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ABSTRACT
With the widespread adoption of deep neural networks (DNNs)
across applications, there is a growing demand for DNN deploy-
ment solutions that can seamlessly support multi-tenant execution.
This involves simultaneously running multiple DNN workloads
on heterogeneous architectures with domain-specific accelerators.
However, existing accelerator interfaces directly bind the accelera-
tor’s physical resources to user threads, without an efficient mech-
anism to adaptively re-partition available resources. This leads to
high programming complexities and performance overheads due to
sub-optimal resource allocation, making scalable many-accelerator
deployment impractical.

To address this challenge, we propose AuRORA, a novel accel-
erator integration methodology that enables scalable accelerator
deployment for multi-tenant workloads. In particular, AuRORA
supports virtualized accelerator orchestration via co-designing the
hardware-software stack of accelerators to allow adaptively bind-
ing current workloads onto available accelerators. We demonstrate
that AuRORA achieves 2.02× higher overall SLA satisfaction, 1.33×
overall system throughput, and 1.34× overall fairness compared to
existing accelerator integration solutions with less than 2.7% area
overhead.

CCS CONCEPTS
• Computer systems organization → Multicore architec-
tures; Distributed architectures; Neural networks; • Hard-
ware → Communication hardware, interfaces and storage;
Application-specific VLSI designs.
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1 INTRODUCTION
With the slowdown in technology scaling, architects have turned
to heterogeneous multi-core many-accelerator system-on-chips
(SoCs) to meet the increasing compute demands of modern work-
loads [25]. One particular class of applications that drives the de-
velopment of many-accelerator systems is deep neural networks
(DNNs). Specifically, the concurrent multi-tenant execution of DNN
applications, where multiple DNN workloads are co-located on the
same SoCs, has become crucial for both the cloud [44, 46, 49, 51, 59]
and edge devices [22, 27, 35] to meet stringent throughput and
latency service-level agreements (SLAs). Previous research has un-
derscored the importance of spatially co-locating DNN workload
executions to improve the quality of service (QoS) [21, 31, 40].

However, performance variability due to contention for shared
hardware resources presents a substantial challenge for these work-
loads. More specifically, multi-tenant systems require a flexible
and efficient mechanism to dynamically partition shared resources
based on application requirements and available resources. While
shared-resource management for multi-core processors has been a
well-studied area in computer architecture, less attention has been
paid to the accelerator interface, i.e., how accelerators interact with
CPUs and the system stack.

In particular, existing accelerator integration approaches restrict
options for run-time accelerator management, as workloads or
threads are explicitly bound to physical accelerators [12, 31, 40] or
subarrays [21, 36]. Challenges arise when the system load of the
application is unknown prior to execution or when the application
runs complex cascaded pipelines [27, 32, 35]. In these scenarios,
kernel drivers must either explicitly preempt [12, 21] user threads,
leading to high thread migration cost, or wait for user threads to
complete and release their resources [31, 40], resulting in subopti-
mal resource partitioning and utilization. New methods have been
proposed to develop virtualized interfaces aimed at reducing kernel
driver overhead in accelerator deployment [14, 47]. However, these
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Figure 1: AuRORA is a full-stack accelerator integration
methodology for scalable accelerator deployment.

approaches primarily focus on queue-based, first-come-first-serve
accelerator scheduling, lacking the capability for user threads to
dynamically re-partition accelerators during runtime.

To address these challenges, this work presents AuRORA1, a
full-stack methodology for integrating accelerators in a scalable
manner for multi-tenant execution. AuRORA consists of ReRoCC2

(Remote RoCC), a virtualized and disaggregated accelerator inte-
gration interface for many-accelerator integration, and a runtime
system for adaptive accelerator management. Similar to virtual
memory systems that provide an abstraction between user memory
and physical machine resources, AuRORA provides an abstraction
between the user’s view of accelerators and the physical accelerator
instances. AuRORA’s virtualized interface allows workloads to be
flexibly orchestrated to available accelerators based on their latency
requirements, regardless of where accelerators are physically lo-
cated. This is particularly crucial for multi-tenant execution since
resources must be dynamically reallocated to meet the distinct de-
mands of concurrent workloads. To effectively support virtualized
accelerator orchestration, AuRORA delivers a full-stack solution
that co-designs the hardware and software layers, as shown in
Figure 1, with the goal of delivering scalable performance for het-
erogeneous systems with multiple accelerators. Specifically, the
AuRORA stack, from bottom to top, includes:
• Low-overhead shim microarchitecture to interface be-
tween cores and accelerators,

• A hardwaremessaging protocol between CPU and accel-
erators to enable scalable and virtualized accelerator deploy-
ment on SoCs,

• ISA extensions to allow user threads to interact with the
AuRORA hardware in a programmable fashion, and

• A lightweight software runtime to dynamically reallocate
available resources for multi-tenant workloads.

