly programmed using hardware description
languages, such as Verilog and VHDL. Producing efficient designs using such inherently
low-level languages requires a lot of expertise. It is time-consuming even for experienced
hardware designers. Such a slow design process will not scale with tight SoC design cy-
cles and the increasing use of hardware accelerators. Moreover, the low-level program-
ming model also discourages application programmers, who have little hardware design
knowledge, from converting applications into hardware. In addition, the history of soft-
ware development in the past half century has demonstrated the value of higher abstrac-
tion levels to tackle growing complexity. For example, CPU programming benefits from
well-established abstraction interfaces and advanced compilers, which free programmers

35

Hardware
Description
Languages

C-Based
Languages

High-Level
Languages

Verilog/VHDL
Genesis2
Bluespec

C/C++ CUDA OpenCL

Lime ChiselOptiMLDarkroom Matlab

Xilinx
Vivado FCUDA Altera

Liquid
Metal

HDL
CoderDelite

PyMTLSpiral

Figure 2.20: High-level synthesis landscape.

from low-level details, increase their productivity, and reduce the likelihood of bugs.
To raise the level of abstraction in hardware designs, high-level synthesis tools that

convert a high-level algorithm description into low-level RTL code are getting more at-
tention in both academia and industry. The benefits of high-level synthesis include:

1. Better design. Higher abstraction levels free designers from worrying about low-
level implementation details. With the help of a fast automation flow, designers
can spend more time exploring alternative designs in terms of power, performance,
and cost, potentially leading to better design choices.

2. Lower design cost. SoC companies have tight design cycles. Greater automation in
the design flow shortens design time and reduces expensive human involvement.

3. Greater accessibility for application designers. The future of specialization requires
a lot of hardware-software co-design. Higher abstraction levels in hardware design
could empower application programmers to more easily evaluate high-level algo-
rithms in hardware.

Figure 2.20 summarizes the state-of-the-art high-level synthesis frameworks in both
the commercial and research spaces. We divide high-level synthesis frameworks into
three categories: hardware-description-language-based flow, e.g., Bluespec120 and Gen-
esis2139; C-like-language-based flow, e.g., Xilinx Vivado20, FCUDA123, Altera SDK for
OpenCL1; and high-level-language-based, e.g., Darkroom81, OptiML/Delite73,154,93,153,
Lime/Liquid Metal25,24, Chisel28, Spiral57,113, PyMTL105, and Matlab HDL Coder13.

36

The rest of this chapter aims to provide a pointer to some of the efforts in state-of-the-
art tools. Interested readers can refer to the original papers/manuals to find more de-
tails.

Bluespec SystemVerilog Bluespec SystemVerilog (BSV) is one of the early efforts
to provide a higher-level hardware description language than Verilog/VHDL. Based on
SystemVerilog syntax, Bluespec supports a higher level of abstraction than Verilog/VHDL
in both behavioral and structural descriptions. Inspired by functional programming lan-
guages, such as Haskell, Bluespec supports more expressive types, overloading, encapsu-
lation, and flexible parametrization to enable code reuse120. Programs written in Blue-
spec are compiled using the Bluespec compiler to generate corresponding RTL descrip-
tions.

Genesis2 Genesis2 is designed to create domain-specific hardware generators that en-
capsulate designer knowledge and only expose high-level application parameters. When
running a generator, a user provides a set of parameters and constraints. From these, the
generator produces the desired module. Instead of introducing a new hardware descrip-
tion language, Genesis2 extends SystemVerilog to exploit its verification support, and
it uses Perl to provide flexible parametrization139. Darkroom81 is an example of using
Genesis2 to build image-processing pipelines in hardware.

Xilinx Vivado Almost all CAD vendors have developed high-level synthesis tools,
e.g., Cadence C-to-Slicing Compiler, Synopsys Synphony C Compiler, Mentor Graphics
Catapult C, and Xilinx Vivado. Originally AutoESL, Vivado takes programs written in
C/C++/SystemC as well as user-defined directives (similar to pragmas) and generates
RTL. A subset of the C language is supported; features, such as recursive functions and
dynamic memory allocation are prohibited. As with other synthesis flows, the quality of
Vivado-generated RTL designs is highly dependent on the input C code quality.

Delite There is increasing interest in domain-specific languages (DSL) for hardware
compilation. DSLs can incorporate high-level, domain-specific features, and they can en-
force restrictions that are not valid in general-purpose programming, making compiler
analysis less conservative. Delite is a compiler framework that facilitates DSL develop-
ment154. Delite simplifies DSL construction by providing common reusable components,

37

such as parallel patterns, optimizations, and code generations. Delite-generated DSLs,
e.g., OptiML153, are embedded in Scala, a general-purpose functional programming lan-
guage17, and can be compiled to multiple languages, such as C++, CUDA, and OpenCL.
Delite-generated C code, optimized with domain-specific knowledge conveyed in DSLs,
can be used as input to C-based high-level synthesis tools, such as Xilinx Vivado, to gen-
erate better RTL implementations73,93.

Lime The Liquid Metal project is a compiler and runtime system for heterogeneous ar-
chitectures with a single and unified programming language24. This new programming
language, called Lime, is intended to be executable across a broad range of architectures,
from FPGAs to CPUs25. Based on Java, Lime has machine-independent semantics and
a dynamic execution model, with extensions for parallelism, isolation and data flow. The
compiler frontend performs optimization and compiles source code written in Lime to
Java bytecode. The backend generates code for GPUs and FPGAs. The runtime dynam-
ically picks the best implementation of a task based on available resources.

Chisel Chisel is a hardware construction language embedded in Scala28. Chisel in-
cludes a set of Scala libraries that define hardware datatypes and a set of routines to
compile source code into either a cycle-accurate C++ simulator or a Verilog implemen-
tation. Examples of hardware built using Chisel include the RISC-V Rocket core16, a
key-value store accelerator112, and the Hwacha vector accelerator100.

Spiral Spiral is a domain-specific hardware/library generator for signal processing118,57,113.
In Spiral, a signal processing algorithm is first described as a set of formulas expressed in
Spiral’s signal processing language (SPL). Spiral recursively applies different transfor-
mations and optimizations to generate an optimal design based on program input and
available hardware resources. Then the optimized representation is compiled into C or
Verilog.

PyMTL PyMTL aims to support computer architecture research by providing a ver-
tically unified design environment for function-level, cycle-level, and RTL simulation105.
Based-on Python 2.7, PyMTL allows designers to build architectural simulators at the
function, cycle, or RTL level using a single language interface. For RTL simulation,
PyMTL includes an RTL translator that translates the Python description of hardware

38

into Verilog, which then is ported to the standard EDA design flow to produce power,
area, and performance estimates.

2.4 Putting it Together

We are seeing a vibrant research community in the fields of computer architecture and
VLSI-CAD that embrace the era of specialization by proposing novel accelerator archi-
tectures for a wide range of applications and new tools to ease the RTL generation pro-
cess. However, when it comes to the implementation and evaluation parts of the work,
we see that most of the architectural research has to use the slow and tedious RTL sim-
ulation and synthesis process. Although with the recent advance in high-level synthesis
flow that has made it easier to generate RTL designs, it still takes hours, if not days, to
simulate and synthesis the RTL designs in order to get accurate power and performance
estimates. Such slow evaluation flow has confined the exploratory scope of possible de-
sign space exploration for heterogeneous architecture. The following three chapters will
discuss three major accelerator research tools that I have built during my PhD on work-
load characterization, power-performance-area modeling, and system integration, all of
which aim to abstract the accelerator design process to the architectural level.

39

“If you know the enemy and know yourself, you
need not fear the result of a hundred battles. If
you know yourself but not the enemy, for every
victory gained you will also suffer a defeat. If
you know neither the enemy nor yourself, you
will succumb in every battle.”

Sun Tzu, The Art of War. 3
WIICA: ISA-Independent Workload

Characterization for Accelerators

Accelerators are intrinsically tailored to applications, and workload characterization
plays a large role in developing these architectures. Tuning an architecture towards a
workload requirement demands a comprehensive understanding of the intrinsic charac-
teristics of the workload. This chapter is about workload characterization for accelerator
design. We will introduce WIICA, an Instruction Set Architecture (ISA)-independent
workload characterization tool.

3.1 Introduction

Workload characterization for general-purpose architectures is commonly done by profil-
ing benchmarks on current generation microprocessors using hardware performance coun-
ters. Typical program characteristics are machine instruction mix, IPC, cache miss rates,
and branch misprediction rates. This approach is limited because machine-dependent
features such as cache size and pipeline depth strongly affect the characterization of the
workload. To overcome this problem, microarchitecture-independent workload charac-
terization can be employed by profiling instruction traces to collect information such as
working set sizes, register traffic, memory locality, and branch predictability82. Although

40

this approach removes the effects of microarchitecture-dependent features, some of these
analyses depend on the particular ISA used to collect the trace. Each ISA has different
characteristics and constraints that impact the representation of the workload. As archi-
tectural specialization grows in importance, ISA-independent workload characterization
will become essential for understanding intrinsic workload behavior, which will in turn
allow designers to consider a wide range of alternative architectures.

To fully expose the microarchitecture- and ISA-independent workload characteristics
for specialized architectures, we propose to analyze benchmarks using ISA-independent
characteristics that capture inherent program behavior. To perform this analysis, we
leverage the existing ISA-independent nature of a compiler intermediate representa-
tion (IR). We use a JIT compiler to trace workloads using this IR and compare program
characterization within the broad categories of program compute, memory activity, and
control flow. In particular, we study program characteristics that are highly relevant to
the design of specialized architectures. Within each category, we analyze and discuss
the differences between ISA-independent and ISA-specific analysis. Finally, we demon-
strate cases where the ISA-independent characterization can help designers categorize
workloads into different specialization approaches. In particular, this chapter makes the
following contributions:

1. We compare ISA-dependent characterization with ISA-independent characteriza-
tion. To the best of our knowledge, this is the first such ISA-independent workload
characterization study. We show that ISA-dependent results can be misleading.
In particular, the memory behavior of the workloads, which is critical for many
forms of architectural specialization, will be biased significantly due to the register
spilling effect intrinsic to conventional ISAs.

2. We present a taxonomy to characterize the potential for architectural special-
ization using ISA-independent characteristics. We categorize a workload’s ISA-
independent characteristics into program compute, memory activity, and control
flow, each of which corresponds to an important component of specialized architec-
tures.

3. We present workload characterization of SPEC CPU benchmarks using ISA-independent
characteristics, and we demonstrate that a truly intrinsic workload characteriza-
tion allows accelerator designers to quickly identify opportunities for specialization.

41

Figure 3.1: WIICA Overview.

3.2 Motivation

Accelerators are unburdened by the requirements of legacy ISAs, and much of the effi-
ciency gained by using accelerators can be attributed to hardware specialization of the
datapath, memory, and program control. ISA-independent analysis is attractive for such
architectures because it avoids artificial constraints imposed by details of a specific ISA.
These constraints affect the behavior of programs because compilers for conventional
ISAs must generate binaries that meet the specification of the instruction set semantics.
This subsection discusses the effects of three major kinds of ISA constraints: the over-
head of stack operations caused by register spilling, ISA-specific complex operators, and
calling conventions.

3.2.1 Stack Overhead.

The set of registers defined by an instruction set architecture is necessarily smaller than
or equal to the set of physical registers in a machine. Most high-level language code uses
variables liberally, without regard for the number of registers in a particular target sys-
tem. To fit the large number of variables into the ISA-defined register set, compilers
must perform register allocation to map program variables to registers. When there are
more live variables needed than available architectural registers, the compiler spills some
of the variables onto the stack. Load and store operations inserted move spilled values

42

into and out of machine registers for computation. These stack memory operations can
be expensive from a run-time performance point of view. When characterizing workloads
for specialized architectures that do not have a fixed or known ISA, such stack accesses
add irrelevant load/store operations that distort memory utilization.

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e
 o

f
S
ta

ck
 I
n
st

ru
ct

io
n
s

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

256.bzip
2

Avg

32-bit
64-bit

Figure 3.2: The percentage of stack instructions of total dynamic instructions for 32-bit and
64-bit x86 binaries.

To demonstrate the effect of stack operations, we compare 32-bit and 64-bit x86 bi-
naries generated by LLVM’s Clang compiler for a set of SPEC CPU benchmarks. One
of the major differences between the 32- and 64-bit x86 ISAs is that the 64-bit x86 ISA
has eight more general-purpose registers. Figure 3.2 plots the percentage of dynamic in-
structions that access the stack for 32-bit and 64-bit implementations of the benchmark
set. Note that for each benchmark, the 32-bit version executes a much higher percentage
of stack instructions than the 64-bit version. Additional general-purpose registers allow
more variables to stay in registers, so less spilling to memory is required.

43

The stack overhead also applies to RISC ISAs. Lee et al. characterize stack access
frequency using the Alpha ISA to propose a mechanism for separating stack from heap
accesses99. For the same SPEC CPU2000 workloads, they find a percentage of stack op-
erations (24%) that is similar that in Figure 3.2 for 32-bit x86.

3.2.2 Complex Operations.

Two classes of instructions can be categorized as complex operations: vector instructions
and compute or branch instructions with memory operands. Both kinds of operations
can be split into multiple simpler primitives. CISC ISAs. For example, x86 contain com-
plex operations including vector instructions, such as SSE and instructions that support
memory operands. However, complex operations can exist even in RISC ISAs. For exam-
ple, POWER and ARM include complex operations such as predicate instructions, string
instructions, and vector extensions.

When we perform workload characterization for specialized architectures, it is easier
and cleaner to start from simple primitives and explore aggregation possibilities rather
than to start from a more complex version of code resulting from another category of
optimization.

Figure 3.3 quantifies the amount of complex operations in x86. In this categoriza-
tion, an instruction is classified as a complex operation if it is either a vector instruction
(SSE) or a compute or branch instruction with a memory operand. The top three cat-
egories in Figure 3.3 are complex operations: vector operations, vector operations with
memory accesses, and compute or branch instructions with memory operands. The re-
maining category includes all single operation instructions. We see that on average 27%
of the total instructions executed are complex operations.

3.2.3 Calling Convention.

The ISA calling convention describes how subroutines receive parameters from callers
and how they return results. Any machine-dependent ISA needs to have its own specifi-
cations for passing arguments between subroutines. For example, due to its limited num-
ber of registers, x86 pushes all arguments onto the stack before a subroutine is called,
resulting in additional stack operations. Other ISAs also require various housekeeping
operations for subroutines, and these are also artifacts of the ISA choice, not intrinsic to
the behavior of the workload. These additional instructions, mostly stack operations, due

44

0

50

100

150

200

250

300

350

400

In
st

ru
ct

io
n
 C

o
u
n
t

(i
n
 B

ill
io

n
s)

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

Avg

VEC_MultiOp

VEC_MEM

MEM_MultiOp

SingleOp

Figure 3.3: Instruction breakdown of complex (top three bars) and single (bottom bar)
operation instructions.

to calling conventions could potentially be misleading for specialized architectures that
do not have the specific calling convention.

3.3 Methodology and background

To evaluate the importance of performing workload characterization by using machine-
independent code representation, we perform both ISA-independent and ISA-dependent
analysis.

An ISA-independent representation of code is critical for the development of flexible
compiler infrastructures. Fortunately, modern compilers use ISA-independent intermedi-
ate representations to bridge high level source languages (e.g., C) to specific ISAs (e.g.,
Intel x86). Since our requirements for code representation are similar to those of com-

45

pilers, WIICA leverages the intermediate representation used in compilers to perform its
analysis.

WIICA uses the intermediate representation (IR) in both LLVM12 and ILDJIT38.*

Specifically, workload execution is represented by a trace of semantically equivalent IR
instructions, instead of ISA-dependent binaries. This dynamic IR instruction trace is
generated by executing the IR code with a special-purpose interpreter that emits dy-
namic IR instructions as it executes them.

3.3.1 Compiler’s IR.

ILDJIT is a modular compilation framework that includes both static and dynamic com-
pilers38. ILDJIT performs a large set of classical, machine-independent optimizations
at the IR level including copy propagation, dead-code elimination, loop-invariant code
motion, and the like. When the IR code is fully optimized, it is translated to LLVM’s
bitcode language and LLVM’s back ends are used to optimize the code using machine-
dependent optimizations and to generate semantically equivalent machine code.

We customized ILDJIT to implement an ad-hoc interpreter of its intermediate rep-
resentation that emits IR instructions as they are executed. The IR instructions inter-
preted are the ones used for translation to the bitcode language. By attaching our inter-
preter right before the translation to bitcode, we ensure that the IR is fully optimized;
however, machine-dependent information is still not used for these optimizations, allow-
ing our analysis to study workload-specific characteristics.

The ILDJIT IR is a linear machine- and ISA-independent representation that includes
common operations of high-level programming languages, such as memory allocation
(e.g., new, free, newarray) and exception handling (e.g., throw, catch). It is a RISC-like
language in which memory accesses are performed through loads and stores. Each in-
struction has a clear and simple meaning; only scalar variables, memory locations, and
the program counter are affected by its execution. The language allows an unbounded
number of typed variables (virtual registers), making analysis independent of the number
of physical registers. Moreover, parameters of method invocations are always passed by
using variables, as in the input source language we use (C), making analysis independent
of specific calling conventions. Finally, the data types described in the source language

*We use the results obtained with ILDJIT IR for the discussion but the methodology can
be extended to LLVM IR as well. The current WIICA distribution uses LLVM IR because the
ILDJIT framework is no longer being actively developed.

46

are preserved in the IR language, making this representation closer to the input language
compared to other compiler intermediate representations. Consequently, the three ISA-
dependent concerns we are studying - register spilling, complex instructions, and calling
conventions - will not appear in the IR being produced.

IR instructions that perform operations among variables require homogeneity among
their types: an add operation between variables x and y requires the same type for both
x and y (e.g., 32-bit integer). This characteristic leads to instructions that convert values
between types. Notice that these conversions are required by the workload as the seman-
tics of operations in the source language specify them. However, some of these conver-
sions are unnecessary if a CISC-like ISA is used instead of the RISC-like IR. Finally, op-
codes (e.g., add, mul) are orthogonal with data types (e.g., integer, floating point). This
opcode polymorphism constrains the number of different instructions in the language to
80, allowing an easy parsing of the executed trace.

3.3.2 ISA-Dependent.

To demonstrate the difference between ISA-dependent and -independent analysis, we use
the x86 instruction set for the ISA-dependent analysis. The x86 ISA is commonly used
in architecture studies, and many program analysis tools are available for workload char-
acterization. For analysis of new x86-based microarchitectures, architects must under-
stand the ISA-specific effects of the architecture since they can have a significant impact
on pipeline and memory system design. When considering new heterogeneous architec-
tures with both x86 and specialized cores, it would be natural to use existing workload
characterization approaches. However, when performing workload characterization of
specialized architectures, our results show that x86 provides a particularly poor starting
point. In this study, we compare x86 instruction traces with IR traces. To generate the
trace of x86 instructions executed by a workload, we use Pin, a dynamic binary instru-
mentation tool developed by Intel108.

3.3.3 Sampling.

Because of storage and processing time constraints, applying some of the analysis pre-
sented in this chapter to a full execution trace is impractical. Therefore, we sample ex-
ecution with SimPoint148. We configure SimPoint to generate 10 phases, each of which

47

contains 10 million instructions. Only instructions that belong to the identified phases
are emitted and then analyzed.

To make a fair comparison between x86 and IR traces, we sample the execution of the
IR trace by configuring SimPoint to use IR instructions. Then we instrument the code
to identify the x86 instructions semantically equivalent to the IR code for the identified
phases. In this way, we ensure that the same code region is considered for both the IR
and x86 analysis.

3.3.4 Benchmark Suite.

We use C benchmarks from SPEC CPU2000 benchmark suite. These benchmarks are
translated to CIL bytecode by the compiler GCC4CLI6 (a branch of GCC), and then
they are compiled to IR by ILDJIT. Finally, ILDJIT generates the machine code by re-
lying on LLVM’s x86 back end as previously described. ILDJIT currently only supports
the 32-bit LLVM back end and all of the results in this section are for 32-bit operations.

3.4 Wordload Characteristics Analysis

3.4.1 Compute

Accelerators often exploit custom functional units that combine multiple operations with
predictable control flow in order to execute code more efficiently. An example of this
approach is conservation cores159, which identifies the hot functions in a program’s exe-
cution and designs hardware accelerators for those functions. To uncover the opportunity
to find sequences of operations that are amenable to similar specialization, executed in-
struction sequences need to be analyzed to detect specific patterns. For such analysis,
the way the operations are represented in the instruction trace will have a significant im-
pact on whether certain patterns can be found or not and, subsequently, whether the
workload is worth the effort of custom hardware design. In this section, we analyze the
instruction breakdown and the most common opcodes found in both x86 and IR. We
observe that x86 incurs more overhead for the basic computation performed by the appli-
cation.