We evaluate AuRORA in two different SoC configurations;
AuRORA-crossbar, where all components are connected with

1https://github.com/ucb-bar/AuRORA
2https://github.com/ucb-bar/rerocc

a crossbar, andAuRORA-NoC, which uses a 2D mesh network-on-
chip (NoC). Our evaluation demonstrates that AuRORA improves
the overall SLA satisfaction rate by up to 3.99× (2.41× in geomean)
for the NoC scenario and up to 3.32× (2.02× geomean) for the cross-
bar scenario, together with an improvement in system throughput
of 2.04× (1.79 × geomean) for NoC and 1.38× (1.33× geomean) for
crossbar, and fairness of 1.61× (1.41× geomean) for NoC and 1.68×
(1.34× geomean) for crossbar, compared to prior work [31, 40],
while incurring less than 2.7% hardware area overhead.

2 BACKGROUND AND MOTIVATION
This section discusses challenges with running multi-tenant DNN
workloads and how existing approaches for accelerator integration
are insufficient for addressing these challenges.

2.1 Multi-tenant DNN Execution
Multi-tenancy refers to the scenario where multiple tasks share
hardware, leading to contention for system resources such as com-
pute and memory. Shared resource partitioning is a thoroughly
explored domain within computer architecture, where novel mech-
anisms have been proposed to manage multi-core architecture for
data centers [11, 56, 57] and, more recently, on GPUs [45].

On the accelerator side, Prema [12] introduced the concept of
time-multiplexing a monolithic accelerator across multiple DNN
tasks. However, this approach suffers from low hardware utiliza-
tion for individual DNNs. To address this limitation, spatial co-
location of multiple DNN tasks has been proposed, where compute
resources [21, 34, 36, 40] or memory resources [29, 31] are spatially
partitioned across applications. However, all existing multi-tenant
accelerators bind workloads to physical accelerators or subarrays
explicitly [12, 21, 36], leading to high-performance overhead when
migrating workload threads during accelerator resource realloca-
tion. To avoid the thread migration overhead, recent works use
coarser-grained scheduling to reduce the frequency of resource re-
allocation [31, 40]. However, such coarse-grained scheduling lacks
the ability to respond promptly to dynamic changes in system load.

2.2 Physical Accelerator Integration
Table 1 provides a summary of the multi-accelerator integration
strategies. We classify existing methods into two main categories:
physical integration, where workloads are explicitly mapped onto
physical accelerators, and virtual integration, where programmers
interact solely with virtualized accelerators, with the workload-to-
accelerator binding managed by a separate integration layer.

On the physical accelerator integration side, the existing space
can be broadly categorized into two types: tightly-coupled and
loosely-coupled. Tightly-coupled accelerators are directly imple-
mented as part of the core datapath in a general-purpose CPU. Ex-
amples of standards for CPU-coupled accelerators include the ARM
Custom Instruction interface [13], the RoCC RISC-V accelerator
interface [4], and the Tensilica Instruction Extension interface [23].

Since tightly-coupled accelerators can directly access the archi-
tectural state in the host thread, software support for these accel-
erators can be provided in the form of low-overhead userspace-
accessible custom instructions, greatly reducing software integra-
tion costs. However, tightly-coupled accelerators require expensive
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Table 1: Comparison of multi-accelerator integration methodologies.

Physical Integration Virtual Integration
ISA

Extension
Memory
Mapped

Non-Preemptive
Allocation

Preemptive
Allocation

Provides virtual accelerator abstraction to user threads no no yes yes
Software overhead for accelerator access low high low to mid low
Decoupling accelerators from cores no yes yes yes
Dynamic accelerator resource reallocation no yes but slow no yes and fast
Examples [4, 13, 23] [7, 26, 41, 43] [14, 47] AuRORA

host thread migration when adjusting accelerator affinity, as host
threads must be migrated to the appropriate control core for the
target accelerator [31, 40]. We measure the accelerator reallocation
overhead of physically integrated accelerators when co-running
four applications, ResNet50, AlexNet, GoogLeNet, and BERT-small,
and observe 300-700K cycle overhead when thread migration hap-
pens. Furthermore, physical design challenges and limited instruc-
tion encoding space prohibit scaling up the number of accelerators
integrated into a single general-purpose core.

The other approach is to decouple the accelerator from the core
over the SoC interconnect, most commonly by binding the accel-
erator to memory-mapped control registers [7, 26, 43]. Attaching
accelerators over memory-mapped registers is supported in all stan-
dard SoC interconnect protocols, including AMBA protocols [2],
TileLink [15], Wishbone [54], and CXL [1]. This allows for scalable
accelerator deployment, as many accelerators can be instantiated
across a single SoC, each mapped to a unique address range of
control registers. Prior work [41] proposed a novel shared-memory
management for many-accelerator systems where accelerators are
physically integrated with the MMIO interface. However, software
support for memory-mapped accelerators is more burdensome, as
privileged drivers must make the physical control registers visible
to user threads and manage the allocation of accelerators to users,
leading to significant performance overhead.

2.3 Virtual Accelerator Integration
The cumbersome physical accelerator integration does not scale
to many-accelerator systems running multi-tenant workloads, es-
pecially when resources need to be frequently reallocated to meet
the distinct demands of applications during execution. To improve
scalability, recent research has proposed virtualized accelerator in-
tegration, which allows user threads to invoke accelerators dynam-
ically without binding workloads to physical accelerators [14, 47].
In particular, both works have proposed ISA extensions and mi-
croarchitecture mechanisms to dynamically map user threads to
accelerators. However, in addition to being closed-sourced, these
efforts only allow non-preemptive resource allocation, i.e., user
threads are scheduled onto accelerators in a first-come-first-served
fashion using a command queue in hardware. Furthermore, in both
these works, the host CPU performs address translation for the
accelerator before issuing the memory request to accelerator [47],
or the host core to handle TLB misses with OS handler [14]. Both
cases invoke software overhead that would prohibit the CPU from
performing other tasks.

Figure 2: Overview of AuRORA microarchitecture.

Such a simple accelerator allocation approach does not allow
dynamic accelerator orchestration, where accelerator resources
are flexibly partitioned based on the current demands of concur-
rent workloads. In particular, dynamic accelerator orchestration
through preemptive allocation is required for multi-tenant execu-
tion where multiple tasks share the system resource with different
target requirements. To the best of our knowledge, AuRORA is the first
work that supports virtualized accelerator integration with dynamic
resource allocation for multi-tenant execution.

3 AURORA ARCHITECTURE
AuRORA is a new full-stack approach of accelerator integration
for efficient multi-tenant execution on virtualized accelerators. Au-
RORA provides an abstraction to the software of virtualized accel-
erators, where user threads invoke virtual accelerators which are
then dynamically mapped to physical accelerators by the AuRORA
runtime. The following sections discuss the AuRORAmicroarchitec-
ture (Section 3.1), hardware protocol (Section 3.2), ISA extensions
(Section 3.3), and runtime system (Section 3.4).

3.1 AuRORA Microarchitecture
Figure 2 shows the key microarchitecture components of AuRORA
Client and Manager and how they can be seamlessly integrated
with existing CPU and accelerator designs.
Client. The AuRORA’s Client shim integrates with host general-
purpose cores to allow communication to and from disaggregated
accelerators, while providing the architectural illusion of a tightly-
coupled accelerator. Each core tracks which accelerators it has cur-
rently reserved using a hardware table in the Client. The Client
is implemented as a RoCC accelerator [4], allowing it to be inte-
grated with existing RoCC-compatible cores like Rocket [5] and
BOOM [62].
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Figure 3: AuRORA’s hardware protocol for how a Client
manages accelerator integrated into Manager tiles.

Manager. The AuRORA’s Manager shim wraps an existing ac-
celerator and facilitates the virtualization and disaggregation of
accelerators across the SoC interconnect. The Manager receives
AuRORA and accelerator commands from the Client and forwards
accelerator commands to the attached accelerators. The Managers
also implement a shadow copy of architectural CSRs used by the
accelerator MMU. These CSRs include those that describe the host
thread privilege level, memory translation mode, and page table
address. A page table walker (PTW), an optional PTW cache, and an
L2 TLB provide an architecturally compliant memory-management-
unit (MMU) to the accelerator. These modules eliminate the need
for user- or supervisor-managed IOMMU, preserving the illusion
of a shared MMU between the core and accelerators. To support
software-managed QoS, the Managers also implement configurable
traffic throttlers, which can be used to set bandwidth limits on ac-
celerator memory traffic. The bandwidth limit can be set by writing
to a configuration register in the Manager.

3.2 AuRORA Hardware Protocol
To support the integration and disaggregation of accelerators at
the SoC level, AuRORA connects Client and Manager with the
AuRORA hardware communication protocol. Figure 3 shows the
AuRORA hardware messaging protocol between Clients and
Managers. There are two states for Manager, IDLE and ACQUIRED.
When a Client tries to acquire accelerators, it sends the acquire
request signal to the Manager. If the Manager is in the IDLE state
(e.g., Client 0 to Manager 1 in Figure 3), the acquire succeeds, and
an acknowledgment, (i.e., the granted signal), is sent to the Client.
The Clientwill then forward its own core’s configuration registers
to the acquired Manager to set up the MMU on the manager as a
shadow of the core’s. From this point, accelerator instructions is-
sued to the Clientwill be automatically forwarded to the Manager.

However, when the accelerator has already been occupied by
another process (e.g., Client 1 to Manager 1), the acquire attempt
will fail. If there are other accelerators of the same functionality in
the system, the Client can attempt to acquire another accelerator
(e.g., Client 1 to Manager 2). For these cases, the software has to
configure the AuRORA Client with a set of accelerators that share

Table 2: The AuRORA protocol can share the same on-chip
interconnect with the memory traffic or use a separate in-
terconnect. All listed combinations are supported in the Au-
RORA implementation.

AuRORA Protocol Traffic
crossbar NoC

Memory Traffic crossbar Supported
(separate)

Supported
(separate)

NoC Supported
(separate)

Supported
(separate, shared)

the same functionality. After the Client has finished using this
accelerator, it sends a release message to the Manager (e.g., Client 0
to Manager 0), returning the accelerator’s Manager state to IDLE. All
these transactions are non-blocking to guarantee forward progress.