Instruction Breakdown. We start the analysis by categorizing the executed in-
structions from the IR and x86 code. We split instructions into the following categories:

48

0

50

100

150

200

250

300

350

400

In
st

ru
ct

io
n
 C

o
u
n
t

(i
n
 B

ill
io

n
s)

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

Avg

x86

IR

S-IR

Stack

Memory

Move

Uncond_Branch

Cond_Branch

Compute

Figure 3.4: The instruction breakdown for x86, IR and Simplified-IR (S-IR).

Stack, Memory, Move (data movement and conversion between registers), Unconditional
Branch, Conditional Branch, and Compute. Furthermore, during our implementation, we
identified instruction overhead associated with IR characteristics that are not intrinsic
to the workloads. One source of such inefficiency is the number of unconditional branch
instructions. The ILDJIT compiler does not remove these instructions because the com-
piler back end performs unconditional branch removal in efficiently. Another source of
overhead is data movement and conversion between registers. Such instructions appear
in both IR and x86 and are used to support different data types and to simplify op-
timizations. Figure 3.4 shows this breakdown. For each benchmark, the leftmost bar
represents the x86 binary, and the middle bar represents IR. The rightmost bar in Fig-
ure 3.4 is what we call Simplified-IR—the IR trace without those two classes of instruc-
tion. We also present the normalized instruction breakdown of x86 and simplified IR for
the ease of comparison in Figure 3.5. In the following discussion, “IR trace” will refer to

49

0%

20%

40%

60%

80%

100%

In
st

ru
ct

io
n
 B

re
a
kd

o
w

n

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

Avg

x86

S-IR

Stack

Memory

Move

Cond_Branch

Compute

Figure 3.5: The instruction breakdown for x86, IR and Simplified-IR (S-IR).

this simplified IR.
As with the results from LLVM’s 32-bit Clang compiler in Figure 3.2, we see that,

depending on the application, the number of stack-referencing instructions can be sig-
nificant. This is represented by the top section of the leftmost bar for every benchmark.
For example, almost half of the x86 instructions for 255.vortex use the stack, while the
effect is less obvious for benchmarks, such as 179.art. More importantly, the large num-
ber of stack accesses results from constraints imposed by the x86 ISA (a small register
set) and not from the intrinsic behavior of the program. This is evident from the IR bars
for the stack-heavy benchmarks—moving from x86 to the infinite-register IR significantly
decreases the number of accesses to the stack. While stack effects can increase the num-
ber of executed x86 instructions, CISC x86 instructions can combine multiple primitive
operations together. This results in a more compact execution. For example, for bench-
marks 164.gzip and 179.art there are more instructions in the IR trace than in the x86
one. The presence of x86-specific effects that both increase and decrease executed in-
structions makes it even harder to assess ISA-dependent overhead and expose the work-
load’s intrinsic behaviors, further strengthening the case for analysis on the IR level.

50

0 20 40 60 80 100 120 140
Num of Unique Opcodes

0%

20%

40%

60%

80%

90%

100%

P
e
rc

e
n
ta

g
e
 o

f
D

y
n
a
m

ic
 I
n
st

ru
ct

io
n
s 11 MOV

CMP
ADD
MOVSD_XMM
INC
JL
ADDSD
MULSD
JNZ
JMP
JNL
LEA

Figure 3.6: x86

0 5 10 15 20 25
Num of Unique Opcodes

0%

20%

40%

60%

80%

90%

100%

P
e
rc

e
n
ta

g
e
 o

f
D

y
n
a
m

ic
 I
n
st

ru
ct

io
n
s 5 load_relative

add
mul
branch_if
less_than
store_relative

Figure 3.7: IR

Figure 3.8: Cumulative distribution of the number of unique opcodes of 179.art. The
intersecting lines show the number of unique opcodes that cover 90% of dynamic instructions.

Opcode Diversity. Our next experiment examines the diversity of the opcodes in
the x86 and IR traces. Opcode diversity is relevant since it is related to the complexity
of customized functional units in specialized hardware. Fewer and simpler opcodes will
simplify the design of such hardware because the functional units will be more modular
and reusable. This allows sharing such functional units across various workloads.

To compare x86 and IR analysis, we profile the total number of opcodes and the num-
ber of times each single opcode occurs in the program execution. We do not differentiate
opcodes based on addressing modes, which reduces the number of required x86 opcodes.
Figure 3.8 plots the number of unique opcodes and the percentage of dynamic instruc-
tions those opcodes cover for the benchmark 179.art. The dotted line on the plot shows
the cumulative distribution of opcodes needed to cover the dynamic execution of the pro-
gram.

To meaningfully compare x86 and IR, we use a horizontal line to highlight the num-
ber of unique opcodes required to cover 90% of the dynamic instructions in Figures 3.6
and 3.7. This metric is meaningful for accelerator studies since it allows comparison
of the number of functional unit types needed for different workloads. The horizon-
tal line intersects with the cumulative distribution function to show the required num-
ber of opcodes. The x86 results demonstrate that 90% of the execution can be covered
by 12 unique opcodes, while the same analysis with IR requires only 6 opcodes (The
X axis of Figures 3.6 and 3.7 starts from 0). The right portions of the plots show the

51

top opcodes used for both instruction sets. For x86, two MOV instructions, MOV and
MOVSD_XMM, and four different conditional jump instructions are required. Com-
pared with x86, the top opcodes from IR analysis are much clearer—the 6 opcodes are
all simple primitives, resulting in a much simpler representation of the actions of the pro-
gram.

0

5

10

15

20

25

30

35

40

45

O
p
co

d
e
s

C
o
v
e
ri

n
g
 9

0
%

 o
f

D
y
n
a
m

ic
 I
n
st

ru
ct

io
n
s

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

All

x86
IR

Figure 3.9: Number of unique opcodes to
cover 90% of dynamic instructions. “All”

represents the global superset.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m

b
e
r

o
f

U
n
iq

u
e
 S

ta
ti

c
In

st
ru

ct
io

n
s

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

x86
IR

Figure 3.10: Number of unique static
instructions to cover 90% of dynamic

instructions.

We extend this comparison to all available benchmarks in the suite and show the re-
sult in Figure 3.9. Not surprisingly, for each benchmark the x86 trace needs more unique
opcodes than the IR trace. Furthermore, the rightmost bar in Figure 3.9 shows the num-
ber of unique opcodes required to cover all benchmarks we analyze, computed as a su-
perset of individual benchmark needs. To cover all the benchmarks in x86, 40 unique in-
struction opcodes are required, but the IR-based analysis uncovers only 12 fundamental
primitives. Thus, extracting workload pieces that are amenable to hardware specializa-
tion appears significantly easier on the IR level of abstraction.

Static Instructions. The diversity of opcodes represents the different types of fun-
damental computing blocks that custom hardware might require. Another important
metric is the number of static instructions (or the size of the executable code) required
to cover the dynamic execution. In a custom design, different sequences of static instruc-
tions will lead to more or less complex data flow. As with the metric we use for opcode
analysis, we compare the number of unique static instructions required to cover 90% of

52

the dynamic instructions. Figure 3.10 shows that benchmarks that have significant stack
overhead (shown in Figure 3.4), such as 186.crafty and 255.vortex, require more unique
static instructions, most of which are potentially stack operations. In that case, the x86
characterization hides the truly important instructions, highlighting the stack overhead
operations instead. This may skew the identification of hot computation.

3.4.2 Memory

Memory behavior is crucial for workload performance. In the case of hardware special-
ization, the memory system must be tuned to the workload characteristics in order to
realize significant gains in efficiency. In this section, we compare two memory charac-
terization metrics, memory footprint size and memory entropy. We once again discover
that ISA-dependent analysis can be significantly misleading and obscure the workloads’
intrinsic behavior.

Memory Footprint. The first metric we consider is the size of the data memory that
a program uses, including both stack and heap memory. We examine two types of mem-
ory footprint. The first one is the full memory footprint—the total size of data memory
the program has accessed. It quantifies the overall memory usage. The second metric
identifies the “important” memory footprint, which we define as the number of unique
memory addresses that cover 90% of dynamic data memory accesses. This metric shows
the most frequently used addresses that need to be kept close to the computation.

Figure 3.11 shows the total memory footprint analysis. The Y-axis in this figure is the
number of unique memory addresses generated. The x86 and IR memory footprints are
nearly the same, because the total working set is intrinsic to the workloads and therefore
independent of the program representation.

However, the important memory footprints of x86 and IR, shown in Figure 3.12, are
markedly different. In most cases, fewer unique memory addresses are needed for x86
than for IR, despite the fact that their total numbers of unique memory addresses are
similar. The reason for this once again lies in frequent accesses to the stack. While the
memory space of stack addresses is usually small, these addresses are accessed frequently.
When identifying important memory addresses, the few stack addresses that are fre-
quently accessed stand out and dominate the memory behavior. Thus, the important
memory addresses found are an artifact of the ISA instead of the program behavior.

53

0

1

2

3

4

5
#

 o
f

U
n
iq

u
e
 M

e
m

 A
d
d
re

ss
e
s

(i
n
 m

ill
io

n
s)

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

x86

IR

Figure 3.11: Number of unique memory
addresses to cover 100% of dynamic memory

accesses.

0.0

0.5

1.0

1.5

2.0

2.5

#
 o

f
U

n
iq

u
e
 M

e
m

 A
d
d
re

ss
e
s

(i
n
 m

ill
o
n
s)

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

x86

IR

Figure 3.12: Number of unique memory
addresses to cover 90% of dynamic memory

accesses.

Memory Address Entropy. We introduce memory address entropy as a metric that
quantifies how easy it is to keep memory data close to the computation. Intuitively,
memory address entropy reflects the uncertainty, the lack of predictability, of data ad-
dresses accessed by a workload. Thus, it is a metric opposite to memory locality, which
is often exploited by custom hardware. Locality measures the regularity of a memory ad-
dress stream, while entropy measures the lack thereof. We show that ISA-level analysis
exposes a lower amount of entropy, leading to false assumptions of memory access regu-
larity.

Entropy. In information theory, entropy140 is used to measure the randomness of a
variable, which is calculated as in Equation 3.1:

Entropy = −
N∑
i=1

p(xi) ∗ log2 p(xi) (3.1)

where p(xi) is the probability of xi, and N is the total number of samples of the random
variable x. The result, Entropy, is a measure of predictability of the next outcome of x.
For example, assume the pattern of variable x is regular—always 1. In this case, p(1) = 1

and log2 p(1) = log2 1 = 0, so Entropy = 0, which means that it is easy to predict x.
One the other extreme, if there are N possible outcomes of x occurring equally often,

54

p(xi) =
1
N . According to Equation 3.1,

Entropy = −
N∑
i=1

p(xi) ∗ log2 p(xi)

= −N ∗ 1

N
∗ log2(

1

N
)

= log2N

which is high for large N .
Yen et al. describe the idea of using entropy to represent the randomness of instruc-

tion addresses169. According to Equation 3.1, in the case of memory entropy, variable
x represents the memory addresses that appear in the program execution. The proba-
bility p(xi) is the frequency of a specific memory address xi. After profiling the unique
memory addresses accessed in the workloads and the number of times each address is
referenced, we can compute the memory address entropy of the workloads. When the
memory entropy is high, the memory access stream is more random and less amenable
to architecture techniques that require locality. Conversely, if the entropy is low, mem-
ory accesses are regular, easier to predict, and can be effectively addressed by locality
techniques.

Global Memory Address Entropy. Global memory entropy describes the ran-
domness of the entire data address stream using all address bits (32 in our case). Fig-
ure 3.13 shows the calculated global memory address entropy for both x86 and IR. For
each benchmark, the leftmost bar is the global entropy of x86 memory addresses; the
rightmost bar is that of IR memory addresses. We can see that the entropy of the x86
address stream is generally lower than that for IR, meaning better temporal locality. To
find the reason for the difference, we compute the x86 memory address entropy without
the stack addresses, shown in the middle bar. As we can see, after removing the stack
addresses, the x86 address entropy is now comparable with the IR memory address en-
tropy. So the higher temporal locality shown in the x86 trace is mostly due to the pres-
ence of stack operations. There are two major reasons. First, most of the stack references
are from spilled variables. These spilled variables do not exist in IR’s memory trace be-
cause they are preserved as register operations. Second, it is entirely possible that vari-
ables in different phases of the program are mapped to the same stack address. In this
case, accesses to these different variables all seem to fetch the same stack address from

55

0

2

4

6

8

10

12

14

16

18

M
e
m

o
ry

 A
d
d
re

ss
 E

n
tr

o
p
y

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

x86

x86 w/o stack

IR

Figure 3.13: Memory address entropy of x86, x86 without stack, and IR traces. Lower values
indicate more regularity in the access stream.

the x86 memory trace, leading to higher locality. Such locality is completely an artifact
of the ISA, not representing the intrinsic locality of programs.

Local Memory Address Entropy. Local memory entropy computes the address
entropy using a subset of the address bits. Local entropy can help detect spatial locality
in the workloads. For example, we can skip the lower-order bits of the addresses and
compute entropy only with the high-order address bits, as seen in Figure 3.14. If the
local address entropy with 28 bits, for example, shrinks significantly compared to global
entropy, then memory accesses are less random, and significant spatial locality is present.
Ignoring the lower order bits reveals spatial locality by grouping those addresses that are
close together.

Figure 3.17 shows two examples of the local address entropy when we sweep the num-
ber of low order bits ignored from 0 to 10. The two benchmarks, 179.art and 255.vortex,
are representative of the patterns we have seen among the rest of the benchmark suite.

56

Address Stream A Address Stream B

0 0 0 0

0 1 0 0

1 0 0 0

1 1 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 421 3

of Bits Skipped

Local
Entropy

1

2

A
B

(less spatial locality) (more spatial locality)

Figure 3.14: Example
of Local Entropy

0

2

4

6

8

10

M
e
m

o
ry

 A
d
d
re

ss
 L

o
ca

l
E
n
tr

o
p
y

0 2 4 6 8 10
of Bits Skipped

IR

x86

Figure 3.15: 179.art

0

2

4

6

8

10

M
e
m

o
ry

 A
d
d
re

ss
 L

o
ca

l
E
n
tr

o
p
y

0 2 4 6 8 10
of Bits Skipped

IR

x86

Figure 3.16: 255.vortex

Figure 3.17: Local memory entropy as a function of low-order bits omitted in calculation. A
faster dropping curve indicates more spatial locality in the address stream.

For both cases, the local entropy of x86 drops more quickly than for IR. This is obvious
for 255.vortex. This is due to the fact that stack addresses are usually in close proxim-
ity, which means they usually have good locality. Ignoring the lower-order bits results in
steeper drops in entropy for x86. This also shows ISA-dependent analysis will bias the
workload characteristics towards better locality due to the impact of stack operations.

3.4.3 Control

Control flow complexity is an important metric for workload characterization. From ex-
perience with general purpose processor design, we know that speculative execution is
necessary to exploit parallelism. In a heterogeneous architecture, there may be a vari-
ety of cores or computing engines with different degrees of support for speculation. To
choose the appropriate ones to run the workloads, the control complexity of the work-
loads needs to be fully understood and not dependent on a specific architecture. In this
section, we compare the control complexity analysis of x86 and IR and show that the
two analyses are consistent with each other, showing that ISA choice has a minimal ef-
fect on a workload’s control flow.

Branch Instruction Count. Our first-order control flow analysis counts the num-
ber of unique conditional branch instructions that cover 90% of the dynamic branches.
This is similar to the unique opcode analysis but focuses on branch instructions. This
is important for hardware specialization because it measures the number of control flow

57

0

50

100

150

200

250

300

350

T
o
ta

l
N

u
m

b
e
r

o
f

U
n
iq

u
e
 B

ra
n
ch

 I
n
st

s

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

x86

IR

Figure 3.18: Number of unique branch
instructions to cover 90% of dynamic

branches.

0

1

2

3

4

5

6

7

8

B
ra

n
ch

 E
n
tr

o
p
y

179.art

183.equake

188.ammp

164.gzip

175.vpr

175.vpr_2

181.m
cf

186.cr
afty

254.gap

255.vorte
x

256.bzip
2

x86

IR

Figure 3.19: Branch entropy per workload.
Lower values imply better branch

predictability.

decisions that must be handled in a design.
As Figure 3.18 shows, the number of unique branch instructions required to cover 90%

dynamic branches is consistent between x86 and IR. The two sets of bars track each
quite closely. This implies that ISA choice does not have a significant impact on the
number of branch instructions generated, which mostly depends on the way programs
are written.

Branch History Entropy. Another important metric is control flow predictability,
which is intrinsic to the workload. Generally speaking, if the branch taken patterns are
more regular and less random, branches are easier to predict. In this sense, the regularity
of the branch behavior will indicate the predictability of the control flow. Based on this
intuition, Yokota proposed the idea of branch history entropy using Shannon’s informa-
tion entropy idea to represent a program’s predictability170.

We use a string of bits to encode taken or not taken branch outcomes. In this sense,
the program, as the producer of the sequence, can be viewed as an information source
and we can compute the entropy of the information source to represent the regularity of
branch behavior. In our implementation, we use a sequence of n consecutive branch re-
sults as the random variable and compute the entropy of the benchmarks. The results
are shown in Figure 3.19. We can see that the branch entropy from x86 and IR are also
quite similar. This shows that both ISA-dependent analysis and ISA-independent anal-

58

ysis fully expose the program’s control behavior. This matches our intuition that ISA
does not affect control flow significantly.

3.5 Putting it all together

0.0
0.5

1.0

186.crafty

0.0
0.5

1.0

181.mcf

0.0
0.5

1.0

183.equake

0.0
0.5

1.0

164.gzip

0.0
0.5

1.0

175.vpr

0.0
0.5

1.0

175.vpr_2

0.0
0.5

1.0

256.bzip2

0.0
0.5

1.0

254.gap

0.0
0.5

1.0

188.ammp

0.0
0.5

1.0

179.art

0.0
0.5

1.0

255.vortex Opcode

Branch
Entropy

Memory
Entropy

I-MEM

D-MEM

Figure 3.20: Comparison of five ISA-independent metrics across SPEC benchmarks, ordered by
the area of the polygon. The lower right kiviat plot provides the legend, and smaller values

indicate more regularity in the metric.

We compare the eleven SPEC benchmarks with five ISA-independent metrics from
our analysis: the number of opcodes, the value of branch entropy, the value of memory
entropy, the unique number of static instructions (I-MEM), and the unique number of
data addresses (D-MEM). In terms of specialized architecture design, smaller values for
each of these metrics indicate more regularity in the benchmarks and better opportu-
nity to exploit specialization. For each metric, we choose the maximum value across all
the benchmarks and for each benchmark we plot the relative value with respect to this
maximum value. Figure 3.20 shows kiviat plots for all benchmarks, in which each axis
represents one of the ISA-independent characteristics. The plot in the lower right cor-
ner of the figure provides a legend for the individual axes. The kiviat plots are ordered

59

by the area of the resulting polygon. With an equal weighting of the five characteristics,
area provides a rough approximation for overall benchmark regularity (smaller area is
more regular). We observe different behavior across the benchmark suite. For example,
255.vortex demonstrates regularity across all the metrics, while 186.crafty has relatively
low regularity in most of the dimensions. These insights will be helpful for specialized
architecture designers to identify the opportunities for acceleration.

Although ISA-independent workload characterization is useful for designers to un-
derstand intrinsic workload characteristics, it does not quantitatively evaluate the cost
and benefits of building a specific accelerator for a given kernel. This has motivated us
to think how to rapidly evaluate different design choices of accelerator designs without
going through the time consuming design flow. Building upon the WIICA project, next
chapter introduces Aladdin, a power-performance-area simulator for fixed-function accel-
erators, enabling large design space exploration for specialized architectures.

60

“Love truth, but pardon error.”
Voltaire, 1738.

4
Aladdin: Pre-RTL,

Power-Performance-Area Accelerator
Modeling

Current research in accelerator analysis relies on RTL-based synthesis flows to produce
accurate timing, power, and area estimates. Such techniques not only require significant
effort and expertise but are also slow and tedious to use, making large design space ex-
ploration infeasible. To overcome this problem, this chapter discusses Aladdin, a pre-
RTL, power-performance accelerator modeling framework and demonstrates its appli-
cation to system-on-chip (SoC) simulation. Aladdin estimates performance, power, and
area of accelerators within 0.9%, 4.9%, and 6.6% with respect to RTL implementations.
Integrated with architecture-level core and memory hierarchy simulators, Aladdin pro-
vides researchers an approach to model the power and performance of accelerators in an
SoC environment.

61

4.1 Introduction

As we near the end of Dennard scaling, traditional performance and power scaling ben-
efits based on technology improvements no longer exist. At the same time, transistor
density improvements continue; the result is the dark silicon problem in which chips
now have more transistors than a system can fully power at any point in time63,159. To
overcome these challenges, hardware acceleration, in the form of datapath and control
circuitry customized to particular algorithms or applications, has surfaced as a promis-
ing approach, as it delivers orders of magnitude performance and energy benefits com-
pared to general purpose solutions. Customized architectures composed of CPUs, GPUs,
and accelerators are already in widespread use in mobile systems and are beginning to
emerge in servers and desktops.

The natural evolution of this trend will lead to a growing volume and diversity of
customized accelerators in future systems, where a comprehensive assessment of poten-
tial benefits and trade-offs across the entire system will be critical for system design-
ers. However, current customized architectures contain only a handful of accelerators, as
large design space exploration is currently infeasible due to the lack of a fast simulation
infrastructure for accelerator-centric systems.

Computer architects have long been developing and leveraging high-level power35,102,141

and performance26,32 simulation frameworks for general-purpose cores and GPUs29,101.
In contrast, current accelerator-related research primarily relies on creating RTL imple-
mentations, a tedious and time-consuming process. It takes hours, if not days, to gener-
ate, simulate, and synthesize RTL to get the power and performance of a single accelera-
tor design, even with the help of high-level synthesis (HLS) tools. Such a low-level, RTL
infrastructure cannot support architecture-level design space exploration that sweeps pa-
rameters across traditional general-purpose cores, accelerators, and shared resources such
as cache hierarchies and on-chip networks. Hence, there is a clear need for a high-level
design flow that abstracts RTL implementations of accelerators to enable broad design
space exploration of next-generation customized architectures.

We introduce Aladdin, a pre-RTL, power-performance simulator designed to enable
rapid design space search of accelerator-centric systems. This framework takes high-level
language descriptions of algorithms as inputs and uses dynamic data dependence graphs
(DDDG) as a representation of an accelerator without generating RTL. Starting with
an unconstrained program DDDG, which corresponds to an initial representation of ac-

62

celerator hardware, Aladdin applies optimizations as well as constraints to the graph to
create a realistic model of accelerator activity. We rigorously validated Aladdin against
RTL implementations of accelerators from both handwritten Verilog and a commercial
HLS tool for a range of applications, including accelerators in Memcached103, HARP164,
NPU65, and a commonly used throughput-oriented benchmark suite, SHOC58. Our re-
sults show that Aladdin can model performance within 0.9%, power within 4.9%, and
area within 6.6% compared to accelerator designs generated by traditional RTL flows. In
addition, Aladdin provides these estimates over 100× faster.

Aladdin captures accelerator design trade-offs, enabling new architectural research di-
rections in heterogeneous systems composed of accelerators, general-purpose cores, and
the shared memory hierarchy seen in today’s mobile SoCs and for future customized
architectures; we demonstrate this capability by integrating Aladdin with a full cache
hierarchy model and DRAMSim2134. Such infrastructure allows users to explore cus-
tomized and shared memory hierarchies for accelerators in a heterogeneous environment.
In a case study with the GEMM benchmark, Aladdin uncovers significant, high-level,
design trade-offs by evaluating a broader design space of the entire system. Such anal-
ysis results in more than 3× performance improvements compared to the conventional
approach of designing accelerators in isolation.

4.2 Background and Motivation

Hardware acceleration exists in many forms, such as analog accelerators30,155, static49,65,78,103,129,159,164

and dynamic datapath accelerators50,74,76, and programmable accelerators, such as GPUs
and DSPs. In this work, we focus on static datapath accelerators. Here we discuss the
design flow, design space, and state-of-the-art research infrastructure of datapath acceler-
ators, all in order to illustrate the challenges associated with current accelerator research
and why a tool like Aladdin opens up new research opportunities for architects.

4.2.1 Accelerator Design Flow

The current accelerator design flow requires multiple CAD tools, which is inherently te-
dious and time-consuming. It starts with a high-level description of an algorithm, then
designers either manually implement the algorithm in RTL or use HLS tools, such as Xil-
inx’s Vivado HLS20, to compile the high-level implementation (e.g., C/C++) to RTL. It

63

0 200 400 600 800 1000 1200
Execution Time (uS)

0

20

40

60

80

100

120

140

Po
w

er
(m

W
)

Datapath + Memory
Datapath Only

Figure 4.1: GEMM design space w/ and w/o memory hierarchy.

takes significant effort to write RTL manually, the quality of which highly depends on
designers’ expertise. Although HLS tools offer opportunities to automatically generate
the RTL implementation, extensively tuning C-code is still necessary to meet design re-
quirements. After generating RTL, designers must use commercial CAD tools, such as
Synopsys’s Design Compiler and Mentor Graphics’ ModelSim, to estimate power and
cycle counts.

In contrast, Aladdin takes unmodified, high-level language descriptions of algorithms,
generating a DDDG representation of accelerators, which accurately models the cycle-
level power, performance, and area of realistic accelerator designs. As a pre-RTL simula-
tor, Aladdin is orders of magnitude faster than existing CAD flows.

4.2.2 Accelerator Design Space

Despite the application-specific nature of accelerators, the accelerator design space is
large given a range of architecture- and circuit-level alternatives. Figure 4.1 illustrates a
large power-performance design space of accelerator design points for the GEMM work-
load from the SHOC benchmark suite. The square points were generated from a com-
mercial HLS flow sweeping datapath parameters, including loop-iteration parallelism,

64

Novel Accelerator
Design

Accelerator
Datapath
Trade-offs

Heterogeneous
SoC

Trade-offs

handwritten
RTL

Buffer-int-Cache66,
Memcached98,103,
Sonic Millip3De136,
HARP164

Inadequate Inadequate

HLS

LINQits48,
Convolution En-
gine129,
Conservation
Cores159

Cong55,
Liu104,
Reagen132

Inadequate

Table 4.1: Accelerator Research Infrastructure

pipelining, array partitioning, and clock frequency. However, HLS flows generally provi-
sion a fixed latency for all memory accesses, implicitly assuming local scratchpad mem-
ory fed by DMA controllers.

Such simple designs are not well suited for capturing data locality or interactions with
complex memory hierarchies. The circle points in Figure 4.1 were generated by Aladdin
integrated with a full cache hierarchy model and DRAMSim2, sweeping not only datap-
ath parameters but also memory parameters. By doing so, Aladdin exposes a rich design
space that incorporates the realistic memory penalties in terms of time and power, im-
practical with existing HLS tools alone. Section 4.5 further demonstrates the importance
of accelerator datapath and memory co-design using Aladdin.

4.2.3 State-of-the-art Accelerator Research Infrastructure

The ITRS predicts hundreds to thousands of customized accelerators by 202218. How-
ever, state-of-the-art accelerator research projects still contain only a handful of accel-
erators because of the cumbersome design flow that inhibits computer architects from
evaluating large accelerator-centric systems. Table 4.1 categorizes accelerator-related re-
search projects in the computer architecture community over the past 5 years based on
the means of implementation (handwritten RTL vs. HLS tools) and the scope of possible
design exploration.

We see that researchers have been able to propose novel implementations of acceler-
ators for a wide range of applications, either writing RTL directly or using HLS tools

65

Optimistic
IR

Sec 3.2.1

Initial
DDDG

Sec 3.2.2

Idealistic
DDDG

Sec 3.2.3

Program
Constrained

DDDG

Sec 3.3.1

Resource
Constrained

DDDG

Sec 3.3.2

Power
Model

Sec 3.3.4
C

Code

Realization PhaseOptimization Phase

Power
Activity

Time

Figure 4.2: The Aladdin Framework Overview.

despite the time-consuming process. With the help of the HLS flow, we have begun to
see studies evaluating design trade-offs in accelerator datapaths, which are otherwise
impractical using handwritten RTL. However, as discussed in Section 4.2.2, HLS tools
cannot easily navigate large design spaces of customized architectures. This inadequacy
in infrastructure has confined the exploratory scope of accelerator research.

4.2.4 Contributions

In summary, this work makes the following contributions:

1. We present Aladdin, a pre-RTL, power-performance simulator for fixed-function
accelerators using dynamic data dependence graphs (Section 4.3).

2. We perform rigorous validation of Aladdin against handwritten RTL implementa-
tions and a commercial HLS design flow. We show that Aladdin can model the be-
havior of recently published accelerators103,164,65 and typical accelerator kernels58

(Section 4.4).

3. We demonstrate a large design space exploration of customized architectures, en-
abled by Aladdin, identifying high-level accelerator design trade-offs (Section 4.5).

4.3 The Aladdin Framework

4.3.1 Modeling Methodology

The foundation of the Aladdin infrastructure is the use of dynamic data dependence
graphs (DDDG) to represent accelerators. A DDDG is a directed, acyclic graph, where
nodes represent computation and edges represent dynamic data dependences between
nodes. The dataflow nature of hardware accelerators makes the DDDG a good candidate

66

to model their behavior. Figure 4.2 illustrates the overall structure of Aladdin, start-
ing from a C description of an algorithm and passing through an optimization phase,
described in Section 4.3.2, where the DDDG is constructed and optimized to derive an
idealized representation of the algorithm. The idealized DDDG then passes to a realiza-
tion phase, discussed in Section 4.3.3, that restricts the DDDG by applying realistic pro-
gram dependences and resource constraints. User-defined configurations allow wide de-
sign space exploration of accelerator implementations. The outcome of these two phases
is a pre-RTL, power-performance model for accelerators.

Aladdin uses a DDDG to represent program behavior so that it can take arbitrary C
code descriptions of an algorithm—without any modifications—to expose algorithmic
parallelism. This fundamental feature allows users to rapidly investigate different algo-
rithms and accelerator implementations. Due to its optimistic nature, dynamic anal-
ysis has been previously deployed in parallelism research exploring the limits of ILP
27,69,130,162 and recent modeling frameworks for multicore processors72,87. These stud-
ies sought to quickly measure the upper bound of performance achievable on an ideal
parallel machine95. Our work has two main distinctions from these efforts. First, pre-
vious efforts model traditional Von Neumann machines where instructions are fetched,
decoded, and executed on a fixed, but programmable architecture. In contrast, Aladdin
models a vast palette of different accelerator implementation alternatives for the DDDG;
the optimization phase incorporates typical hardware optimizations, such as removing
memory operations via customized storage inside the datapath and reducing the bitwidth
of functional units. The second distinction is that Aladdin provides a realistic power-
performance model of accelerators across a range of design alternatives during its realiza-
tion phase, unlike previous work that offered an upper-bound performance estimate.

In contrast to dynamic approaches, parallelizing compilers and HLS tools use program
dependence graphs (PDG)52,70 that statically capture both control and data depen-
dences68,75. Static analysis is inherently conservative in its dependence analysis, because
it is used for generating code and hardware that works in all circumstances and is built
without run-time information. A classic example of this conservatism is the enforcement
of false dependences that restrict algorithmic parallelism. For instance, programmers
often use pointers to navigate arrays, and disambiguating these memory references is a
challenge for HLS tools. Such situations frequently lead to designs that are more sequen-
tial compared to what a human RTL programmer would develop. Therefore, although
HLS tools offer the opportunity to automatically generate RTL, designers still need to

67

extensively tune their C code to expose parallelism explicitly (Section 4.4). Thus, Al-
addin is different from HLS tools; Aladdin is simply a realistic, accurate representation
of accelerators, whereas HLS is burdened with generating actual, correct hardware.

This section describes details of the optimization phase (Section 4.3.2) and realization
phase (Section 4.3.3) of Aladdin. We then discuss how to integrate Aladdin with memory
systems (Section 4.3.4) and limitations of the approach (Section 4.3.5).

4.3.2 Optimization Phase

The optimization phase forms an idealized DDDG that only represents the fundamental
dependences of the algorithm. An idealized DDDG for accelerators must satisfy three re-
quirements: (a) express only necessary computation and memory accesses, (b) only cap-
ture true read-after-write dependences, and (c) remove unnecessary dependences in the
context of customized accelerators. This section describes how Aladdin’s optimization
phase addresses these requirements.

Optimistic IR

Aladdin builds the DDDG from a dynamic instruction trace, where the choice of the ISA
significantly impacts the complexity and granularity of the nodes in the graph. In fact,
a trace using a machine-specific ISA contains instructions that are not part of the pro-
gram but produced due to the artifacts of the ISA142, e.g., register spills. To avoid such
artifacts, Aladdin uses a high-level, machine-independent intermediate representation
(IR) provided by the ILDJIT compiler38. ILDJIT IR is optimistic because it allows an
unlimited number of registers, eliminating additional instructions generated due to stack
overheads and register spilling. The IR contains 80 opcodes ranging from simple primi-
tives, e.g., add and multiply, to complex operators, e.g., sine and square root, so that we
can easily detect the functional units needed based on the program’s IR trace and model
them using pre-characterized hardware. We use a customized interpreter for the ILDJIT
IR to emit fully-optimized IR instructions in a trace file. The trace includes dynamic in-
struction information such as opcodes, register IDs, parameter data types, and parameter
data values. We also profile the dynamic addresses of memory operations.

68

Initial DDDG

Aladdin analyzes both register and memory dependences based on the IR trace. Only
true read-after-write data dependences are respected in the initial DDDG construction.
This DDDG is optimistic enough for the purpose of ILP limit studies but is missing sev-
eral characteristics of hardware accelerators; the next section discusses how Aladdin ide-
alizes the DDDG further.

Idealized DDDG

Hardware accelerators have considerable flexibility to customize datapaths for application-
specific features, which is not modeled in the initial DDDG. Such customization can
change the attributes of the datapath, as in the case of bitwidth reduction where func-
tional units can be tuned to the value range of the problem. Aladdin also removes opera-
tions that are not required for hardware implementations. For example, to reduce mem-
ory bandwidth, small, frequently accessed arrays, such as filters, can be stored directly
in registers inside the datapath instead of in external memory. Cost models are used to
automatically perform all of these transformations.

We categorize our optimizations into node-level, loop-level, and memory-level transfor-
mations to produce an idealized DDDG representation.

Node-Level Optimization. In addition to bitwidth analysis, we also model other
node-level optimizations, such as strength reduction and tree-height reduction, by chang-
ing the nodes’ attributes and performing standard graph transformations56.

Loop-Level Optimization. The initial DDDG captures the true dependences be-
tween successive iterations of the loop index variables, which means each index variable
can only be incremented once per cycle. Such dependence constraints do not apply to
hardware accelerators or parallel processors since it is entirely possible that they can ini-
tiate multiple iterations of a loop simultaneously156. Aladdin removes all dependences
between loop index variables, including basic and derived induction variables, to expose
loop parallelism.

Memory Optimization. The goal is to remove unnecessary load/store operations.
In addition to the memory-to-register conversion example described above, Aladdin also

69

performs store-load forwarding inside the DDDG, which eliminates load operations by
buffering data in internal registers within hardware accelerators. This is different from
store-load forwarding in general-purpose CPUs, where the load operation must still be
executed138.

Extensibility Hardware design is open-ended, and Aladdin can be extended to in-
corporate other accelerator-specific optimizations, analogous to adding new microarchi-
tectural structures to CPU simulators. We demonstrate this extensibility by considering
CAM hardware to optimize data matching. A CAM is an example of a custom circuit
structure that is often used to accelerate hash tables in network routers and datatype
specific accelerators173. Unlike software, CAMs can automatically compare a key against
all of the entries in one cycle. On the other hand, large CAMs are power hungry, result-
ing in an energy trade-off when hash tables reach a certain size. Aladdin incorporates
CAMs into its customization strategy by automatically replacing software-managed hash
tables with CAM. Aladdin can detect a linear search for a key by looking for chained se-
quential memory look-ups and comparison. Section 4.4.2 demonstrates an example with
a Memcached accelerator in which CAMs are used as a victim cache to a regular hash
table during hash conflicts103.

4.3.3 Realization Phase

The realization phase uses program and resource parameters, defined by users, to con-
strain the idealized DDDG generated in the optimization phase.

Program-Constrained DDDG

The idealized DDDG optimistically assumes that hardware designers can eliminate all
control and false data dependences at design time. Aladdin’s realization phase models
actual control and memory dependences to create the program-constrained DDDG.

Control Dependence. The idealized DDDG does not include control dependences,
assuming that branch outcomes can be known in advance and operations can start be-
fore branches are resolved, which is unrealistic even for hardware accelerators. The costs
and benefits of control flow speculation for accelerators have not been extensively stud-
ied yet, and one solution to minimize control dependences relies on predicated execu-

70

Parameters Example Range
Loop Rolling Factor [1::2::Trip count]
Clock Period (ns) [1::2::6]
FU latency Single-Cycle, Pipelined
Memory Ports [1::2::64]

Table 4.2: Realization Phase User-Defined Parameters, i::j::k denotes a set of values from i to k
by a stepping factor j.

tion to simultaneously execute both taken and not taken paths until branch resolution97.
While this approach minimizes serialization, the cost of speculation is high—it requires
hardware resources that grow exponentially with the number of outstanding branches.
Aladdin models control dependence by bringing code from the not-taken path into the
program-constrained DDDG to account for additional power and resources. Aladdin is
flexible enough to model the costs of different mechanisms for handling control flow. For
energy efficiency, Aladdin models one outstanding branch at a time, serializing control
dependences for multiple simultaneous branches.

Memory Dependence. The idealized DDDG optimistically removes all false memory
dependences between dynamic instructions, keeping true read-after-write dependences.
This is realistic for memory accesses with addresses that can be resolved at design time.
However, some algorithms have input-dependent memory accesses, e.g., histogram, where
different inputs result in different dynamic dependences. Without runtime memory dis-
ambiguation support, designers have to make conservative assumptions about memory
dependences to ensure correctness. To model realistic memory dependences, the realiza-
tion phase includes memory ambiguation that constrains the input-dependent memory
accesses by adding dependences between all dynamic instances of a load-store pair, as
long as a true memory dependence is observed for any pair. This is similar to the dy-
namic dependence profiling approach adopted by parallelization efforts72,91.

Resource-Constrained DDDG

Finally, Aladdin accounts for user-specified hardware resource constraints, a subset of
which are shown in Table 4.2. Users specify the type and size of hardware resources in
an input configuration file. Aladdin then binds the program-constrained DDDG onto the

71

hardware resources, leading to the resource-constrained DDDG. Aladdin can easily sweep
resource parameters to explore the design space of an algorithm, which is fast because
only resource constraints need to be applied for each design point. These resource pa-
rameters are set with respect to the following three factors: loop rolling, loop pipelining,
and memory ports.

Loop Rolling. The optimization phase removes dependences between loop index vari-
ables, assuming completely unrolled loops that execute all iterations in parallel. In real-
ity, for loops with large trip counts, this leads to large resource requirements. Aladdin’s
loop rolling factor re-rolls loops by adding dependences between loop index variables.

Loop Pipelining. The DDDG representation fully pipelines loop iterations by default,
though sometimes pipelined implementation leads to high resource requirements as well
as high power consumption. Aladdin offers users the option to turn off loop pipelining by
adding dependences between the entry and exit nodes of successive loop iterations.

Memory ports. The number of memory ports constrains the data transfer rate be-
tween the accelerator datapath and the closest memory hierarchy, generally either a
scratchpad memory or L1 cache. Aladdin uses this parameter to abstractly model the
number of memory requests the datapath can issue concurrently, and Section 4.3.4 dis-
cusses how the memory ports interface with memory simulators.

An Example

Figure 4.3 illustrates different phases of Aladdin transformations using a microbench-
mark as an example. After the IR trace of the C code has been produced, the optimiza-
tion and realization phases generate the resource-constrained DDDG that models acceler-
ator behavior. In this example, we assume the user wants an accelerator with a factor-of-
2 loop-iteration parallelism and without loop pipelining. The solid arrows in the DDDG
are true data dependences, and the dashed arrows represent resource constraints, such
as loop rolling and turning off loop pipelining. The horizontal dashed lines represent
clock cycle boundaries. The corresponding resource activities are shown to the right of
the DDDG example. We see that the DDDG reflects the dataflow nature of the accelera-
tor. Aladdin can accurately capture dynamic behavior of accelerators without having to

72

Resource ActivityResource Constrained DDDG

IR Trace:
0. r0 = 0
1. r4 = load (r0 + r1) //load a[i]
2. r5 = load (r0 + r2) //load b[i]
3. r6 = r4 + r5
4. store(r0 + r3, r6) //store c[i]
5. r0 = r0 + 1 // ++i
6. r4 = load (r0 + r1) //load a[i]
7. r5 = load (r0 + r2) //load b[i]
8. r6 = r4 + r5
9. store(r0 + r3, r6) //store c[i]
10. r0 = r0 + 1 // ++i
...