The AuRORA hardware protocol can be mapped onto various
interconnect architectures, including crossbar and network-on-chip
(NoC), as shown in Table 2. The AuRORA traffic can share the sys-
tem interconnect withmemory traffic or use a separate interconnect
to avoid contention. In particular, AuRORA focuses on the interface
between the accelerator and the CPU, which is orthogonal to the
SoC interconnect standard that defines how data are transferred in
SoCs. Our evaluation uses TileLink [15], an SoC interconnect stan-
dard that can provide coherent access across SoCs, with a shared
global address space, since this is common in many-core/many-
accelerator SoCs. AuRORA can also be implemented using other
SoC interconnect standards like CXL [1], which enables a global
shared memory space between chips for multi-chip integration.

3.3 AuRORA ISA Extensions
The AuRORA ISA extensions expose the virtualized and disaggre-
gated accelerator management to software, as specified in Table 3.
The acquire and release instructions allow Client to claim and
release accelerators. When claiming an accelerator, Client encodes
a target physical accelerator acc_id in the acquire instruction so
that it can be delivered to the target Manager. If acquire succeeds,
Client will assign a virtual accelerator index acq_id to this accel-
erator, which is then used in the rest of the runtime. The assign
instruction maps an acquired accelerator to an available opcode on
its architectural thread. This allows a single architectural thread to
acquire more accelerators than the available opcode space would
permit. The memrate instruction configures the maximum memory
request rate for an accelerator for QoS management.

3.4 AuRORA Runtime
The AuRORA runtime offers mechanisms for provisioning and re-
leasing accelerators using ISA extensions introduced earlier. Specif-
ically, this runtime operates within userspace software, utilizing
custom AuRORA instructions accessible in userspace, to adaptively
partition available resources for multi-tenant execution. The run-
time system is designed to be lightweight and only needs to be
invoked when acquiring, configuring, or releasing an accelerator.
Furthermore, it is also important to note that the AuRORA runtime
maintains backward compatibility with existing RoCC-based [4]
accelerator software stacks.
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Table 3: AuRORA instructions.

AuRORA Pseudoinst. Operands Purpose
rerocc_acquire success, acc_id, acq_id Acquires accelerator and maps it to the local client, returns success status.
rerocc_release acq_id Releases an accelerator currently acquired by the local client.
rerocc_assign acq_id, opcode Maps a currently acquired accelerator to an available instruction opcode.
rerocc_fence acq_id Memory fence between core memory and an acquired accelerator.
rerocc_memrate acq_id, rate Sets the maximum memory request rate the accelerator can make.

Figure 4: AuRORA runtime takes Task𝜔 and its target latency
and reconfigures the acquired accelerators for each Client.

To improve the performance of multi-tenant applications, the
AuRORA runtime provides support for two key contention-aware
partitioning: compute-resource allocation and memory-resource
allocation. The compute-resource allocation dynamically partitions
different numbers of accelerators for different tasks considering
the NUMA effect, while the memory-resource allocation adaptively
reconfigures the available memory bandwidth to different accelera-
tors. Unlike prior works where the scheduler explicitly encodes the
physical accelerator and the number of accelerators when schedul-
ing tasks [12, 21, 31, 40], the AuRORA runtime manages virtualized
accelerator resources and dynamically partitions them during run-
time. As a result, a user application only needs to specify its latency
target, simplifying its interaction with the AuRORA runtime.

3.4.1 Compute-resource allocation.
The AuRORA runtime dynamically re-partitions compute resources
based on latency targets and available compute resources. Figure 4
describes how the runtime operates to allocate compute resources.
The runtime receives an end-to-end DNN network (i.e., a task) 𝜔
from the task queue and is invoked before the execution of ev-
ery layer. The LatencyEst module estimates the latency of each
task based on its current acquired accelerators (ACQ𝜔 ). Together
with the remaining Slack to its target deadline, this latency is fed
into the calc_score module to calculate its dynamic deadline score
(ddl_score), which indicates the likelihood of meeting the target
deadline (i.e., a higher score indicates it is more likely to meet its
deadline). The analyzer compares the dynamic ddl_score𝜔 of this
task against those of other on-going tasks (ddl_scores) and decides
whether task 𝜔 requires the release or acquisition of accelerators to
meet their performance targets while balancing system throughput
and fairness. Finally, the runtime notifies the task thread’s Client

Algorithm 1 AuRORA virtual accelerator allocation
⊲ Functions: LatencyEst (estimates latency of task)

1: MemoryPartition (calculates the target MEM request rate)
⊲ Lists: Accels (accelerators in the system)

2: ACQ (acquired virtualized accelerators)
3: ddl_scores (dynamic deadline scores across tasks)

⊲ Inputs: 𝜔 (task), target latency
⊲ Outputs: Decision to release, acquire of Manager to Client

4: Function calc_score(task, ACQ):
⊲ %Computes dynamic score for accelerator partition%

5: Slack ← time_left_to_target
⊲ % Quantifies confidence in meeting the deadline %

6: ddl_score← Slack/LatencyEst(task, ACQ)
7: return ddl_score
8: for Layeri in Layers do
9: ddl_score𝜔 ← calc_score(𝜔, ACQ𝜔 )

⊲ % Analyzer determines acquire/release %
⊲ % num_accel: # of accelerators to release or acquire %

10: (need_release, need_acquire, num_accel)
11: ← Analyze (ddl_scores, ddl_score𝜔 )
12: if need_release then
13: for iter in num_accel do
14: release_acc← ACQ𝜔 .pop()
15: rerocc_release(release_acc)
16: Accels(release_acc) ← IDLE
17: if need_acquire then
18: for iter in num_accel do
19: idle_acc← Accels.idle
20: rerocc_acquire(idle_acc, acq_idnew)
21: ACQ𝜔 .push(acq_idnew)

⊲ % For memory resource optimizations %
22: max_mem_rate ←MemoryPartition(Layeri)
23: rerocc_memrate(ACQ𝜔 ,max_mem_rate)
24: runLayer(Layeri) && 𝜔 .popLayer(Layeri)

of the changes so that the Client can acquire or release accelerators
based on the updated assignment from the AuRORA runtime.

Algorithm 1 further elaborates on this process. Upon invocation,
the runtime calculates the dynamic deadline score, ddl_score, of
each task on its slack. The runtime compares the ddl_score𝜔 of
the current task with the scores of other concurrently running
tasks to whether the release or acquisition of accelerators needs
to happen and the number of accelerators affected. We use the
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latency estimation technique from [31] that considers the multi-
level memory hierarchy, the number of processing elements, and
per-layer compute-to-memory ratios for individual DNN execution,
similar to other multi-tenant DNN execution work [12, 21].

The Analyze function in the AuRORA runtime compares the
score of task 𝜔 with the scores of other tasks to decide whether
𝜔 needs to release its acquired accelerator or acquire other idle
ones, based on the relative confidence in meeting the deadline
target. If release is necessary, the runtime releases acquired ac-
celerators, so that tasks with tighter deadlines can acquire them.
If acquire is needed, the runtime would try to acquire idle ac-
celerators. All of this happens in user-space code. Thus, unlike
prior works [12, 21, 31, 40], AuRORA’s accelerator scheduling does
not require thread preemption, synchronization, and migration to
reallocate the accelerator.

3.4.2 NUMA-aware compute partitioning.
Distributing accelerators and memory across an SoC’s network-on-
chip (NoC) interconnect inevitably causes non-uniform memory
accesses (NUMA) [16, 39], which adds to system heterogeneity.
Alleviating the challenges of NUMAmemory systems has beenwell-
researched in the multi-core domain [9, 17, 37, 39]. Notably, prior
work has proposed scheduling by application bandwidth sensitivity
as a mechanism to reduce interference in a shared multi-core or
multi-accelerator system [16, 53]. Previous work has also found
that thread migration overhead presents a significant challenge for
such NUMA-aware thread scheduling approaches [9].

The AuRORA runtime leverages its virtual accelerator abstrac-
tion to enable simple but efficient NUMA optimization. Different
workloads would face varying degrees of NUMA effect on each
NoC node with NoC-based interconnect. To capture the perfor-
mance slowdown caused by NUMA effects, we build an empirical
performance model based on hardware measurements to capture
each workload’s sensitivity to NUMA. The AuRORA runtime quan-
tifies each task’s slowdown caused by the NUMA effect based on
its assigned accelerators.

When deciding on new accelerators to acquire, the AuRORA
runtime compares the relative NUMA slowdown to co-running
tasks across different accelerator assignments and assigns the set of
accelerators that causes the lowest relative slowdown for each task.
This allows the runtime to allocate the resources to the task thread
to minimize the overall system’s latency degradation due to the
NUMA effect. In addition, AuRORA runtime performs accelerator
swapping optimization before running the layer if there are idle ac-
celerators in the system with a lower relative NUMA slowdown for
the task. This swap is implemented as an atomic series of acquire
and release. When the system does not exhibit NUMA properties,
for example, if the interconnects are configured as crossbar, the
NUMA optimization is not enabled.

3.4.3 Memory-resource allocation.
AuRORA also supports dynamic memory re-partition, as shown in
Algorithm 1 Line 22-23. It dynamically detects system-level interfer-
ence and sets limits on the memory access rates of accelerators to
resolve contention if necessary. AuRORA’s memory re-partitioning
methodology with dynamic scoring and run-time contention detec-
tion is implemented similarly to prior work [31]. Upon detection
of contention over memory bandwidth, AuRORA runtime triggers

Table 4: SoC configurations used in the evaluation.

Parameter Value
Systolic array dimension (per tile) 16x16
Scratchpad size (per tile) 128KB
Accumulator size (per tile) 128KB
# of accelerator tiles 10
Shared L2 size 2MB
Shared L2 banks 8
DRAM bandwidth 32GB/s
Frequency 1GHz

Figure 5: AuRORA’s NoC-based interconnect setup.

Client to send the memrate instruction to the acquired Manager
to configure the memory access rate for each instruction. Based on
the configured value, Manager would limit the memory requests
from the target accelerator.