C code:

for (i = 0; i < N; ++i)
 c[i] = a[i] + b[i];

1.ld a

0. i=0

2.ld b

3.+

4.st c

6.ld a

5.i++

7.ld b

8.+

9.st c

11.ld a

10.i++

12.ld b

13. +

14.st c

16.ld a

15.i++

17.ld b

18.+

19.st c

20.i++ 25.i++

MEM MEM MEM MEM

+

+ +

MEM MEM

+ +

MEM MEM MEM MEM

+ +

MEM MEM

+ +

Cycle

Figure 4.3: C, IR, Resource Constrained DDDG, and Activity.

generate RTL by carefully modeling the opportunities and constraints of the customized
datapath in the DDDG.

Power and Area Models

We now describe the construction and application of Aladdin’s power and area models to
capture the resource requirements of accelerators.

Power Model. To accurately model the power of accelerators, we need: (a) precise
activities and (b) accurate power characterization of different DDDG components. We

73

uniquely characterize switching, internal, and leakage power from Design Compiler for
each type of DDDG node (multipliers, adders, shifters, etc.) and registers. The charac-
terization accounts for different timing requirements, bitwidths, and switching activity.
Switching and internal power are due to capacitive charging/discharging of output load
and internal transistors of the logic gates, respectively. While switching and internal
power are both dynamic, we found internal power weakly dependent on activity because
internal nodes can switch without the gate output switching.

We construct a detailed power model by synthesizing microbenchmarks that exercise
the functional units. Our microbenchmarks cover all of the compute instructions in IR so
that there is a one-to-one mapping between nodes in the DDDG and functional units in
the power model. We synthesize these microbenchmarks using Synopsys’s Design Com-
piler in conjunction with a commercial 40nm standard cell library to characterize the
switching, internal, and leakage power of each functional unit. This characterization is
fully automated in order to migrate easily to new technologies.

Aladdin’s power modeling library also accounts for cell selection variances during
netlist synthesis. Different pipeline stages within a datapath contain varying amounts of
logic and, in order to meet timing requirements, different standard cells and logic imple-
mentations of functional units are often selected at synthesis time. Aladdin approximates
the impact of cell selection by training the model for a variety of timing constraints, us-
ing a first-order model to choose the correct design. This also accounts for logic flatten-
ing that Design Compiler performs across small collections of functional units.

Area Model. To accurately model area, we construct an area library similar to the
previously described power library for each DDDG component. This model was obtained
using the same set of microbenchmarks to characterize the area for each functional unit
as well as for registers.

Cycle-Level Activity. Figure 4.4 shows the cycle-level resource activity for one im-
plementation of the FFT benchmark. Aladdin accurately captures the distinct phases of
FFT. The number of functional units required is estimated using the maximum number
of parallel functional units per cycle for each program phase; this approximation provides
the power and area models with the total resources allocated to the accelerators. The
cycle-level activity is an input to the power model to represent the dynamic activity of
the accelerators.

74

0 200 400 600 800
Time (Cycles)

0

50

100

150

200

N
um

be
ro

fA
ct

iv
e

Fu
nc

tio
na

lU
ni

ts
an

d
B

an
dw

id
th

FFT8

Twiddle

Shuffle

FFT8

Twiddle

Shuffle

FFT8

Active Functional Units
Memory Bandwidth

Figure 4.4: Cycle-by-Cycle FU and Memory Activity of FFT.

4.3.4 Integration with Memory System

Aladdin can easily integrate with architectural cache and memory simulators to model
their behavior with a particular memory hierarchy. Within the context of memory hier-
archy for accelerators, we discuss three types of memory models with which Aladdin can
integrate.

Ideal Memory guarantees that all memory requests can be serviced in one cycle,
which is realistic only for a system with small memory size. Aladdin models the ideal
memory system by assuming load and store nodes in the DDDG take one cycle.

Scratchpad Memory is commonly used in accelerator-centric systems where accel-
erator designers explicitly manage memory accesses so that each request has a fixed la-
tency. However, this approach requires a detailed understanding of workload memory
characteristics. This potentially increases design time but leads to more efficient imple-
mentation. Aladdin can take a parametrized memory latency as an input to model the
latency of load and store operations matching the characteristics of scratchpad memory.

Cache Hierarchy applies a hardware-managed cache system to capture locality of
the accelerated workload. Such a cache hierarchy relies on the hardware to exploit the
locality of the workload, potentially easing the design of systems with a large number of

75

accelerators. On the other hand, a cache introduces variable memory latency. Existing
cache simulators can be integrated with Aladdin to evaluate how variable latency mem-
ory accesses affect accelerator behaviors.

In order to integrate with a cache hierarchy, the accelerator must include certain
mechanisms to react to possible cache misses. Aladdin models several approaches to han-
dle this variable latency, which resemble pipeline control mechanisms in general-purpose
processors. The simplest policy is local or global pipeline stalls on miss events. We also
consider a more complex mechanism for non-blocking behavior in which a new loop iter-
ation is started when a miss occurs, and only the loop ID is stored for re-execution when
the miss resolves.

Memory Power Model. The memory power model is based on a commercial register
file and SRAM memory compiler that accompanies our standard cell library. We have
compared the memory power model to CACTI163 and found consistent trends, but we
retain the memory compiler model for consistency with the standard cell library.

4.3.5 Limitations

Algorithm choices. Aladdin does not automatically sweep different algorithms.
Rather, it provides a framework to quickly explore various hardware designs of a par-
ticular algorithm. This means designers can use Aladdin to quickly and quantitatively
compare the design spaces of multiple algorithms for the same application to find the
most suitable algorithm choice.

Input Dependent. Like other dynamic analysis frameworks84,106, Aladdin only mod-
els operations that appear in the dynamic trace, which means it does not instantiate
hardware for code not executed with a specific input. For Aladdin to completely model
the hardware cost of a program, users must provide inputs that exercise all paths of the
code.

Input C code. Aladdin can create a DDDG for any C code. However, in terms of
modeling accelerators, C constructs that require resources outside the accelerator, such
as system calls and dynamic memory allocation, are not modeled. In fact, understanding
how to handle such events is a research direction that Aladdin facilitates.

76

C Code

Aladdin (Figure 3)

RTL
Designer

HLS C
Tuning

Design
Compiler

ModelSim

Power Performance

Vivado HLS

Verilog Activity

Design Iteration

Figure 4.5: Validation Flow.

4.4 Aladdin Validation

We begin this section with a detailed description of the traditional RTL design flow and
workloads used to validate Aladdin. Validation results show Aladdin has modest error
rates within 0.9% for performance, 4.9% for power, and 6.5% for area. Aladdin generates
the design space more than 100× faster than the traditional RTL-based flow.

4.4.1 Validation Flow

Figure 4.5 outlines the methodology used to validate Aladdin. The power and area es-
timates of Aladdin are compared against synthesized Verilog generated by Design Com-
piler using commercial 40nm standard cells. Aladdin’s performance model is validated
against ModelSim Verilog simulations. The SAIF activity file generated from ModelSim
is fed to Design Compiler to capture the switching activity at the gate level. To generate
Verilog, we either hand-code RTL or use Xilinx’s Vivado HLS tool. The RTL design flow
is an iterative process and requires extensive tuning of both RTL and C code.

HLS Tuning

We use HLS to generate the accelerator design space for SHOC benchmarks to demon-
strate Aladdin’s ability to explore a large design space of an accelerator’s datapath,
which is infeasible with handwritten RTL. To produce high-quality Verilog, HLS re-
quires significant tuning of the input C code to expose parallelism and remove false de-
pendences. In contrast, Aladdin produces the power-performance optimal design points
without modifying the input C code.

77

0 1 2 3 4 5 6 7 8
Execution Time (KCycles)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
w

er
(m

W
)

Tuned C Code
Unoptimized C Code

Figure 4.6: Unoptimized vs. Tuned Scan.

Figure 4.6 demonstrates the quantitative difference that code quality can have on
power and performance by comparing Pareto frontiers of optimized and unoptimized
versions for the Scan benchmark. Both curves were generated by sweeping loop unrolling
factors, memory bandwidth, and resource sharing and applying loop pipelining, simi-
lar to the parameters discussed in Section 4.3. The unoptimized C code hits a perfor-
mance wall at around 4000 cycles where neither increasing bandwidth nor loop paral-
lelism yields better performance but continues to burn more power. The reason is that
when striding over a partitioned array being read from and written to in the same cycle,
though accessing different elements of the array, the HLS compiler conservatively adds
loop-carried dependences. This in turn increases the iteration interval of loop pipelin-
ing, limiting performance. To overcome HLS’s conservative assumptions, we partition the
array differently, which consequently simplifies the access patterns to resolve false depen-
dences. Similar tuning was necessary to generate well-performing designs for each of the
SHOC benchmarks, which are then used to validate Aladdin in Section 4.4.3.

4.4.2 Applications

We implemented a collection of benchmarks, both by hand and using HLS, to validate
Aladdin. HLS enabled the validation of the Pareto optimal designs for the SHOC bench-
marks, overcoming the impracticality of hand coding each design point. We also validate

78

Aladdin against handwritten RTL for benchmarks ill-suited for HLS. Examples are taken
from recently published accelerator research: NPU65, Memcached103, and HARP164.

SHOC

The SHOC benchmark suite is representative of many typical accelerator workloads,
which include compute intensive benchmarks where functional units often dominate ex-
ecution time and power, e.g., Stencil, as well as memory-bound workloads, e.g., Sort,
stressing Aladdin’s modeling capabilities across multiple dimensions. To ensure valid,
well performing HLS results, we carefully tuned each implementation as described ear-
lier. By sweeping loop unrolling factors and resource constraints such as memory band-
width, a large design space of accelerator datapaths for each benchmark is generated.

Single Accelerators

In some instances, the expressiveness of C limits the ability for HLS to reasonably match
hand-coded RTL. Therefore, we hand coded RTL for HARP, NPU, and Memcached to
further demonstrate Aladdin’s modeling capabilities. For Aladdin, we rely on generic C
implementations that describe the behavior of each accelerator.

HARP is a partitioning accelerator for big data164. Essentially, given a stream of in-
puts, it uses a pipeline of comparators to check each input against a splitter value at
each stage and categorize the inputs. HARP is a control-intensive workload where its
activity highly depends on the input values, which makes it a good candidate to exercise
Aladdin’s ability to model control behavior. Our handwritten Verilog for HARP properly
expresses the pipelined comparisons. Aladdin was able to match the Verilog implementa-
tion through the loop rolling and pipelining parameters.

NPU is a network of individual neurons connected through a shared bus, which com-
municate with each other in a carefully orchestrated, compiler-generated pattern. The
design hinges on an input FIFO to buffer computations. Although HLS has FIFO sup-
port, the ability to finely share data efficiently between compute engines is a shortcoming
of most HLS tools. An individual neuron was implemented in Verilog, and a synthetic
input was used to stimulate the neuron. Aladdin’s memory-to-register transformation
successfully captures such FIFO-type structure.

79

MD
STENCIL FFT

GEMM TRIAD SORT SCAN
REDUCTION

0

2

4

6

40

50

60

Ti
m

e
(K

C
yc

le
s)

1.9%
1.2%

0.6%
2.6%

0.9%
0.2%

0.3%
0.9%

Avg Error
0.9%

Aladdin
RTL Flow

NPU
HASH

HARP
0

1

2

3

4

5

Ti
m

e
(K

C
yc

le
s)

0.4
%

0.2
%

0.6
%

MD
STENCIL FFT

GEMM TRIAD SORT SCAN
REDUCTION

0
20
40
60
80

100
120
140

Po
w

er
(m

W
)

4.8%
6.7%

6.5%
5.1%

2.3%
6.6%

8.3%
4.4%

Avg Error
4.9%

Aladdin
RTL Flow

NPU
HASH

HARP
0

1

2

3

Po
w

er
(m

W
)

3.3
%

0.2
%

5.7
%

MD
STENCIL FFT

GEMM TRIAD SORT SCAN
REDUCTION

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
(m

m
2
)

7.1%
5.5%

4.5%
10.6%

4.5%
9.6%

4.3%
7.9%

Avg Error
6.5%

Aladdin
RTL Flow

NPU
HASH

HARP
0

5

10

15

A
re

a
(m

m
2
)

10−3

5.3
%

4.7
%

6.5
%

Figure 4.7: Performance (top), Power (middle), and Area (bottom) Validation.

Memcached is a distributed key-value store system, whose functionality is mapped
to a hash function and CAM lookup. Given an input key, a hash accelerator computes
the value using a hash algorithm103. The value is then used to index four SRAMs whose
content is compared to the input key to determine a hit. If one of the SRAMs returns
a match, it returns that SRAM’s data. On a miss, the value is sent to a CAM where all
possible locations of the key are checked in parallel and the correct value is returned.
This benchmark serves two purposes—to demonstrate Aladdin’s ability to model vari-
able bitwidth computations (the hash function) and to model a different customization
strategy (CAM).

80

Most
Parallel

Most
Serial

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

E
ne

rg
y

REG
ADD
MUL

(a) Triad

Most
Parallel

Most
Serial

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
ne

rg
y

REG
ADD
MUL

(b) Sort

Most
Parallel

Most
Serial

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

E
ne

rg
y

REG
ADD
MUL

(c) Stencil

Figure 4.8: Energy Characterization of SHOC.

4.4.3 Validation

Figure 4.7 shows that Aladdin accurately models performance, power, and area com-
pared against RTL implementations across all of the presented benchmarks with average
errors of 0.9%, 4.9%, and 6.5%, respectively. For each SHOC workload, we validated
six points on the Pareto frontier, e.g., points in Figure 4.6. The SHOC validation re-
sults show Aladdin accurately models entire design spaces, while for single accelerator
designs, Aladdin is not subject to HLS shortcomings and can accurately model different
customization strategies.

Pareto Analysis The Pareto optimal designs of the SHOC benchmarks reveal inter-
esting program characteristics in the context of hardware accelerators. Bars in Figure 4.8
correspond to six designs along each benchmark’s Pareto frontier, which were also used
for validation. In each graph, the leftmost bar is the most parallel, highest performing
design while the rightmost bar is the most serial and lowest performing design. For each
design, we calculate energy using power and performance estimates from Aladdin. Al-
addin’s detailed power model enables energy breakdowns for adders, multipliers, and
registers. The six bars of each benchmark are normalized to the leftmost bar to facilitate
comparisons.

Each of the three benchmarks in Figure 4.8 exhibits different energy trends across the
Pareto frontier. Triad, shown in Figure 4.8a, demonstrates good energy proportionality,
meaning more parallel hardware leads to better performance with a proportional power
cost. In contrast, Sort has a strong sequential component such that energy increases for
more parallel designs without improving performance. Finally, while the multiplier en-

81

Hand-Coded RTL HLS Aladdin
Programming Effort High Medium

N/ARTL Generation Designer Dependent 37 mins
RTL Simulation Time 5 mins
RTL Synthesis Time 45 mins
Time to Solution
per Design

87 mins 1 min

Time to Solution
(36 Designs)

52 hours 7 mins

Table 4.3: Algorithm-to-Solution Time per Design.

ergy for Stencil shows similar energy proportionality to Triad, the adders and registers
required for loop control are amortized with more parallelism. Non-intuitively, this leads
to better energy efficiency for these faster designs.

4.4.4 Algorithm-to-Solution Time

Aladdin enables rapid design space exploration of accelerator designs. Table 4.3 quan-
tifies the differences in algorithm-to-solution time to explore a design space of the FFT
benchmark with 36 points. Compared to traditional RTL flows, Aladdin skips the time-
consuming RTL generation, synthesis, and simulation process. On average, it takes 87
mins to generate a single design using the RTL flow but only 1 min for Aladdin, includ-
ing both of Aladdin’s optimization phase (50 seconds) and realization phase (12 sec-
onds). However, because Aladdin needs to perform the optimization phase only once
for each algorithm, this optimization time can be amortized across large design spaces.
Consequently, it only takes 7 mins to enumerate the full design space with Aladdin com-
pared to 52 hours with the RTL flow. The HLS RTL generation time per design is com-
parable to that reported by other researchers104.

4.5 Case Study: GEMM Design Space

We now present a case study that demonstrates how Aladdin enables architecture re-
search and why it is invaluable to future heterogeneous SoC designs. We focus our analy-
sis on GEMM as it has complex memory behavior and analyze a problem size of 196 KB.
In this case study, we present:

82

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(M

ill
io

n
C

yc
le

s)

4K
B

8K
B

16
K

B
32

K
B

4K
B

8K
B

16
K

B
32

K
B

4K
B

8K
B

16
K

B
32

K
B

L1 BW=
4B/Cycle 16B/Cycle 64B/Cycle

Memory Time
Compute Time

0

10

20

30

40

50

Po
w

er
(m

W
)

4K
B

8K
B

16
K

B
32

K
B

4K
B

8K
B

16
K

B
32

K
B

4K
B

8K
B

16
K

B
32

K
B

L2 Power
L1 Power
Acc Core Power

Figure 4.9: GEMM Time and Power Decomposition

1. Execution Time Decomposition: Understand design trade-offs of an accelerator’s
execution time with respect to compute time and memory time.

2. Accelerator Design Space: Characterize the design space of GEMM accelerators,
including memory hierarchy, to understand how different parameters affect the
design space.

3. Heterogeneous SoC: Demonstrate the impact of resource contention in an SoC-like
system of a single accelerator, resulting in different optimal designs that would be
unknown without system-level analysis.

4.5.1 Execution Time Decomposition

So far, Aladdin has been evaluated as a standalone accelerator simulator with an ideal
memory hierarchy (one cycle memory access latency). However, it is not always possible
to retrieve data in one cycle in real designs with large problem sizes. The efficiency of
accelerators highly depends on the memory system. To quantify the impact of a memory
system on accelerators, we integrate Aladdin with a standard cache simulator and the
DRAMSim2 memory simulator134.

83

We divide the accelerator’s execution time into compute time and memory time. Com-
pute time is defined as the execution time of an accelerator when there is only one cycle
memory latency. Memory time is defined as cycles lost to a non-ideal memory, which
includes both memory bandwidth and memory latency constraints.

In order to decompose the accelerator’s execution time, we run simulations with both
an ideal memory and a realistic memory hierarchy including L1, L2, and DRAM. The
compute time is the execution time with ideal memory; the delta of execution times be-
tween the two simulations is the memory time to get data into accelerators37.

Type Parameters Values
Core Blocking Factor [16, 32]

L1
L1 Bandwidth
(Bytes/Cycle)

[4::2::128]

L1 Size (KB) [4::2::32]
MSHR Entries [4::2::64]

L2
L2 Bandwidth
(Bytes/Cycle)

[4::2::128]

L2 Size (KB) [64::2::256]
L2 Assoc 16

Table 4.4: Single Accelerator Design Space, where i::j::k denotes a set of values from i to k by a
stepping factor of j.

Table 4.4 lists all of the parameters in the design space. In this section, we focus on
the bandwidth and size of L1. Figure 4.9 shows the execution time and power breakdown
of the GEMM benchmark when sweeping L1 size and bandwidth. On the left of Fig-
ure 4.9, we observe that memory time takes a significant portion of the execution time,
especially as L1 bandwidth increases. With the same L1 bandwidth, execution time de-
creases as the L1 size increases from 8 KB to 16 KB; this phenomenon occurs because
8 KB is not large enough to hold the blocked data size (a 32×32 matrix).

The plot on the right shows the power breakdown of the accelerator datapath, L1,
and L2. The accelerator datapath power increases with L1 bandwidth, because higher
bandwidth enables more parallel implementations. As L1 size increases, its power also
increases as accesses become more expensive. At the same time, L2 power decreases be-
cause more accesses are coalesced by the L1, lowering the L2 cache’s activity. In fact,
cache power consumes more than half of the total power, even for more parallel designs

84

0

20

40

60

80

100

120

140

160

Po
w

er
(m

W
)

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Million Cycles)

L1 BW

L1 BW

L2 Size

L1 Size

Blocking

L2 BW

256 B/Cycle
128 B/Cycle

64 B/Cycle
32 B/Cycle
16 B/Cycle

8 B/Cycle
4 B/Cycle

Figure 4.10: GEMM design space.

where datapath power is significant. Therefore, design efforts focusing on the accelerator
datapath alone do not alleviate memory power, which dominates the overall power cost.