4 METHODOLOGY
This section details AuRORA’s implementation, together with the
workloads and metrics used for our evaluation.

4.1 AuRORA Implementation
We implement the AuRORA microarchitecture using the Chisel
HDL [6] on top of the Chipyard [3] SoC framework, an open-
source framework for designing and evaluating systems-on-chips.
We use Gemmini [20], a systolic-array-based DNN accelerator with-
out multi-tenancy support, as a representative DNN accelerator in
our evaluation. Additionally, we implement an AuRORA protocol
adapter for the Constellation [61] NoC generator, to enable eval-
uations on systems with a NoC-based interconnect. We evaluate
AuRORA’s performance of running end-to-end DNN workloads
using FireSim, a cycle-exact, FPGA-accelerated RTL simulator [30].

Table 4 shows the SoC configuration we use in our evaluations
of AuRORA. To demonstrate how AuRORA scales to realistic many-
accelerator architectures, we evaluate AuRORA in two different
SoC configurations:
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(a) ResNet50 (b) AlexNet

Figure 6: Normalized latency sweeping Manager’s L2 TLB and
PTW cache size. Latency is normalized to the ideal case.

(1) Crossbar: All components (AuRORA Client, Manager,
memory system) are connected to a crossbar. This configu-
ration provides a uniform memory system.

(2) NoC: All components are integrated in a 7x4 2D mesh as
illustrated in Figure 5. This configuration provides a realistic
and scalable NUMA memory system for a many-core/many-
accelerator SoC.

We integrate Gemmini, a TPU-style systolic-array accelerator,
within a AuRORA Manager and replicate it across ten separate
homogeneous Manager accelerator tiles on the same SoC. Each
Gemmini accelerator is equipped with a 16x16 weight-stationary
systolic array for matrix multiplications and convolutions, with
private scratchpad memories to store weights and in/output activa-
tions. All the tiles also share the memory subsystem, including a
shared L2 cache and DRAM.

The AuRORA runtime is implemented in C++ and operates seam-
lessly on top of a full Linux stack. The runtime uses a lightweight
software look-up table for the scoreboard, which manages the com-
pute allocation and memory bandwidth utilization of each appli-
cation on the Clients. The runtime also implements task queues,
which track generated tasks.

4.2 Microarchitecture Exploration
This section explores various configurations of AuRORA and
demonstrates AuRORA’s adaptability for diverse deployment sce-
narios.
PTW cache/TLB configuration. We sweep the Manager’s L2
TLB and private PTW cache to determine the optimal TLB and
PTW cache size for multi-tenant DNN execution. Figure 6 shows
the effects of the Manager’s L2 TLB size and PTW cache sizes on
the end-to-end latency of ResNet50 and AlexNet. We generate a
single DNN accelerator using Gemmini [20] with the hardware
configurations described in Table 4. The latency is normalized to
the bare-metal test, where no address translation happens. We
notice that ResNet50’s performance is saturated with a small L2
TLB and PTW cache, reaching the minimum latency with only a
256-entry L2 TLB and 0.5KB (4 ways, 2 sets) PTW cache. AlexNet,
on the other hand, is dominated by fully-connected (FC) layers
with frequent TLB misses, where a bigger PTW cache can take
advantage of the spatial locality to reduce end-to-end latency. For
both cases, a 0.5KB PTW cache and 512-entry L2 TLB are enough to

Table 5: AuRORA end-to-end latency overhead across SoC
configurations and ResNet sizes.

ResNet50 ResNet18
#

accel xbar xbar+
NoC

Shared
NoC xbar xbar+

NoC
Shared
NoC

1 Total cycle
(Normalized) 1 1.07 1.07 1 1.044 1.044

AuRORA
overhead (%) 0.38 0.36 0.38 0.49 0.48 0.48

2 Total cycle
(Normalized) 1 1.112 1.132 1 1.05 1.05

AuRORA
overhead (%) 0.46 0.43 0.45 0.59 0.57 0.61

4 Total cycle
(Normalized) 1 1.14 1.165 1 1.076 1.079

AuRORA
overhead (%) 0.63 0.57 0.62 0.83 0.79 0.85

minimize the end-to-end performance overhead. Thus, we use this
configuration of the AuRORA Manager for further experiments.
SoC Configurations. To illustrate the effectiveness of AuRORA in
different SoC configurations, we run experiments of ResNet50 and
ResNet18 running on one, two, and four accelerators, each intercon-
nected through three different SoC interconnect designs. Table 2
shows their performance and AuRORA overhead. In particular, we
generate three different interconnect configurations:

(1) crossbar: all memory traffic and AuRORA hardware proto-
col traffic are connected with crossbars.

(2) crossbar+NoC: memory traffic is routed via a 4x4 2D mesh
NoC, while the AuRORA traffic uses a separate crossbar.

(3) Shared NoC: both memory traffic and the AuRORA protocol
traffic share the same 4x4 2D mesh NoC.