4.5.2 Accelerator Design Space

Section 4.5.1 explored a subset of the design space for accelerators and memory sys-
tems. Here, we use Aladdin to explore the comprehensive design space with parameters
in Table 4.4. Figure 4.10 plots the power and execution time of the GEMM accelerator
designs resulting from the exhaustive sweep. The design space contains several over-
lapping clusters of similar designs. The arrows in Figure 4.10 identify correlations in
power/performance trends with respect to each parameter. For example, GEMM expe-
riences substantial performance benefits from a larger L1 cache, but with a significant
power penalty. In contrast, increasing L2 size only modestly increases both power and
performance.

85

0

20

40

60

80

100

120

140

160

Po
w

er
(m

W
)

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Million Cycles)

Without Memory Contention

block=16
block=32

0

20

40

60

80

100

120

140

160

Po
w

er
(m

W
)

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Million Cycles)

With Memory Contention

block=16
block=32

Figure 4.11: Design Space of GEMM without and with contention in L2 cache.

4.5.3 Resource-Sharing Effects in Heterogeneous SoC

In a heterogeneous system, shared resources, such as a last-level cache, can be accessed
by both general-purpose cores and accelerators. We consider the case of a heterogeneous
system consisting of a shared 256 KB L2 cache, one general-purpose core, and a GEMM
accelerator with a private 16 KB L1 cache. From an accelerator designer’s perspective,
an important algorithmic parameter is the blocking factor of GEMM; a larger blocking
factor exposes more algorithmic parallelism, however, achieving good locality requires a
larger cache.

Figure 4.11(left) shows the accelerator design space without memory contention from
the general purpose core. We modulate the algorithmic blocking factor and find that a
blocking factor of 16 is always better than 32 with respect to both power and perfor-
mance. This occurs because a 16 KB L1 cache is large enough to capture the locality of
the blocking factor 16 but not 32. Therefore, it is preferable to build the accelerator with
blocking factor 16 when there is no contention for shared resources.

To model resource contention between the general-purpose core and the accelerator,
we use Pin107 to profile an x86 memory trace and then use the trace to issue requests
that pollute the memory hierarchy while simultaneously running the accelerator. The
design space for the accelerator under contention is shown in Figure 4.11(right). We
see that performance degrades for both blocking factors of 16 and 32 due to pollution
in the L2 cache; however, blocking factor 32 suffers much less than blocking factor 16.
When there is contention, capacity misses increase for the shared L2 cache, which incurs

86

large main memory latency penalties. With a larger blocking factor, the accelerator re-
quires fewer references to the matrices in total and, thus, fewer data requests from the
L2 cache. Consequently, the effects of resource contention suggest building an accelera-
tor with a larger blocking factor, where the accelerator performance can achieve around
0.5 million cycles. On the other hand, without considering the contention, designers may
pick a design with blocking factor 16, the highest performance of which is 1.5 million
cycles in the contention scenario. Such design choice leads to a 3× performance degrada-
tion. Aladdin can easily evaluate these types of system-wide accelerator design trade-offs,
a task that is not tractable with other current accelerator design tools.

87

“You cannot see the forest for the trees.”

5
gem5-Aladdin: Accelerator-System

Co-Design

This chapter extends the work of the previous chapter and highlights that co-designing
of the accelerator microarchitecture with the system in which it belongs is critical to
balanced, efficient accelerator microarchitectures. We find that data movement and co-
herence management for accelerators are significant, yet often unaccounted, components
of total accelerator runtime, resulting in misleading performance predictions and inef-
ficient accelerator designs. To explore the design space of accelerator-system co-design,
this chapter introduces gem5-Aladdin, an SoC simulator that captures dynamic interac-
tions between accelerators and the SoC platform, and validates it to within 6.5% against
real hardware. The co-design studies show that the optimal energy-delay-product (EDP)
of an accelerator microarchitecture can improve by up to 7.4× when system-level effects
are considered compared to optimizing accelerators in isolation.

5.1 Introduction

Accelerators are often designed as standalone intellectual property (IP) blocks that com-
municate with the rest of the system using a Direct Memory Access (DMA) interface.
This modularity simplifies IP design and integration with the rest of the system, leaving

88

tasks such as data movement and coherency management to software device drivers. As
a result, the costs of these overheads are hard to predict and accommodate at acceler-
ator design time. Our detailed characterization of accelerator behavior shows that the
combination of just these two effects can occupy over 40% of the total runtime. When it
comes to accelerator design, architects must take a holistic view of how they interact in
the overall system, rather than designing them in isolation.

Fundamentally, all systems should be designed in a way that balances the bandwidth
of the memory interface with the amount of compute throughput. An overly aggressive
design will have more computational units than the memory interface can supply, lead-
ing to wasted hardware and additional leakage power. We show that three major system-
level considerations that strongly affect balanced accelerator design are the local memory
system interface, cache coherency management, and behavior under shared resource con-
tention.

The typical local memory interface is DMA, a push-based system that requires soft-
ware to set up bulk transfers and manage coherency. An alternative is to embed a hardware-
managed cache with the accelerator design, leading to a fine-grained pull-based memory
system that loads data on-demand and transparently handles coherency state. Despite
these conveniences, caches are rarely used in accelerators due to hardware overheads
leading to power and area penalties. However, there has been growing interest from in-
dustry in providing coherent accelerator cache interfaces36,119,152. We investigate the
system-level considerations for both approaches to understand when each is preferable.

Such studies require a detailed simulation infrastructure for heterogeneous accelerator-
rich platforms such SoCs. There is a wide selection of CPU simulators32,39 and stan-
dalone accelerator simulators such as Aladdin145. However, existing SoC simulators are
unable to model dynamic interactions between accelerators and the memory system53.
In this paper, we describe gem5-Aladdin, which integrates the gem5 system simula-
tor with the Aladdin accelerator simulator to enable simulation of SoCs with complex
accelerator-system interactions. We validate gem5-Aladdin against the Xilinx Zynq plat-
form and achieve less than 6.5% error.

We demonstrate that co-designing accelerators with system-level considerations has
two major ramifications for accelerator microarchitectures that are not yet fully under-
stood in the literature. First, datapaths should be less aggressively parallel, producing
more balanced designs and improved energy efficiency compared to accelerators designed
in isolation. Second, the choice of local memory interfaces is highly dependent on the dy-

89

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Latency (ms)

0

5

10

15

20

25

30

35

40

P
o
w

e
r

(m
W

)

Lanes: 16
Ports: 16

Isolated Optimal:

Co-designed Optimal:
Lanes: 4
Ports: 8

Isolated

Co-designed

Figure 5.1: Isolated and co-designed EDP optimal design points for stencil3d.

namic memory characteristics of the accelerated workload, the system architecture, and
the desired power/performance targets. We show that accelerator-system co-design can
improve energy-delay-product by up to 7.4× and on average by 2.2×.

5.2 Motivation and Background

We use the term “accelerator” to refer to an application-specific hardware block. Accel-
erators are comprised of multiple customized datapath lanes and customized local mem-
ories. Each lane is a chain of functional units controlled by finite state machines. When
the local memory is comprised of scratchpads, each scratchpad can be partitioned into
smaller arrays to increase memory bandwidth to the lanes. Such accelerators are repre-
sentative of recent academic proposals49,65,78,103,129,159,164 and commercial designs19,33,94.

5.2.1 Co-design: A Motivating Example

To demonstrate the differences between isolated vs. co-designed accelerators, we perform
a design sweep exploration for both scenarios on a 3D stencil kernel. We sweep compute
parallelism and scratchpad partitioning. Compute parallelism is described by the number
of datapath lanes. Figure 5.1 shows these two design spaces.

90

We consider an accelerator designed in isolation to be one that focuses design op-
timization on the computation phase. This design space (blue circles) leans towards
more parallel, power-hungry designs, as exemplified by the isolated energy-delay-product
(EDP) optimal design point. But if we account for effects such as initial data movement,
the design space (green triangles) shifts dramatically towards the lower right, preferring
less parallel designs at lower power. If we take the isolated EDP optimal design and then
apply these system effects, we find that it is quite different from the co-designed EDP
optimal point. Unaccounted data movement becomes a significant part of total runtime,
making aggressively parallel datapaths unnecessary.

5.2.2 Typical CPU-Accelerator Communication

The existence of the difference between the two design spaces is due to how CPUs and
accelerators traditionally communicate data. In this typical flow, DMA is the transfer
mechanism, but typical DMA implementations can only access main memory or LLC,
so the CPU first flushes all input data from private caches and invalidates the region
used to store return data168. Then it programs a DMA transaction into the DMA engine
and initiates the transfer. The accelerator begins execution after receiving all the data
and streams its output data via DMA back to main memory when it is done. The CPU,
having invalidated that memory region from its caches, can now access the return data
correctly.

For many benchmarks, this flow works well. DMA is efficient at copying large blocks
of data, and accelerators whose compute-to-memory ratios are large are well served by
DMA. However, for other workloads with more irregular memory access patterns, this
flow can impose severe overheads, because the accelerator must wait to receive all the
data before it can begin computation. As an example, Figure 5.2a shows the execution
timeline for a 16-lane implementation of an md-knn accelerator (a k-nearest-neighbor
molecular dynamics), running on a Xilinx Zynq platform. As shown, the accelerator’s
computation consumes only about 25% of the total cycles, with the rest of the time
spent preparing and moving data. We expand this study in simulation for all the Mach-
Suite benchmarks and find that about half of them are compute-bound and the other
half are data-movement-bound, as shown in Figure 5.2b.

Clearly, DMA is not an optimal solution for some workloads. One alternative, as men-
tioned earlier, is to replace push-based DMA with pull-based hardware-managed caches.

91

0.0 0.2 0.4 0.6 0.8 1.0
Execution Time (ms)

DMA Store data to DRAM

Accelerator Compute

DMA Load data from DRAM

CPU Invalidate Dcache

CPU Flush Dcache

(a) md-knn execution time on the Zynq platform

ae
s-a

es

nw-n
w

so
rt-

ra
dix

vit
er

bi-v
ite

rb
i

km
p-k

m
p

gem
m

-n
cu

bed

so
rt-

m
er

ge

gem
m

-b
loc

ke
d

m
d-g

rid

fft
-tr

an
sp

os
e

fft
-st

rid
ed

st
en

cil
-st

en
cil

2d

st
en

cil
-st

en
cil

3d

m
d-k

nn

sp
m

v-
cr

s

sp
m

v-
ell

pac
k

bfs-
queu

e

bfs-
bulk

Ave
ra

ge
0.0

0.2

0.4

0.6

0.8

1.0

E
x
e
cu

ti
o
n
 t

im
e

Accel. Compute

DMA Transfer

CPU Flush

(b) Breakdown of flush, DMA, and compute time in MachSuite for
16-way parallel designs.

Figure 5.2: Data movement overheads on MachSuite.

In recent years, the scope of workloads that we desire to accelerate has widened from
dense computational kernels to more irregular applications which could benefit from
a less rigid memory system. Although caches have seldom been used for accelerators,
the increased workload diversity motivates a more comprehensive study of new CPU-
accelerator communication strategies.

5.3 Modeling infrastructure

Figure 5.3 shows an example of an SoC, including general-purpose cores, memory con-
trollers, a DMA engine, and different types of fixed-function accelerators, all of which are

92

L2 Cache

CPU0

L1 Cache

System bus

MC

DRAMDRAM La
n

e
0

La
n

e
1

La
n

e
2

La
n

e
3

BUF0 BUF1

ARR0 ARR1 ARR2 ARR3

STR0 STR1

La
n

e
4

La
n

e
5

La
n

e
6

La
n

e
7

SPAD/DMA interfaceACCEL1

MEM

CPU1

L1 Cache

Scratchpad accelerator

DMA

Transfer descriptors

CHAN 0

CHAN 3

 SRC ADDR
DEST ADDR

LENGTH

SRC ADDR
DEST ADDR

LENGTH

SRC ADDR
DEST ADDR

LENGTH

SRC ADDR
DEST ADDR

LENGTH

Channel selection

ACCEL0

MEM

La
n

e
0

La
n

e
1

La
n

e
2

La
n

e
3

L1
Cache

TLB

Cache controller

Cache accelerator

Design Parameter Values

Datapath lanes 1, 2, 4, 8, 16

Scratchpad partitioning 1, 2, 4, 8, 16

Data transfer mechanism DMA/cache

Pipelined DMA Enable/disable

DMA-triggered compute Enable/disable

Cache size 2, 4, 8, 16, 32, 64 (KB)

Cache line size 16, 32, 64 (B)

Cache ports 1, 2, 4, 8

Cache associativity 4, 8

Cache line flush 84 ns/line

Cache line invalidate 71 ns/line

Hardware prefetchers Strided

MSHRs 16

Accelerator TLB size 8

TLB miss latency 200 ns

System bus width 32, 64 (b)

Figure 5.3: An example SoC that can be modeled using gem5-Aladdin. The table shows the set
of design parameters that we swept and their values; this is just a small subset of what can be

changed.

connected through the system bus. To understand how system-level effects impact the
behavior of accelerators, we need simulation infrastructures that can model these hetero-
geneous systems. In this work, we integrate Aladdin with the gem5 system simulator32,
a widely-used system simulator with configurable CPUs and memory systems.

gem5-Aladdin models interactions between accelerators and CPUs, DMA, hardware-
managed caches, and virtual memory. All of these features have implications on how the
accelerator behaves and in the following sections, we describe how each is modeled.

5.3.1 Overview

We run gem5-Aladdin in syscall emulation mode, where it emulates system calls by pass-
ing it to the host operating system instead of simulating an operation system, because it
is sufficient to capture the effects of our system-level considerations on performance and
power. Full-system simulation would enable us to model operating system effects, but
most are beyond the scope of this study. Some interactions with the operating system,
such as device driver to hardware interactions, are important to our studies. These are
characterized through real hardware measurements and analytically included in our mod-
els. Finally, syscall emulation is much faster than full system simulation, easing rapid

93

design space exploration.

5.3.2 Accelerator Modeling

The Aladdin accelerator simulator145 takes a first step towards modeling the power,
performance, and cycle-level activity of standalone, fixed-function accelerators without
needing to generate RTL. Aladdin is a trace-based accelerator simulator that profiles
the dynamic execution of a program and constructs a dynamic data dependence graph
(DDDG) as a dataflow representation of an accelerator. The vertices in the DDDG are
LLVM IR instructions, and the edges represent true dependences between operations.
Aladdin then applies common accelerator design optimizations and schedules the graph
for execution through a breadth-first traversal, while accounting for user-defined hard-
ware constraints. Aladdin was validated to be within 7% accuracy compared to stan-
dalone, RTL accelerator designs.

However, Aladdin only focuses on the standalone datapath and local memories. It as-
sumes that all data has been pre-loaded into the local scratchpads. This skips the mod-
eling of any interactions between accelerators and the rest of the system in which they
belong.

5.3.3 DMA Engine

DMA is a software managed mechanism for transferring bulk data without CPU inter-
vention. To set up a transaction, the programmer constructs a DMA transfer descriptor
that contains the source and destination memory addresses along with the size of the
transfer. Multiple descriptors can be constructed and connected through a linked list.
When all descriptors are ready, the programmer initiates the transfer by writing the
address of the head of the descriptor linked list into a hardware DMA engine’s control
register. The DMA engine then fetches and services these descriptors one by one. Mean-
while, the CPU is free to perform other work.

In gem5-Aladdin, accelerators can invoke the DMA engine already present in gem5.
To do so, a programmer inserts calls to special dmaLoad and dmaStore inside the accel-
erated function with the appropriate source, destination, and size arguments. When the
function is traced by Aladdin, Aladdin will identify these calls as DMA operations and
issue the request to the gem5 DMA engine. As part of the DMA engine, we include an

94

analytical model to account for cache flush and invalidation latency, using the measured
numbers mentioned in Section 5.4.2.

5.3.4 Caches and Virtual Memory

For the accelerator caches, we use gem5’s classic cache model along with a basic MOESI
cache coherence protocol. When Aladdin sees a memory access that is mapped to a
cache, it sends a request through a cache port to its local cache. Aladdin will receive
a callback from the cache hierarchy when the request is completed. To support virtual
memory, we implement a special Aladdin TLB model. We don’t use gem5’s existing
TLB models for two reasons. First, the existing TLB models are tied to particular ISAs,
which do not pertain to accelerators. Second, as a trace-driven simulator, the trace ad-
dress that Aladdin originally uses does not directly map to the simulated address space
that CPU is accessing. To maintain correct memory access behavior, our custom TLB
model translates the trace address to a simulated virtual memory address and then to a
simulated physical address. TLB misses and page table walks are modeled with a pre-
characterized miss penalty.

5.3.5 CPU-Accelerator Interface

On the CPU, a simulated user program can invoke an attached accelerator through the
ioctl system call, a system call widely used in practice for arbitrary communication
with devices. In the ioctl emulation code, we assign a special file descriptor value for
Aladdin and use command numbers to refer to individual accelerators. When the ac-
celerator finishes, it writes to a shared pointer between the CPU and the accelerator.
The CPU will see the update due to cache coherence. After invoking the accelerator, the
CPU can either spin wait for the status to update or continue to do other work, periodi-
cally checking the status variable to see if the accelerator is completed.

5.3.6 Performance Validation

We validated gem5-Aladdin’s performance models using the Zynq Zedboard for a subset
of the MachSuite benchmark suite. For each benchmark, we implement the AXI4-Stream
interface to transfer data via Xilinx’s DMA IP blocks. Accelerator RTL is generated us-
ing Vivado HLS 2015.1. To maintain a consistent view of the model, we use HLS without

95

ae
s-
ae

s

fft
-tr

an
sp

os
e

ge
m

m
-n

cu
be

d

m
d-

kn
n

nw
-n

w

sp
m

v-
cr

s

st
en

ci
l-s

te
nc

il2
d

st
en

ci
l-s

te
nc

il3
d

Ave
ra

ge
0

5

10

15

20

E
rr

o
r

(%
)

Flush + Invalidate DMA Accel

Figure 5.4: Error between Zedboard and gem5-Aladdin cycles.

specifying any additional design optimizations, so Vivado HLS generates a default design
whose parameters we then match in Aladdin.

The complete system (including the DMA engine, accelerators, crossbars, etc.) is im-
plemented in in Vivado Design Suite 2015.1. Software running on the CPU first initial-
izes all devices in the system and generates the accelerator input data. Then it performs
the necessary cache flushes and invalidates and starts the DMA transfer. The accelerator
automatically begins computation when the DMA transfer is complete.

To measure performance, we instrument this code using cycle counters on the A9
CPUs. Because we cannot directly measure the DMA transfer time, we include logic an-
alyzers in the synthesized system to capture waveforms using Xilinx tools during live
execution. Most benchmarks were implemented on a 10ns clock; a few used slower clocks
for timing reasons.

The results of our validation are shown in Figure 5.4. Our DMA performance model
achieves 6% average error across this suite of benchmarks, while Aladdin achieves 7% av-
erage error, and the flush and invalidation analytical model achieve less than 5% average
error. These results demonstrate the ability of gem5-Aladdin to model a wide range of
accelerator workloads accurately for both the accelerated kernels and important system-
level considerations.

96

Validation omissions

Our validation focuses on the features required by our DMA techniques: cache flushes
and invalidates, DMA transfer time, and accelerator runtime. In general, we validated
as much of the new additions as we could. Below are the components this work does not
validate and our reasons for omitting them.

• CPU performance models: Existing work by Gutierrez et al. has already produced
an accurate gem5 CPU model for the ARM A9 core77, and gem5-Aladdin uses
that validated model.

• Power model: All power results represent only the accelerator power. We do not
account for CPU power in any of our results. We use the same validated Aladdin’s
power models with TSMC 40nm technology.

• Cache: To the best of our knowledge, there is no existing IP block available on
Zynq such that we could implement a cache controller on the programmable fabric.
Furthermore, we never modified the cache model of gem5.

5.4 Memory System Opportunities

In this section, we will discuss the primary design considerations when deciding whether
to use a DMA- or cache-based memory system for an accelerator. Because baseline DMA
leaves much room for improvement, we will also apply two optimizations to DMA. We
will then describe design considerations specific to cache-based accelerators. Finally, we
will evaluate the performance of both memory systems for a set of representative bench-
marks.