To capture the worst-case overhead from frequent AuRORA proto-
col traffic, accelerators are acquired and released before and after
each layer (Gemm, Convolution, Residual addition). Our result
clearly demonstrates that AuRORA’s management overhead for
accelerators is quite negligible, accounting for less than 1% of the
total cycles across all the scenarios. This underscores AuRORA’s
flexibility and scalability for multi-accelerator systems.

4.3 Workloads
DNNs. Our evaluation uses seven different state-of-the-art DNN
inference models, including SqueezeNet [28], GoogLeNet [55],
AlexNet [33], YOLOv2 [52], YOLO-lite [48], Keyword Spotting [58],
BERT [18] and ResNet [24]. The DNN models in the evaluation
feature varied model sizes, DNN kernel types, applications, com-
putational and memory requirements, and compute-to-memory
trade-offs. To capture any distinct behaviors across various sets,
we classify the workloads into workload sets based on the size of
DNN models. This classification method is based on the approach
presented in [31], which we use as one of our baselines. Table 6
presents the DNN benchmarks categorized by size. Workload set-A
comprises the lighter models, while Workload set-B groups the
heavier models. Workload set-C includes a mixture of a subset of
set-A and set-B, encompassing both lighter and heavier models.
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Table 6: Benchmark DNNs and workload set categorization
based on model size used in the evaluation.

Workload Model
size Domain DNN models

Workload
set-A Light

Image Classification SqueezeNet [28],
ResNet18 [24]

Object Detection Yolo-LITE [48]
Language Processing BERT-small [18]
Speech Processing KWS [58]

Workload
set-B Heavy

Image Classification
GoogleNet [55],
AlexNet [33],
ResNet50 [24]

Language Processing BERT-base [18]
Object Detection YoloV2 [52]

Workload
set-C Mixed All

ResNet18 [24],
Yolo-LITE [48]
SqueezeNet [28]
AlexNet [33],
ResNet50 [24],
BERT-base [18]

Workload
set-XR
Gaming

Mixed

Hand Tracking Hand Graph [42]

Eye Pipeline RITNet [10],
FBNet [60]

Depth Estimation MiDaS [50]
Plane Detection PlaneRCNN [38]

To construct a multi-tenant workload from each scenario, we ran-
domly select N number of different inference tasks, where N ranges
from 200 to 300, for concurrent execution.
QoS targets. We set our baseline QoS based on prior works [8,
40], setting 25ms for AlexNet, ResNet50, 10ms for SqueezeNet and
YOLO-Lite, 50ms for BERT-base and 15ms for the rest. To assess
how AuRORA performs with varying latency targets, we also adjust
the baseline latency target to 1.2× and 0.8× QoS, corresponding
to a 20% increase and decrease in the latency target, respectively.
Specifically, QoS-H (hard) denotes a 0.8× QoS latency target, which
is more difficult to achieve. QoS-L (light) represents a 1.2× QoS
latency target, which is a more lenient goal. QoS-M refers to the
baseline QoS latency target.
Emerging applications. To demonstrate the utility of AuRORA
for emerging applications, we also deploy a usage scenario for
AR/VR, as suggested by XRBench [35], and create Workload set-
XR using AR/VR Gaming scenarios. We construct load generation
settings following the guidelines in XRBench: inference requests
are injected at the target frame-per-second (FPS) processing rate
with a jitter applied to each frame.

4.4 Metrics
We evaluate the efficacy of multi-tenant execution with AuRORA
using the metrics proposed in [19], which are commonly used
in multi-tenant evaluation [12, 21, 31]. These metrics encompass
the percentage of workloads for which we meet the Service Level
Agreement (SLA), the throughput of the co-located applications,
and the fairness of AuRORA’s resource management strategy. To
determine workload latency, we measure the duration from the

time it is generated until it is completed and commits, including
the time it spends in the task queue and its runtime.
SLA satisfaction rate. We set the SLA target, which is the QoS
latency target constraint, for each workload based on the three
QoS levels defined in Section 4.3, as mentioned in the ‘QoS targets’
paragraph. Achieving a higher SLA satisfaction rate would mean
more queries meeting the QoS latency target. We use SLA and QoS
targets interchangeably in the following discussion.
Fairness. The fairness is a metric that measures equal progress
under multi-tenant execution compared to the single task’s iso-
lated execution. Fairness metric has been used in prior multi-tenant
works [12, 21, 31]. This metric assesses AuRORA’s dynamic score-
based virtual accelerator management, for both compute-resource
partitioning and memory-resource partitioning. As shown in Equa-
tion 1, Ci represents the cycles of the i-th workload, Csingle indicates
the cycles of the workload running on the SoC with no other con-
current workloads. CMT denotes multi-tenant execution cycles. We
define fairness in terms of normalized progress (NP), which describes
the slowdown of multi-tenant execution compared to its isolated
execution without interference, suggested in [19] as follows:

NP i =
Csingle
i

CMT
i

, Fairness = mini,j
NPi
NPj

(1)

Throughput. To evaluate the effectiveness of AuRORA in in-
creasing overall hardware utilization, we analyze the total system
throughput (STP). STP is defined as the system throughput of ex-
ecuting n programs, which sums up each program’s normalized
progress, ranging from 1 to n. Maximizing overall progress when
co-locating multiple applications is crucial to maximizing STP.