5.4.1 Primary design considerations

First, we compare and contrast DMA and caches across the three system-level consid-
erations mentioned earlier: push vs. pull, data movement granularity, management of
coherency, and behavior under shared resource contention.

Push vs. Pull: DMA is designed for efficient bulk data transfer where the data re-
quirements of the program are well known a priori. This works well for streaming ap-
plications and applications with high compute-to-memory ratios. However, applications

97

with more irregular memory access patterns, such as indirect memory accesses, can suffer
without an on-demand memory system such as a cache. In addition, because caches have
the feature of automatic cache line replacement, a cache can often afford to be smaller
than a scratchpad that must hold all the data.

Data Movement Granularity: Because DMA is software controlled, the overheads
of setting up a transaction are usually amortized over a large bulk transfer. In contrast,
caches pull in data at cache line granularity, enabling fine-grained overlap between com-
pute and data movement. Although fine-grained DMA is possible, each new transactions
adds additional overheads. On the other hand, caches must perform tag comparisons, re-
placements, and typically address translations, which make them inefficient for bulk data
movement.

Cache Coherence Management: DMA engines typically can only access main
memory or the last level cache. Therefore, the programmer must conservatively flush any
data the accelerator may read out of private caches. Figure 5.2b shows that on average,
accelerators employing traditional DMA spend 20% of their total cycles on cache flushes.
The flush is typically performed by software because DMA engines rarely participate in
coherency (although there have been exceptions, such as the IBM Cell92). In contrast,
hardware-managed caches handle all of this complexity transparently at the cost of addi-
tional hardware.

Shared Resource Contention: In a real scenario where resources such as the main
system interconnect and main memory are shared across multiple agents, invariably
a DMA operation or cache fill will stall to allow another process to make progress. A
coarse-grained mechanism such as DMA will be affected much more by shared resource
contention because the accelerator usually waits for the entire transfer to complete. In
comparison, fine-grained memory accesses such as cache fills are less likely to contend
due to their smaller size, and hit-under-miss allows other independent operations to pro-
ceed even while an earlier cache load or store missed.

5.4.2 DMA Optimizations

In this section, we improve the baseline DMA method by overlapping various stages of
the process. We examine two DMA latency optimizations, pipelined DMA and DMA-
triggered computation, which are graphically depicted in Figure 5.5.

98

i = 16
to 31

A[32:

A[48:63

FLUSH DMA A[0:N] i = 0 N

i = 0 N

15]

A[0:15]

A[16:31]

i = 0
to 15

Begin DMA of A as soon as the first flush chunk completes.

Baseline

+ Pipelined
DMA

Break up flush and DMA into page sized chunks

i = 0 N

+ DMA-triggered
compute

Begin loop iteration 0 as soon as A[0] arrives.

A[32:47]

A[16:31]

Ready bits track data at granularity G
(for illustration purposes G = 16)

Copy array
via DMA

Flush array from
CPU caches

Compute loop
iteration i

Figure 5.5: A demonstration of the DMA latency reduction techniques, using reduction as an
example workload.

Pipelined DMA

Pipelined DMA reduces latency by dividing the flush and DMA operations into page
sized blocks and overlapping the DMA of block b with the flush of block b+1. We choose
page size granularity to optimize for DRAM row buffer hits. In the best case, we can
hide all but 4KB of the flush latency. Note that the correctness of this optimization is
ensured by never starting a DMA block before its flush has completed.

Cache line flush latency varies across ISAs and implementations. For example, we
characterized the flush throughput on the Zedboard’s Cortex A9 CPU to be one cache
line per 56 cycles at 667MHz. To achieve optimal pipelining and avoid bubbles, we want
to match the flush and DMA latencies of a 4KB transaction. On the Zedboard, this is
achieved with an accelerator clock frequency of 100MHz, which is why we use this fre-
quency for the rest of our experiments.

Breaking up a large flush and DMA operation introduces additional overheads. The
DMA engine must fetch new metadata from main memory for every block, andonly the

99

CPU must synchronize flushes with dependent DMA operations. For this, we add a fixed
40 cycle delay to every DMA transaction, also based on characterization. At 100MHz,
this accounts for metadata reads (4 cycles), the one-way latency of initiating DMA from
the CPU (17 cycles), and additional CPU cycles spent on housekeeping actions.

DMA-Triggered Computation

Even with pipelined DMA, the accelerator still must wait for the entire DMA transac-
tion to finish before it can start. To overcome this, we augment our accelerators with
full/empty-bits, which are often used in producer-consumer situations to indicate that
data is ready109. In our designs, we track data at cache line granularity to be consistent
with the preceding flush operations (which operate on cache lines). Full/empty bits are
stored in a separate SRAM structure and indexed by a slice of the load address. With
full/empty bits, the accelerator immediately begins computation without waiting for
DMA to complete until it reaches a load. A load accesses both the full/empty bit arrays
and the data arrays in parallel and returns the data if the full/empty bit is 1. If not, the
control logic stalls the datapath until the DMA engine eventually fills that data and sets
the full/empty bit. Note that double-buffering could be implemented in this scheme by
tracking the granularity of data transfer at half the array size instead of cache line size,
without any manual intervention. If an accelerator has multiple datapath lanes, other
lanes are free to proceed even while some are blocked.

5.4.3 DMA Evaluation

To quantify the performance improvements from each of the techniques described, we
start from the baseline design and cumulatively apply our DMA optimizations. From ex-
ecution traces, we break down the runtime into four parts based on how cycles are spent:
flush-only time, DMA/flush time, compute/DMA time, and compute-only time. Flush-
only and compute-only are self-explanatory; compute/DMA time includes all cycles when
compute and DMA are overlapped, while DMA/flush includes all cycles when DMA and
flush but not compute are running.

Increasing the parallelism of accelerator datapaths through additional datapath lanes
and memory partitioning is a widely used and effective way to achieve higher perfor-
mance at the cost of greater area and power. However, the presence of memory move-
ment imposes an upper bound on achieveable speedup, and our DMA optimizations will

100

ae
s-a

es

nw-n
w

gem
m

-n
cu

bed

fft
-tr

an
sp

os
e

st
en

cil
-st

en
cil

2d

st
en

cil
-st

en
cil

3d

m
d-k

nn

sp
m

v-
cr

s
0.0

0.2

0.4

0.6

0.8

1.0
E
x
e
cu

ti
o
n
 t

im
e

Baseline

Pipelined DMA

DMA-triggered compute

Flush-only

DMA/flush

Compute/DMA

Compute-only

(a) Performance improvements from each technique.

ae
s-a

es

nw-n
w

gem
m

-n
cu

bed

st
en

cil
-st

en
cil

2d

st
en

cil
-st

en
cil

3d

m
d-k

nn

fft
-tr

an
sp

os
e

sp
m

v-
cr

s
0.0

0.2

0.4

0.6

0.8

1.0

E
x
e
cu

ti
o
n
 t

im
e

1

2

4

8

16

Lanes:

Flush-only

DMA/flush

Compute/DMA

Compute-only

(b) Effect of parallelism on performance gains.

Figure 5.6: Cumulatively applying each technique reduces the additional cycles spent on DMA,
with some benchmarks seeing more benefit than others. After applying all techniques, increasing

parallelism through loop unrolling reduces compute cycles until near-complete overlap is
achieved, causing performance to saturate.

101

affect realized speedup as well. To understand how parallel an accelerator must be in or-
der to approach this upper bound, we take all the optimizations, sweep the parallelism of
the accelerator datapath, and analyze the speedups realized.

Performance gains from DMA optimizations

The performance improvements from each optimization are shown in 5.6a. For brevity,
we present only a subset of benchmarks whose DMA times spans the range shown in
Figure 5.2b. We fix the parallelism of all accelerators to four datapath lanes.

We immediately observe that in the baseline design, flush-only time is a significant
fraction of the total execution time. Pipelined DMA is thus shown to be effective, almost
completely eliminating flush-only time for all the benchmarks shown. This is because the
benefits of pipelined DMA are dependent only on the amount of data transferred and not
on the memory characteristics of the application.

DMA-triggered computation is able to improve performance even more, but its effec-
tiveness clearly varies across workloads. It is most effective when a benchmark exhibits
some level of streaming behavior. For example, stencil2d uses a 3x3 kernel and thus
requires only the first three rows of the input matrix to arrive before it can start compu-
tation, so ready bits recover a significant amount of performance. A similar logic applies
to md-knn – in fact, ready bits are so effective here that with just four datapath lanes,
we achieve 99% compute/DMA overlap. This is in contrast to fft-transpose, where
each unit of work requires eight loads strided across the entire input arrays. This is not a
streaming memory access pattern and so DMA-triggered compute is ineffective.

Impact of parallelism on DMA optimizations

The results of sweeping accelerator parallelism, while applying all the DMA optimiza-
tions, is shown in Figure 5.6b. This figure demonstrates two points.

First, with enough parallelism, on several workloads, the entire computation can be
overlapped with DMA. This means that without reducing flush or DMA time, no more
speedup is achievable. Benchmarks without this property either have little data to trans-
fer to begin with (aes) or are so serial that they don’t benefit from data parallelism in
the first place (nw).

Second, increased parallelism has no effect on the amount of compute-DMA overlap.
This is due to the serial data arrival effect: no matter how parallel a datapath is, DMA

102

will always copy data sequentially starting with the first byte, and until that critical first
byte of data arrives, no compute can start. As our DMA engine already fully utilizes the
available bus bandwidth, this data cannot arrive any faster, and therefore compute also
cannot be overlapped any more.

In conclusion, these sweeps show that memory movement, not compute, has become
a significant bottleneck, and accelerating computation only will quickly bring diminish-
ing returns. In fact, Figure 5.6b shows that for many benchmarks, we can achieve the
upper bound performance with relatively few datapath lanes! As a result, to continue
to get better performance, we must somehow further overlap computation with data by
overcoming the serial data arrival effect, motivating the study of fine-grained, on-demand
memory systems.

5.4.4 Cache-Based Accelerators

In a cache-based accelerator, one of the most important questions is how to handle vari-
able latency memory accesses in a statically scheduled datapath. The simplest way is
to stall the entire datapath until the miss resolves, but this significantly hurts perfor-
mance. Techniques such as multithreaded accelerators have been proposed in the CAD
community to hide cache miss latency114,85, but these require additional resources to
store thread contexts.

We choose a simpler cache miss handling scheme. Accelerators are typically designed
with multiple parallel lanes, When a cache miss happens in one of the lanes, only that
lane is stalled until the miss resolves. Other lanes are free to continue. We include MSHRs
to enable hit-under-miss and multiple outstanding misses. Any lane with a dependence
on a result from a blocked lane is also blocked via control logic mechanisms. This scheme
lets independent computation proceed while waiting for the missed data to be returned
without requiring storage for thread contexts. When lanes are finished executing, they
must wait and synchronize with all other lanes before the next iteration can begin.

Another important design choice is what data is cached. In our experiments, only data
that must be eventually shared with the rest of the system is sent through the cache,
and local scratchpads are used for private intermediate data. For example, nw uses an
internal score matrix to align DNA sequences. This matrix is kept in local scratchpads.

103

ae
s-a

es

nw-n
w

gem
m

-n
cu

bed

fft
-tr

an
sp

os
e

st
en

cil
-st

en
cil

2d

st
en

cil
-st

en
cil

3d

m
d-k

nn

sp
m

v-
cr

s
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

512B 2 KB 32 KB 8 KB 8 KB 64 KB 16 KB 16 KB

Lanes: 1

2

4

8

16

32

Bandwidth

Latency

Processing

Figure 5.7: Effect of datapath parallelism on cache-based accelerator performance.

5.4.5 Cache Evaluation

Next we analyze the impact of datapath parallelism on cache-based accelerator perfor-
mance. We decompose total execution time into processing time, latency time, and mem-
ory bandwidth time, using a similar technique as Burger et al.37. Each component is the
additional execution time after applying a realistic constraint to a memory system pa-
rameter. To briefly summarize:

1. Processing time: assume memory accesses are single-cycle and always hit.

2. Latency time: allow memory accesses to miss in the cache, but the system bus has
unlimited bandwidth to service cache fills.

3. Bandwidth time: constrain the system bus width to 32 bits, thus limiting the rate
at which cache fill requests can be serviced.

Impact of Datapath Parallelism

Figure 5.7 shows how the performance of cache-based accelerators scales with datap-
ath parallelism. In this set of experiments, we first sweep cache sizes to find the smallest

104

cache at which performance saturates for each benchmark. This is labeled at the top of
each group of bars. The datapath parallelism sweep is performed with this cache size per
benchmark.

Naturally, we observe that processing time decreases with increased parallelism, as
expected. However, parallelism also improves latency time, which is in contrast to the
DMA experiments where parallelism did not affect flush or DMA time. This is because
caches are a fine-grained pull-based memory system, and increased datapath parallelism
also increases memory-level parallelism (more memory accesses per cycle). Furthermore,
the fine granularity more effectively masks cache miss latency with computation, thereby
decreasing latency time.

On the other hand, more parallelism does not improve bandwidth time due to in-
creased memory bandwidth pressure. In fact, bandwidth time becomes a larger fraction
of total execution time as we go to increasingly parallel designs. For example, the perfor-
mance of spmv-crs and md-knn is eventually bottlenecked by bandwidth, even though
the increased memory level parallelism improves both processing and latency time. Ac-
celerators that are designed without consideration of the available memory bandwidth
in the SoC are likely to be over-designed, provisioning more functional units than can be
fed with data by the system.

5.5 Accelerator Design Choices

Thus far, we have discussed in detail how the performance of accelerated workloads
changes when connected to two different memory systems, scratchpad with DMA and
hardware-managed caches. However, it has been unclear when to select one over the
other. Performance is not the only goal as well; accelerator designers especially must
balance performance targets against power and energy constraints. It is also unclear how
differently one must think about designing accelerators when system-level effects such as
data movement and its mechanisms are considered. In this section, we shed light on the
DMA vs. cache question as well as illustrate that without consideration for data move-
ment, accelerator designers are highly to overprovision and underutilize their accelera-
tors.

105

0.00 0.01 0.02 0.03 0.04
Latency (ms)

0.0

0.5

1.0

1.5

2.0
P
o
w

e
r

(m
W

)
aes-aes

DMA

Cache

0.0 0.2 0.4 0.6 0.8
Latency (ms)

0

10

20

30

40

P
o
w

e
r

(m
W

)

nw-nw

DMA

Cache

0 2 4 6
Latency (ms)

0

20

40

60

80

100

P
o
w

e
r

(m
W

)

gemm-ncubed

DMA

Cache

0.0 0.5 1.0 1.5
Latency (ms)

0

5

10

P
o
w

e
r

(m
W

)

stencil-stencil2d

DMA

Cache

0.0 0.2 0.4 0.6 0.8 1.0
Latency (ms)

0

10

20

30

P
o
w

e
r

(m
W

)

stencil-stencil3d

DMA

Cache

0.0 0.1 0.2 0.3 0.4 0.5
Latency (ms)

0

20

40

60

80

100
P
o
w

e
r

(m
W

)
md-knn

DMA

Cache

0.0 0.1 0.2 0.3
Latency (ms)

0

2

4

6

8

10

P
o
w

e
r

(m
W

)

spmv-crs

DMA

Cache

0.00 0.05 0.10 0.15 0.20
Latency (ms)

0

20

40

60

P
o
w

e
r

(m
W

)

fft-transpose

DMA

Cache

Figure 5.8: Power-performance Pareto curves for DMA- and cache-based accelerators. EDP
optimal design points are shown as stars. Benchmarks are ordered left-to-right, top-down by

preference for a DMA-based vs. a cache-based memory system.

5.5.1 DMA vs. Caches

One of the earliest decisions a designer needs to make is decide whether private scratch-
pads with DMA or hardware-managed caches is a better fit for the application at hand.
In this experiment, we performed a comprehensive design space sweep for all the param-
eters listed in Figure 5.3 for all of the MachSuite benchmarks. We show the resulting
Pareto optimal design curves, distinguished by memory system type, in Figure 5.8. For
brevity, we show only eight benchmarks that span the range of design space character-
istics observed. The energy-delay-product (EDP) optimal design point for each memory
system is labeled with a star of the corresponding color. All DMA design points apply all
the optimizations discussed in Section 5.4.2.

This experiment shows that some benchmarks umambiguously prefer scratchpads with
DMA (on the left), some clearly are better with caches (on the right), and several work
equally well with either (in the middle). We will briefly discuss each benchmark’s behav-
ior in turn.

106

aes-aes and nw-nw These two benchmarks always both perform better and use less
power with DMA than with caches. They have have regular access patterns, and impor-
tantly, they require only a small amount of data before computation can be triggered.
In contrast, a cache-based memory system will first experience a TLB miss followed by
cache misses, causing significant performance slowdown.

gemm-ncubed This benchmark, unlike the previous two shows the cache design match-
ing its DMA counterpart in performance. However, due to the various overheads of caches
(tag lookups, TLB lookups, etc.), more power must be expended to reach this perfor-
mance.

stencil-stencil2d Although DMA can always outperform the cache system on this
benchmark, a cache-based design achieves comparable performance with lower power,
because the cache system captures enough locality to use a smaller cache, whereas the
scratchpad design must fit the entire data set into local memory.

stencil-stencil3d The 3D stencil kernel distinguishes itself from its 2D counterpart
because the cache system can outperform the optimized DMA system at the cost of ad-
ditional power. This is because the kernel’s three-dimensional memory access pattern
creates nonuniform stride lengths, which are gracefully handled by the on-demand nature
of a cache. In contrast, even the most optimized DMA design spends half of its execution
time waiting for DMA and flush operations. The cost of this performance is 2× to 3×
increased power.

md-knn md-knn is a compute intensive application. In this benchmark, there are 12 FP
multiplies per atom-to-atom interaction, so the power consumption of this benchmark is
dominated by functional units rather than memory. Also, the optimized DMA system is
able to fully overlap compute with data movement because full/empty bits are effective
in this benchmark. Figure 5.8 shows that the Pareto curves for cache and DMA designs
largely overlap, demonstrating that either memory system can be an acceptable choice.

spmv-crs On this benchmark, a cache system is able to outperform a DMA system
with lower power as well. This is due to the indirect memory accesses inherent to sparse
matrix multiply algorithms, where the first set of loads provide the memory addresses

107

for the next set that actually returns the data. Full/empty bits may not be effective on
this benchmark if the data pointed to by a matrix index has not yet arrived, since DMA
sends data sequentially, but a cache can fetch arbitrary memory locations. Caches thus
eliminate most of the idling time, leading to better performance. Lower power on caches
is achieved by being able to use a smaller cache than the scratchpads.

fft-transpose fft-transpose also performs better with caches than with DMA but
for slightly different reasons. There are no indirect memory accesses in this benchmark.
Instead, the parallel implementation of this benchmark possesses a stride length of 512
bytes, meaning that each loop iteration (aka datapath lane) reads only eight bytes per
512 bytes of data. As a result, even with full/empty bits, a DMA system must supply
nearly all of the data before the computation can begin, whereas this is not a problem
for the cache system. Again, lower power is achieved by a smaller cache than scratch-
pads.

5.5.2 Design Decision Comparison

In addition to deciding the type of memory system to use, accelerator designers must
also select several local parameters, such as the datapath parallelism and local memory
size and bandwidth. These parameters are central to performance and energy efficiency,
and in this section, we show that when system-level effects are considered, these parame-
ters can change considerably compared to when an accelerator is designed in isolation.

We consider the following design scenarios to illustrate the optimal designs of accelera-
tors are affected by system-level effects:

1. Baseline: design accelerators in isolation.

2. Co-designed DMA: use DMA to transport data over a 32-bit system bus.

3. Co-designed cache: use a hardware-managed cache for the accelerator’s local mem-
ory.

4. Co-designed cache with 64-bit bus: Same as above, but we double the width of the
system bus.

We focus our comparisons on three accelerator microarchitectural parameters: datap-
ath lanes, local SRAM size, and local memory bandwidth to datapath lanes. As before,
we select the EDP optimal points from each design scenario for comparison.

108

Parallelism
(32 Lanes)

SRAM
(512B)

Local BW
(4 Ports)

dma w/
32bit bus

cache w/
32bit bus

cache w/
64bit bus

aes-aes Parallelism
(4 Lanes)

SRAM
(34KB)

Local BW
(16 Ports)

nw-nw Parallelism
(32 Lanes)

SRAM
(49KB)

Local BW
(16 Ports)

gemm-ncubed Parallelism
(32 Lanes)

SRAM
(64KB)

Local BW
(16 Ports)

stencil-stencil2d

Parallelism
(16 Lanes)

SRAM
(128KB)

Local BW
(16 Ports)

stencil-stencil3d Parallelism
(32 Lanes)

SRAM
(45KB)

Local BW
(16 Ports)

md-knn Parallelism
(32 Lanes)

SRAM
(30KB)

Local BW
(16 Ports)

spmv-crs Parallelism
(32 Lanes)

SRAM
(21KB)

Local BW
(16 Ports)

dma w/
32bit bus

cache w/
32bit bus

cache w/
64bit bus

fft-transpose

Figure 5.9: Comparison of accelerator microarchitectural parameters across four design
scenarios. The vertices of the kiviat plots represent the number of datapath lanes, SRAM sizes,

and local memory bandwidth, normalized to the maximum across the four scenarios for each
benchmark.

Figure 5.9 shows the differences in these three dimensions in the aforementioned sce-
narios for each benchmark. Each set of four triangles represents the optimal designs of
an accelerator for a benchmark under the four scenarios. For visual clarity, only the first
and last groups include scenario legends. For each benchmark, we normalize each axis to
the maximum value across all scenarios, indicated in parentheses. The following subsec-
tions discuss the differences in designs.

Isolated vs Co-Designed Microarchitecture

It is immediately apparent that accelerators designed in isolation overprovision accelera-
tor resources. As Figure 5.9 shows, isolated designs tend to pick the largest design values
across all four scenarios. In isolation, this makes sense, but when system-level consider-
ations are accounted for, we find a more balanced design that provisions fewer computa-
tional resources.

This overdesign is most pronounced in local memory bandwidth and SRAM size for
cache-based designs. Isolated designs attempt to parallalize computation as much as

109

ae
s-a

es

nw-n
w

gem
m

-n
cu

bed

st
en

cil
2d

st
en

cil
3d

m
d-k

nn

sp
m

v-
cr

s

fft
-tr

an
sp

os
e

Geo
m

ea
n

0

1

2

3

4

5

6

7

8

E
D

P
 I
m

p
ro

v
e
m

e
n
t

(X
) DMA w/ 32bit bus

Cache w/ 32bit bus

Cache w/ 64bit bus

Figure 5.10: Energy delay product improvement of co-designed accelerators in different
scenarios compared to the isolated designs. The design parameters of each optimal design points

are illustrated in Figure 5.9.

possible, requiring high internal memory bandwidth, but in a more realistic environ-
ment, the need to move data from system to accelerator imposes a upper bound on per-
formance that makes internal memory-level parallelism less critical. For example, on
spmv-crs and md-knn, both DMA- and cache-based designs require much lower local
memory bandwidth than the isolated design. In addition, because caches have the fea-
ture of automatic data replacement, they can be sized smaller than scratchpads which
must hold all the data, resulting in energy improvements.

In general, caches tend to prefer more parallel datapaths than DMA, as shown in
md-knn and fft-transpose, since their fine-grained nature allows more parallel memory
accesses. In fact, gemm-ncubed an example where a co-designed cache-based accelerator
is more parallel than both the isolated design and a DMA-based one.

Impact of System Bus Bandwidth

As a proxy for system contention in loaded system, we vary system bus width to mod-
ulate the bus bandwidth available to accelerators. If we compare accelerators designed
with a 64-bit bus to those designed with a 32-bit bus (bottom two triangles in Figure 5.9),
we see that accelerators designed with lower bus bandwidth tend to be both less datap-

110

ath parallel (md-knn, spmv-crs) and provision less local memory bandwidth (nw, stencil2d,
and spmv-crs). These effects happen for the same reasons co-designed accelerators are
leaner than isolated accelerators.

EDP Improvement

Figure 5.10 shows the improvements in EDP when accelerators are co-designed, com-
pared to how an accelerator designed in isolation would behave under a more realistic
system. This is the same analysis as Figure 5.1, but applied to more benchmarks and
three different design scenarios. Overall, average EDP improves by 1.2×, 2.2×, and 2.0×
for accelerators with DMA, caches with 32-bit system bus, and caches with a 64-bit bus,
respectively.

The EDP improvements for co-designed cache-based accelerators is higher than that
for DMA-based accelerators because an overly aggressive design for a cache results in
large, highly multiported cache, and this is much more expensive to implement than a
partitioned scratchpad. Furthermore, we see that the improvements are greater when we
co-design with a 32-bit bus compared to a 64-bit bus. In other words, co-design is even
more important for contended systems than uncontended systems.

5.6 Related Work

There has been much prior work on integrating private local memories of accelerators
with CPUs and the rest of the system. We have discussed accelerator-system codesign,
caches, coherency, and virtual memory for accelerators, DMA optimizations, simulation
frameworks and prototyping platforms, and we will discuss how this work relates to and
differs from past work.

The explosion of interest in hardware accelerators has spurred a great deal of creativ-
ity in designing efficient circuits for specific workloads. However, a lot of this work fo-
cuses on how to optimize the computation performed, ignoring how the data the compu-
tation requires will arrive.

We observe that there are two classes of accelerated workloads for which optimiza-
tion of data movement from global memory to local memory is absolutely critical: big
data applications and near-data processing applications. Accelerators for memcached103,
database partitioning164, and those built with near-data CGRAs67 all contain specialized

111

interfaces codesigned with the system bus interface for efficient communicate with the
rest of the system, or are tightly coupled accelerators that rely on the existing general
purpose core for data, e.g., Convolution Engine129.

Caches, coherency, and virtual memory have been well studied in the GPU litera-
ture79,21,125,127,124. Only recently has there been movement in this field for more fixed
function, less programmable accelerators, such as IBM’s Coherent Accelerator Processor
Interface152, AXI Accelerator Coherency Port119, and the Intel HARP platform36. There
has also been some work on specialized coherence protocols for accelerators, such as Fu-
sion96, and hybrid memory models for heterogeneous platforms89. With access to global
memory spaces, protecting the SoC and accelerators from unsafe memory accesses has
also been investigated121. The IBM Cell BE architecture featured a hardware coherent
DMA engine, which addresses some of the issues we have raised42.

Finally, others have integrated accelerator models with gem5, such as gem5-gpu126

and PARADE53. PARADE is similar to gem5-Aladdin in that it enables simulation of
accelerated workloads with an SoC framework. However, it only models the traditional
DMA-based accelerators where all data must be copied to local scratchpads before com-
pute begins. In contrast, gem5-Aladdin is able to model a cache-based accelerator with
variable latency memory accesses as well as various optimizations on DMA to reduce idle
time. The DMA engine must fetch new metadata from main memory for every block,
and

112

“If your plan is for one year, plant grain. If your
plan is for ten years, plant trees. If your plan is
for one hundred years, educate children.”

Guan Zhong, Spring and Autumn Period.

6
Conclusions and Future Directions

Specialized architectures have been a growing topic in both academic research and com-
mercial development for the past decade. As traditional technology scaling slows, spe-
cialization becomes a viable solution for computer architects to continue performance
growth and energy efficiency improvements without relying on technological advances.

This dissertation is one of the first efforts in the computer architecture community to
abstract the traditional, RTL-based design methodology into the architectural level. We
address three key issues that arise in design and modeling for specialized architectures.
First, we developed an ISA-independent workload characterization methodology to char-
acterize workload intrinsic characteristics, without the artifacts from micro-architecture
and ISA features. Second, the lack of simulation infrastructures in accelerator design
motivated us to the development of Aladdin, a pre-RTL, power, performance, and area
simulator for accelerators. We rigorously validated Aladdin against RTL implementa-
tions and showed that Aladdin can accurately model accelerator power, performance and
area compared to accelerator designs generated by traditional RTL flows. In addition,
Aladdin provides these estimates over 100× faster. Third, we integrated Aladdin with
the gem5 system simulator so that the integrated framework is able to capture dynamic
interactions between accelerators and the SoC platform, enabling new architectural re-
search directions in future heterogeneous systems.

Today’s mobile SoCs provide a starting point for thinking about future architectures,

113

but many challenges must be addressed to make specialization more pervasive and cost-
effective. New architectures, design tools, and programming paradigms will be required
to make this approach pervasive. The approaches described in this dissertation demon-
strate some initial steps towards design and modeling specialized architecture at the ar-
chitectural level. A number of challenges remain to be addressed in future work. Here we
highlight three major challenges in the field of specialized architectures as our commu-
nity moves forward:

1. Flexibility. Specialized accelerators, especially fixed-function accelerators, are de-
signed only for specific applications or domains of applications. How should we
choose a combination of different accelerable kernels to achieve a good balance
between application coverage and energy efficiency? Composing accelerators and
general-purpose cores can address this issue if we can understand the common ker-
nels across a group of applications and identify efficient communication channels to
chain these kernels so that they can work together to achieve greater functionality.

2. Design Cost. The increasing volume and diversity of accelerators in every gener-
ation of processors requires rolling out new designs quickly with relatively low
design cost. RTL-based implementations through standard flows are inherently
tedious and time-consuming. High-level synthesis tools have shown promise to
speedup the design process. However, existing tools still face challenges to gen-
erate high-quality designs within reasonable time. How can we rapidly create and
validate new accelerators with good quality of design? To achieve this, we must de-
velop new program representations, compilation heuristics, and algorithms that
can aid high-level synthesis tools to quickly generate high-quality designs. Domain-
specific high-level synthesis approaches also are a promising direction.

3. Programmability. Programming modern high-performance SoC is similar to the
state of GPGPU programming before the introduction of language extensions
such as CUDA and OpenCL. Prior to the introduction of those languages, lever-
aging GPUs for general-purpose computing was possible only for experienced high-
performance computing or game programmers. Similarly, the sophisticated fea-
tures of today’s SoCs are encapsulated in high-level library interfaces written by
embedded-system programmers with detailed knowledge of the underlying SoC ar-
chitecture. However, each generation of SoC requires a new software engineering

114

effort due to the development of new accelerators, local and shared memories, and
communication interfaces. As we build more accelerators in future SoCs, we need
to answer what kinds of programming interfaces can we give to programmers and
what architectural improvements can make programming easier. Therefore, there
needs to be a conjoined effort at both the hardware and software layers to identify
what information should be communicated across layers and how we can design
hardware better to improve its programmability.

115

References

[1] Altera SDK for OpenCL. http://www.altera.com/products/software/opencl/
opencl-index.html.

[2] Are 28nm Transistors the Cheapest...Forever? https://www.semiwiki.com/
forum/content/2768-28nm-transistors-cheapest-forever.html.

[3] Avago Agrees to Buy Broadcom for $37 Billion. http://www.wsj.com/articles/
avago-to-buy-broadcom-for-37-billion-1432811311.

[4] Chipworks Disassembles Apple’s A8 SoC: GX6450, 4MB L3 Cache & More. http:
//www.anandtech.com/show/8562/chipworks-a8.

[5] Coherent Accelerator Processor Interface (CAPI) for POWER8 Systems. IBM
White Paper, September 2014.

[6] GCC4CLI. http://gcc.gnu.org/projects/cli.html.

[7] IBM Dumps Chip Unit and Pays GlobalFoundries $1.5 billion to Take
the Business off its Hands. http://www.extremetech.com/computing/
192430-ibm-dumps-chip-unit-pays-globalfoundries-1-5-billion-to-take-the-business-off-its-hands.

[8] Intel Completes Acquisition of Altera. https://newsroom.intel.com/
news-releases/intel-completes-acquisition-of-altera/.

[9] Intel Historical Development Cadence. http://www.anandtech.com/show/9447/
intel-10nm-and-kaby-lake.

[10] Intel’s CEO Brian Krzanich on Q2 2015 Earn-
ings Call. http://seekingalpha.com/article/
3329035-intels-intc-ceo-brian-krzanich-on-q2-2015-results-earnings-call-transcript.

[11] Intel® 64 and IA-32 Architectures Software Developer’s Man-
ual. http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

116

http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html
https://www.semiwiki.com/forum/content/2768-28nm-transistors-cheapest-forever.html
https://www.semiwiki.com/forum/content/2768-28nm-transistors-cheapest-forever.html
http://www.wsj.com/articles/avago-to-buy-broadcom-for-37-billion-1432811311
http://www.wsj.com/articles/avago-to-buy-broadcom-for-37-billion-1432811311
http://www.anandtech.com/show/8562/chipworks-a8
http://www.anandtech.com/show/8562/chipworks-a8
http://gcc.gnu.org/projects/cli.html
http://www.extremetech.com/computing/192430-ibm-dumps-chip-unit-pays-globalfoundries-1-5-billion-to-take-the-business-off-its-hands
http://www.extremetech.com/computing/192430-ibm-dumps-chip-unit-pays-globalfoundries-1-5-billion-to-take-the-business-off-its-hands
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
http://www.anandtech.com/show/9447/intel-10nm-and-kaby-lake
http://www.anandtech.com/show/9447/intel-10nm-and-kaby-lake
http://seekingalpha.com/article/3329035-intels-intc-ceo-brian-krzanich-on-q2-2015-results-earnings-call-transcript
http://seekingalpha.com/article/3329035-intels-intc-ceo-brian-krzanich-on-q2-2015-results-earnings-call-transcript
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

[12] LLVM assembly language reference manual, bitcode documentation. http://llvm.
org/docs/LangRef.html.

[13] MathWorks HDL Coder. http://www.mathworks.com/products/hdl-coder/.

[14] Mckinsey on semiconductors: Moore’s law: Repeal or renewal?

[15] Oracle’s SPARC T4 Server Architecture. Oracle White Paper, June 2012.

[16] RISC-V Rocket Core. https://github.com/ucb-bar/rocket.

[17] Scala Programming Language. http://www.scala-lang.org/.

[18] The International Technology Roadmap for Semiconductors (ITRS). http://www.
itrs.net/.

[19] TI OMAP Applications Processors. http://www.ti.com/product/omap5432.

[20] Xilinx Vivado High-Level Synthesis. http://www.xilinx.com/products/
design-tools/vivado/.

[21] AMD. Compute Cores. www.amd.com/computecores, 2014.

[22] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint com-
puter conference, pages 483–485. ACM, 1967.

[23] Wolfgang Arden, Michel Brillouët, Patrick Cogez, Mart Graef, Bert Huizing, and
Reinhard Mahnkopf. More than moore white paper. 2:14, 2010.

[24] Joshua Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng, Stephen J. Fink,
Rodric Rabbah, and Sunil Shukla. A compiler and runtime for heterogeneous com-
puting. In Proceedings of the 49th Annual Design Automation Conference, 2012.

[25] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. Lime: A
java-compatible and synthesizable language for heterogeneous architectures. In
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications. ACM, 2010.

[26] Todd M. Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for
computer system modeling. IEEE Computer, 2002.

117

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://www.mathworks.com/products/hdl-coder/
https://github.com/ucb-bar/rocket
http://www.scala-lang.org/
http://www.itrs.net/
http://www.itrs.net/
http://www.ti.com/product/omap5432
http://www.xilinx.com/products/design-tools/vivado/
http://www.xilinx.com/products/design-tools/vivado/
www.amd.com/computecores

[27] Todd M. Austin and Gurindar S. Sohi. Dynamic dependency analysis of ordinary
programs. In ISCA, 1992.

[28] J. Bachrach, Huy Vo, B. Richards, Yunsup Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic. Chisel: Constructing hardware in a scala
embedded language. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, 2012.

[29] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. Analyzing cuda workloads using a detailed gpu simulator. In ISPASS,
2009.

[30] Bilel Belhadj, Antoine Joubert, Zheng Li, Rodolphe Héliot, and Olivier Temam.
Continuous real-world inputs can open up alternative accelerator designs. In ISCA,
2013.

[31] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and Compilation
Techniques, 2008.

[32] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH Computer
Architecture News, 2011.

[33] B. Blaner, B. Abali, B.M. Bass, S. Chari, R. Kalla, S. Kunkel, K. Lauricella,
R. Leavens, J.J. Reilly, and P.A. Sandon. IBM POWER7+ processor on-chip
accelerators for cryptography and active memory expansion. IBM Journal of Re-
search and Development, 2013.

[34] Mark Bohr. A 30 year retrospective on dennard’s mosfet scaling paper. Solid-State
Circuits Society Newsletter, IEEE, 2007.

[35] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA, 2000.

118

[36] Diane Bryant. Disrupting the data center to create the digital services economy.
Intel Announcement, 2014.

[37] Doug Burger, James R. Goodman, and Alain Kagi. Memory bandwidth limitations
of future microprocessors. In ISCA, 1996.

[38] Simone Campanoni, Giovanni Agosta, Stefano Crespi-Reghizzi, and Andrea Di Bi-
agio. A highly flexible, parallel virtual machine: Design and experience of ildjit.
Software Practice Expererience, 2010.

[39] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: exploring the
level of abstraction for scalable and accurate parallel multi-core simulation. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, page 52. ACM, 2011.

[40] Jared Casper and Kunle Olukotun. Hardware acceleration of database operations.
In FPGA, 2014.

[41] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, 2009.

[42] T. Chen, R. Raghavan, J.N. Dale, and E. Iwata. Cell broadband engine architec-
ture and its first implementation - a performance view. In IBM Journal of Re-
search and Development, 2007.

[43] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. In ASPLOS, 2014.

[44] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Teman. Dadiannao: A
machine-learning supercomputer. In MICRO, 2014.

[45] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. In IEEE International Solid-State Circuits Conference, ISSCC 2016,
Digest of Technical Papers, pages 262–263, 2016.

119

[46] Andrew A Chien. 10x10 must replace 90/10. In Proceedings of the Salishan Con-
ference on High Performance Computing, 2010.

[47] Andrew A. Chien, Dilip Vasudevan, Tung Thanh Hoang, Yuanwei Fang, and Ami-
rali Shambayati. 10x10: A case study in federated heterogeneous architecture.
IEEE Micro, 2015.

[48] Eric S. Chung, John D. Davis, and Jaewon Lee. Linqits: big data on little clients.
ISCA, 2013.

[49] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-chip hetero-
geneous computing: Does the future include custom logic, fpgas, and gpgpus? In
MICRO, 2010.

[50] Nathan Clark, Amir Hormati, and Scott A. Mahlke. VEAL: Virtualized Execution
Accelerator for Loops. In ISCA, 2008.

[51] J. Cong, M.A. Ghodrat, M. Gill, B. Grigorian, Hui Huang, and G. Reinman. Com-
posable accelerator-rich microprocessor enhanced for adaptivity and longevity. In
ISLPED, 2013.

[52] Jason Cong, Yiping Fan, Guoling Han, and Zhiru Zhang. Application-specific in-
struction generation for configurable processor architectures. In FPGA, 2004.

[53] Jason Cong, Zhenman Fang, Michael Gill, and Glenn Reinman. Parade: A cycle-
accurate full-system simulation platform for accelerator-rich architectural design
and exploration. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pages 380–387. IEEE Press, 2015.

[54] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn
Reinman. Charm: a composable heterogeneous accelerator-rich microprocessor. In
ISLPED, 2012.

[55] Jason Cong, Karthik Gururaj, and Guoling Han. Synthesis of reconfigurable high-
performance multicore systems. In FPGA, 2009.

[56] Katherine Coons, Warren Hunt, Bertrand A. Maher, Doug Burger, and Kathryn S.
McKinley. Optimal huffman tree-height reduction for instruction-level parallelism.

120

Technical Report TR-08-34, Department of Computer Sciences, The University of
Texas at Austin, 2008.

[57] Paolo D’Alberto, Peter A. Milder, Aliaksei Sandryhaila, Franz Franchetti,
James C. Hoe, José M. F. Moura, Markus Püschel, and Jeremy Johnson. Gener-
ating fpga accelerated DFT libraries. In IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2007.

[58] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable hetero-
geneous computing (shoc) benchmark suite. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, 2010.

[59] Andrew Danowitz, Kyle Kelley, James Mao, John P Stevenson, and Mark
Horowitz. Cpu db: recording microprocessor history. Communications of the ACM,
2012.

[60] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest
Bassous, and Andre R. LeBlanc. Design of ion-implanted mosfet’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 1974.

[61] Lieven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. Quantifying the
impact of input data sets on program behavior and its applications. Journal of
Instruction-Level Parallelism, 2003.

[62] Eldridge, Schuyler and Appavoo, Jonathan and Joshi, Ajay and Waterland, Amos
and Seltzer, Margo. Towards General-Purpose Neural Network Computing. In
PACT, 2015.

[63] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. Micro, IEEE, 2012.

[64] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings of
the 38th Annual International Symposium on Computer Architecture, 2011.

[65] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural acceler-
ation for general-purpose approximate programs. In MICRO, 2012.

121

[66] Carlos Flores Fajardo, Zhen Fang, Ravi Iyer, German Fabila Garcia, Seung Eun
Lee, and Li Zhao. Buffer-integrated-cache: a cost-effective sram architecture for
handheld and embedded platforms. In DAC, 2011.

[67] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Sung Kim.
Nda: Near-dram acceleration architecture leveraging commodity dram devices and
standard memory modules. In High Performance Computer Architecture (HPCA),
2015.

[68] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. In Symposium on Programming, 1984.

[69] Brian A. Fields, Rastislav Bodík, and Mark D. Hill. Slack: Maximizing perfor-
mance under technological constraints. In ISCA, 2002.

[70] Michael Fingeroff. High-Level Synthesis Blue Book. 2010.

[71] Karthik Ganesan, Lizy John, Valentina Salapura, and James Sexton. A perfor-
mance counter based workload characterization on Blue Gene/P. In International
Conference on Parallel Processing, 2008.

[72] Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and Michael Bedford
Taylor. Kremlin: rethinking and rebooting gprof for the multicore age. In PLDI,
2011.

[73] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J Brown,
Arvind K Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo Ienne. Hardware
system synthesis from domain-specific languages. In Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on, 2014.

[74] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dy-
namically specialized datapaths for energy efficient computing. In HPCA, 2011.

[75] Venkatraman Govindaraju, Tony Nowatzki, and Karthikeyan Sankaralingam.
Breaking simd shackles with an exposed flexible microarchitecture and the access
execute pdg. In PACT, 2013.

[76] Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and David August.
Bundled execution of recurring traces for energy-efficient general purpose process-
ing. In MICRO, 2011.

122

[77] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor Mudge,
Chander Sudanthi, Christopher D. Emmons, Mitchell Hayenga, and Nigel Paver.
Sources of Error in Full-System Simulation. In International Symposium on Per-
formance Analysis of Systems and Software, 2014.

[78] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.
Understanding sources of inefficiency in general-purpose chips. In ISCA, 2010.

[79] Mark Harris. Unified memory in cuda 6, 2013.

[80] A. Hartstein and Thomas R. Puzak. Optimum power/performance pipeline depth.
In MICRO, 2003.

[81] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy
Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Dark-
room: Compiling high-level image processing code into hardware pipelines. In SIG-
GRAPH, 2014.

[82] Kenneth Hoste and Lieven Eeckhout. Comparing benchmarks using key
microarchitecture-independent characteristics. In International Symposium on
Workload Characterization, 2006.

[83] MS Hrishikesh, Doug Burger, Stephen W Keckler, Premkishore Shivakumar, Nor-
man P Jouppi, and Keith I Farkas. The optimal logic depth per pipeline stage is 6
to 8 fo4 inverter delays. In ISCA, page 0014, 2002.

[84] Hillery C. Hunter and Wen mei W. Hwu. Code coverage and input variability:
effects on architecture and compiler research. In CASES, 2002.

[85] Jens Huthmann, Julian Oppermann, and Andreas Koch. Automatic high-level
synthesis of multi-threaded hardware accelerators. In Field Programmable Logic
and Applications (FPL), 2014 24th International Conference on, pages 1–4. IEEE,
2014.

[86] Tensilica Inc. How to minimize energy consumption while maximizing asic and soc
performance.

123

[87] Donghwan Jeon, Saturnino Garcia, Christopher M. Louie, and Michael Bedford
Taylor. Kismet: parallel speedup estimates for serial programs. In OOPSLA, 2011.

[88] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale com-
puter. In International Symposium on Computer Architecture (ISCA), 2015.

[89] John H Kelm, Daniel R Johnson, William Tuohy, Steven S Lumetta, and Sanjay J
Patel. Cohesion: a hybrid memory model for accelerators. In International Sympo-
sium on Computer Architecture, 2010.

[90] R.E. Kessler. The Cavium 32 Core OCTEON II 68xx. Hop Chips, 2011.

[91] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. Sd3: A scalable approach to
dynamic data-dependence profiling. In MICRO, 2010.

[92] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor commu-
nication network: Built for speed. In IEEE Micro, 2006.

[93] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou, Christos
Kozyrakis, and Kunle Olukotun. Automatic Generation of Efficient Accelerators for
Reconfigurable Hardware. In ISCA, 2016.

[94] Anil Krishna, Timothy Heil, Nicholas Lindberg, Farnaz Toussi, and Steven Van-
derWiel. Hardware acceleration in the ibm poweren processor: Architecture and
performance. In Proceedings of the 21st International Conference on Parallel Ar-
chitectures and Compilation Techniques, 2012.

[95] Manoj Kumar. Measuring parallelism in computation-intensive scien-
tific/engineering applications. IEEE Trans. Computers, 1988.

[96] Snehasish Kumar, Arrvindh Shriraman, and Naveen Vedula. Fusion: Design trade-
offs in coherent cache hierarchies for accelerators. In Proceedings of the 42Nd An-
nual International Symposium on Computer Architecture, ISCA ’15, 2015.

[97] Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism. In
ISCA, 1992.

[98] Maysam Lavasani, Hari Angepat, and Derek Chiou. An fpga-based in-line accelera-
tor for memcached. IEEE Computer Architecture Letters, 2013.

124

[99] Hsien-Hsin S. Lee, Mikhail Smelyanskiy, Chris J. Newburn, and Gary S. Tyson.
Stack value file: custom microarchitecture for the stack. In International Sympo-
sium on High Performance Computer Architecture, 2001.

[100] Yusup Lee, Andrew Waterman, Rimas Avizienis, henry Cook, Chen Sun, Vladimir
Stojanov, and Krste Asanovic. A 45nm 1.3ghz 16.7 double-precision gflops/w risc-v
processor with vector accelerators. In ESSCIRC, 2014.

[101] Jingwen Leng, Tayler H. Hetherington, Ahmed ElTantawy, Syed Zohaib Gilani,
Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. Gpuwattch: enabling
energy optimizations in gpgpus. In ISCA, 2013.

[102] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO, 2009.

[103] Kevin T. Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and
Thomas F. Wenisch. Thin servers with smart pipes: designing soc accelerators
for memcached. In ISCA, 2013.

[104] Hung-Yi Liu and Luca P. Carloni. On learning-based methods for design-space
exploration with high-level synthesis. In DAC, 2013.

[105] Derek Lockhart, Gary Zibrat, and Christopher Batten. Pymtl: A unified frame-
work for vertically integrated computer architecture research. In 47th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Dec 2014.

[106] Shan Lu, Pin Zhou, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. Pathexpander:
Architectural support for increasing the path coverage of dynamic bug detection.
In MICRO, 2006.

[107] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. PLDI, 2005.

[108] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In PLDI, 2005.

125

[109] Daniel Lustig and Margaret Martonosi. Reducing gpu offload latency via fine-
grained cpu-gpu synchronization. In High Performance Computer Architecture
(HPCA), 2013.

[110] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. The accel-
erator store: A shared memory framework for accelerator-based systems. TACO,
2012.

[111] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor.
ASIC Clouds: Specializing the Datacenter. In ISCA, 2016.

[112] Howard Mao, Sagar Karandikar, Albert Ou, and Soumya Basu. Hardware accelera-
tion of key-value stores. UC Berkeley CS262a Report, 2014.

[113] Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. Computer
generation of hardware for linear digital signal processing transforms. ACM Trans-
actions on Design Automation of Electronic Systems, 2012.

[114] Mingxing Tan and Bin Liu and Steve Dai and Zhiru Zhang. Multithreaded
Pipeline Synthesis for Data-Parallel Kernels. In International Conference on Com-
puter Aided Design (ICCAD, 2014.

[115] Gordon E Moore. Cramming more components onto integrated circuits. Electronics
Magazine, 1965.

[116] Gordon E. Moore. No exponential is forever: but ”forever” can be delayed! In
IEEE International Solid-State Circuits Conference, 2003.

[117] Thierry Moreau, Mark Wyse, jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh,
Luis Ceze, and Mark Oskin. SNNAP: Approximate computing on programmable
socs via neural acceleration. In HPCA, 2015.

[118] José M. F. Moura, Jeremy Johnson, Robert W. Johnson, David Padua, Viktor K.
Prasanna, Markus Püschel, Bryan Singer, Manuela Veloso, and Jianxin Xiong.
Generating platform-adapted DSP libraries using SPIRAL. In High Performance
Embedded Computing (HPEC), 2001.

[119] Stephen Neuendorffer and Fernando Martinez-Vallina. Building zynq® accelerators
with vivado® high level synthesis. In FPGA, 2013.

126

[120] Rishiyur S. Nikhil. Abstraction in hardware system design. ACM Queue, 2011.

[121] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood. Border control:
Sandboxing accelerators. In Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48, 2015.

[122] Albert Ou, Quan Nguyen, Yunsup Lee, and Krste Asanovic. A case for mvps:
Mixed-precision vector processors. In ISCA Parallelism in Mobile Platforms Work-
shop, 2014.

[123] A. Papakonstantinou, K. Gururaj, J.A. Stratton, Deming Chen, J. Cong, and W.-
M.W. Hwu. Fcuda: Enabling efficient compilation of cuda kernels onto fpgas. In
Application Specific Processors, 2009. SASP ’09. IEEE 7th Symposium on, 2009.

[124] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Architectural support for
address translation on gpus. ACM SIGPLAN Notices, 49(4):743–758, 2014.

[125] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M Beckmann,
Mark D Hill, Steven K Reinhardt, and David A Wood. Heterogeneous system
coherence for integrated cpu-gpu systems. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 457–467. ACM,
2013.

[126] Jason Power, Joel Hestness, Marc Orr, Mark Hill, and David Wood. gem5-gpu: A
heterogeneous cpu-gpu simulator. Computer Architecture Letters, 2014.

[127] Jonathan Power, Mark D Hill, and David A Wood. Supporting x86-64 address
translation for 100s of gpu lanes. In High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on, pages 568–578. IEEE,
2014.

[128] A. Putnam, A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G.P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith,
J. Thong, P.Y. Xiao, and D. Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. In Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on, 2014.

127

[129] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos
Kozyrakis, and Mark A. Horowitz. Convolution engine: balancing efficiency &
flexibility in specialized computing. In ISCA, 2013.

[130] Lawrence Rauchwerger, Pradeep K. Dubey, and Ravi Nair. Measuring limits of
parallelism and characterizing its vulnerability to resource constraints. In MICRO,
1993.

[131] B. Reagen, R. Adolf, Y.S. Shao, Gu-Yeon Wei, and D. Brooks. MachSuite: Bench-
marks for accelerator design and customized architectures. In Workload Character-
ization (IISWC), 2014 IEEE International Symposium on, 2014.

[132] Brandon Reagen, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. Quanti-
fying Acceleration: Power/Performance Trade-Offs of Application Kernels in Hard-
ware. In ISLPED, 2013.

[133] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, Jose Miguel Hernandez-Lobato, Gu-Yeon Wei, and David Brooks.
Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelera-
tors. In ISCA, 2016.

[134] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle accu-
rate memory system simulator. IEEE Computer Architecture Letters, 2011.

[135] Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Saturnino Garcia,
Steven Swanson, and Michael Bedford Taylor. Efficient complex operators for ir-
regular codes. In HPCA, 2011.

[136] Richard Sampson, Ming Yang, Siyuan Wei, Chaitali Chakrabarti, and Thomas F.
Wenisch. Sonic millip3de: A massively parallel 3d-stacked accelerator for 3d ultra-
sound. In HPCA, 2013.

[137] Bob Schaller. The origin, nature, and implications of moore’s law. 2014.

[138] Tingting Sha, Milo M. K. Martin, and Amir Roth. Nosq: Store-load communica-
tion without a store queue. In In MICRO, pages 285–296, 2006.

128

[139] Ofer Shacham, Megan Wachs, Andrew Danowitz, Sameh Galal, John Brunhaver,
Wajahat Qadeer, Sabarish Sankaranarayanan, Artem Vassiliev, Stephen Richard-
son, and Mark Horowitz. Avoiding game over: Bringing design to the next level. In
Proceedings of the 49th Annual Design Automation Conference, 2012.

[140] Claude Shannon. A mathematical theory of communication. Bell System Technical
Journal, 1948.

[141] Yakun Sophia Shao and David Brooks. Energy characterization and instruction-
level energy model of Intel’s Xeon Phi processor. In Proceedings of the 2013 Inter-
national Symposium on Low Power Electronics and Design, 2013.

[142] Yakun Sophia Shao and David Brooks. ISA-Independent Workload Characteriza-
tion and its Implications for Specialized Architectures. In ISPASS, 2013.

[143] Yakun Sophia Shao and David Brooks. Research Infrastructures for Hardware
Accelerators. Synthesis Lectures on Computer Architecture, 10(4):1–99, 2015.

[144] Yakun Sophia Shao, Judson Porter, Michael Lyons, Gu-Yeon Wei, and David
Brooks. Power, Performance and Portability: System Design Considerations for
Micro Air Vehicle Applications. In Advanced Computer Architecture and Compila-
tion for Embedded Systems (ACACES), 2010.

[145] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin:
A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design
Space Exploration of Customized Architectures. In ISCA, 2014.

[146] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. The Al-
addin Approach to Accelerator Design and Modeling. In IEEE Micro, 2015.

[147] Yakun Sophia Shao, Sam Xi, Viji Srinivasan, Gu-Yeon Wei, and David Brooks.
Toward Cache-Friendly Hardware Accelerators. In Sensors and Cloud Architectures
Workshop (HPCA), 2015.

[148] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automati-
cally characterizing large scale program behavior. In ASPLOS, 2002.

129

[149] Alex Solomatnikov, Amin Firoozshahian, Ofer Shacham, Zain Asgar, Megan
Wachs, Wajahat Qadeer, Stephen Richardson, and Mark Horowitz. Using a con-
figurable processor generator for computer architecture prototyping. In MICRO,
2009.

[150] Viji Srinivasan, David Brooks, Michael Gschwind, Pradip Bose, Victor Zyuban,
Philip N Strenski, and Philip G Emma. Optimizing pipelines for power and per-
formance. In Proceedings of the International Symposium on Microarchitecture
(MICRO), pages 333–344, 2002.

[151] John A. Stratton, Christopher Rodrigrues, I-Jui Sung, Nady Obeid, Liwen Chang,
Geng Liu, and Wen-Mei W. Hwu. Parboil: A revised benchmark suite for scientific
and commercial throughput computing. 2012.

[152] Jeff Stuecheli. Power8 Processor. In HotChips, 2013.

[153] Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan Chafi,
Michael Wu, Anand Atreya, Martin Odersky, and Kunle Olukotun. Optiml: an
implicitly parallel domain-specific language for machine learning. In Proceedings of
the 28th International Conference on Machine Learning (ICML-11), 2011.

[154] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. Delite: A compiler architecture for
performance-oriented embedded domain-specific languages. ACM Transactions
on Embedded Computing Systems (TECS), 2014.

[155] Olivier Temam. A defect-tolerant accelerator for emerging high-performance appli-
cations. In ISCA, 2012.

[156] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. On the limits of pro-
gram parallelism and its smoothability. In MICRO, 1992.

[157] Marc A Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, and Stephen R Quake.
Monolithic microfabricated valves and pumps by multilayer soft lithography. Sci-
ence, 288(5463):113–116, 2000.

[158] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christo-
pher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. Sd-vbs:
The san diego vision benchmark suite. IISWC, 2009.

130

[159] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Con-
servation cores: reducing the energy of mature computations. ASPLOS, 2010.

[160] Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota
Venkata, Michael Bedford Taylor, and Steven Swanson. Qscores: trading dark
silicon for scalable energy efficiency with quasi-specific cores. In MICRO, 2011.

[161] Huy Vo, Yunsup Lee, Andrew Waterman, and krste Asanovic. A case for os-
friendly hardware accelerators. In ISCA Interaction Between Operating System
and Computer Architecture Workshop, 2013.

[162] David W. Wall. Limits of instruction-level parallelism. In ASPLOS, 1991.

[163] Steven J. E. Wilton and Norman P. Jouppi. Cacti: An enhanced cache access and
cycle time model. IEEE Journal of Solid-State Circuits, 1996.

[164] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. Navigating
big data with high-throughput, energy-efficient data partitioning. In ISCA, 2013.

[165] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A.
Ross. Q100: The architecture and design of a database processing unit. In ASP-
LOS, 2014.

[166] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-Yeon Wei, and David Brooks.
Quantifying sources of error in mcpat and potential impacts on architectural stud-
ies. In High Performance Computer Architecture (HPCA), 2015 IEEE 21st Inter-
national Symposium on, pages 577–589. IEEE, 2015.

[167] Yakun Sophia Shao and Sam Likun Xi and Vijayalakshmi Srinivasan and Gu-Yeon
Wei and David Brooks. Co-Designing Accelerators and SoC Interfaces using gem5-
Aladdin. In MICRO, 2016.

[168] Praveen Yedlapalli, Nachiappan Chidambaram Nachiappan, Niranjan Soundarara-
jan, Anand Sivasubramaniam, Mahmut T Kandemir, and Chita R Das. Short-
circuiting memory traffic in handheld platforms. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 166–177, 2014.

131

[169] Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware techniques to
enhance signatures. In International Symposium on Microarchitecture, 2008.

[170] Takashi Yokota, Kanemitsu Ootsu, and Takanobu Baba. Introducing entropies for
representing program behavior and branch predictor performance. In Workshop on
Experimental Computer Science, 2007.

[171] Kun Yuan, Jae-Seok Yang, and David Z Pan. Double patterning layout decompo-
sition for simultaneous conflict and stitch minimization. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 29(2):185–196, 2010.

[172] Ning Zhang and Bob Brodersen. The cost of flexibility in systems on a chip design
for signal processing applications. University of California, Berkeley, Tech. Rep,
2002.

[173] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. Hoe, L. Pileggi, and F. Franchetti. A
3d-stacked logic-in-memory accelerator for application-specific data intensive com-
puting. In Proceedings of IEEE International 3D Systems Integration Conference
(3DIC), 2013.

132

	Title Page
	Copyright
	Abstract
	Table of Contents
	List of Figures
	Previous Work
	Acknowledgements
	Dedication
	Introduction
	What is an accelerator?
	A tale of two scalings
	Moore scaling
	Dennard scaling

	The combination of Moore and Dennard scaling
	Moore + Dennard—where we were
	Moore Scaling only—where we are
	Dennard only—where we are unlikely to be
	A future without scaling: ``The winter of despair''

	To live without scaling: ``A spring of hope''
	Why not architectural scaling?
	Specialization makes a difference

	Challenges in Specialized Architecture Design
	Thesis Contributions
	Accelerator Workload Characterization (Chapter 3).
	Accelerator Pre-RTL Modeling (Chapter 4).
	Accelerator-System Co-Design (Chapter 5).

	Thesis Organization

	Background and Related Work
	Accelerator taxonomy
	Accelerators that are part of the pipeline.
	Accelerators that are attached to cache
	Accelerators that are attached to the memory bus
	Accelerators that are attached to the I/O bus

	Standard RTL Design Flow
	High-Level Synthesis
	Putting it Together

	WIICA: ISA-Independent Workload Characterization for Accelerators
	Introduction
	Motivation
	Stack Overhead.
	Complex Operations.
	Calling Convention.

	Methodology and background
	Compiler's IR.
	ISA-Dependent.
	Sampling.
	Benchmark Suite.

	Wordload Characteristics Analysis
	Compute
	Memory
	Control

	Putting it all together

	Aladdin: Pre-RTL, Power-Performance-Area Accelerator Modeling
	Introduction
	Background and Motivation
	Accelerator Design Flow
	Accelerator Design Space
	State-of-the-art Accelerator Research Infrastructure
	Contributions

	The Aladdin Framework
	Modeling Methodology
	Optimization Phase
	Realization Phase
	Integration with Memory System
	Limitations

	Aladdin Validation
	Validation Flow
	Applications
	Validation
	Algorithm-to-Solution Time

	Case Study: GEMM Design Space
	Execution Time Decomposition
	Accelerator Design Space
	Resource-Sharing Effects in Heterogeneous SoC

	gem5-Aladdin: Accelerator-System Co-Design
	Introduction
	Motivation and Background
	Co-design: A Motivating Example
	Typical CPU-Accelerator Communication

	Modeling infrastructure
	Overview
	Accelerator Modeling
	DMA Engine
	Caches and Virtual Memory
	CPU-Accelerator Interface
	Performance Validation

	Memory System Opportunities
	Primary design considerations
	DMA Optimizations
	DMA Evaluation
	Cache-Based Accelerators
	Cache Evaluation

	Accelerator Design Choices
	DMA vs. Caches
	Design Decision Comparison

	Related Work

	Conclusions and Future Directions
	References