STP =

𝑛∑︁
𝑖=1

CSingle
i

CMT
i

(2)

Real-time and QoE Score. To evaluate Workload set-XR, we use
the metrics suggested by XRBench [35]: Real-time (RT) Score and
Quality of experience (QoE) Score. RT Score uses a modified sigmoid
function to gradually increase and decrease the score when the
inference latency is shorter or longer, respectively, than the target,
and we use the default value in XRBench for the parameter k. QoE
score quantifies the penalty for FPS drops due to dropped frames,
which is not counted in the RT score. We set the Accuracy and
Energy score to 1 as AuRORA does not affect DNN accuracy and
our evaluation focuses on homogeneous accelerators. The overall
score is computed using the QoE, RT, Accuracy, and Energy scores
as XRBench describes.

4.5 Baselines
To evaluate the effectiveness of AuRORA’s virtual accelerator man-
agement and QoS optimization, we compare against two different
baselines that use physical accelerator with AuRORA and measure
the performance improvement. The prior works that we use as
baseline are the following:

(1) Veltair [40]: dynamic compute-resource partition with
coarse-grained layer-blocks to avoid rescheduling overhead;

(2) MoCA [31]: adaptive memory-resource re-partition based
on system-level contention for spatially co-located DNNs.
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Figure 7: AuRORA’s SLA satisfaction rate improvement over evaluated multi-tenancy baselines with different QoS targets
(QoS-L/M/H: light/medium/hard latency target) and DNN workload sizes (Workload-A/B/C: light/heavy/mixed models).

These baselines are the most recent works proposing system sup-
port for QoS management in multi-tenant DNN workloads and
addressing the accelerator migration cost through coarse-grained
scheduling. Note that Veltair is a joint adaptive compilation and
scheduling work that targets different hardware platforms (CPU
cluster). We take Veltair’s scheduling component, which is a layer-
blocking strategy and scheduler, as a physical integration baseline.
Our MoCA implementation uses AuRORA’s memory access rate
configuration instruction to change the memory access rate, instead
of modifying the accelerator’s internal DMA.

For physical accelerator binding baselines, the task thread would
request its target number of accelerators to meet the QoS require-
ment by directly pinning the accelerator. If there is a scheduling
conflict, which is when there are fewer accelerators available in
the system, it would attempt to pin the accelerator from the other
thread that is going to finish the current layer block the earliest,
and then start the execution after synchronizing and adjusting the
accelerator affinity.

For AuRORA evaluation, we use two different configurations by
incrementally enabling QoS optimization to show the effectiveness
of each resource management feature:

(1) AuRORA-Compute, which performs dynamic compute-
resource re-partitioning with virtual accelerator.

(2) AuRORA-All, which adds NUMA-aware compute partition-
ing for NoC deployment scenarios and dynamic memory-
resource re-partitioning for both crossbar and NoC.

5 EVALUATION
In this section, we evaluate the effectiveness of AuRORA for multi-
tenant workloads by comparing it to two baseline solutions. Veltair
[40] and MoCA [31] are recent proposals for improving DNN multi-
tenant execution by co-locating multiple DNNs while binding accel-
erators physically to user threads. Our evaluation demonstrates that
AuRORA improves SLA satisfaction rates, STP, and fairness across
a wide range of workload scenarios with different DNN models and
QoS requirements with a small hardware area overhead.

5.1 SLA Satisfaction Rate
We evaluate the effectiveness of AuRORA-enabled virtual acceler-
ator management for multi-tenant execution using the three sets
of workloads listed in Table 6, each with three QoS targets (Hard:
QoS-H, Medium: QoS-M, Light: QoS-L) on two hardware platforms

(crossbar and NoC), resulting in a total of 18 runtime scenarios. We
measure the SLA satisfaction rate for each scenario and compare
them to the baseline to demonstrate the performance improvement
achieved.

5.1.1 Crossbar configuration.
AuRORA’s virtual compute resource partitioning improves
overall SLA satisfaction rate. Figure 7a demonstrate that Au-
RORA’s virtual compute resource partitioning consistently outper-
forms the baseline methods for all scenarios. Specifically, AuRORA-
Compute achieves a geomean improvement of 1.9× over Veltair
(max 2.76× in Workload-A/QoS-H). Compared to MoCA, AuRORA-
Compute achieves 1.6× improvement (max 2.33× in Workload-
C/QoS-H). QoS-H shows the highest improvement across QoS
groups, AuRORA-Compute achieving 2.68× improvement over
Veltair and 2.14× over MoCA. The baseline strategies use phys-
ical accelerator binding to pin accelerators to user threads, causing
significant overhead when reallocating the accelerator. To work
around it, the baselines use coarser-grained resource allocation to
avoid frequent scheduling conflicts and reallocation of compute re-
sources, as the re-partitioning incurs significant overhead without
a virtual accelerator abstraction. However, this restricts support for
fast and adaptive system reconfiguration with increased resource
contention, making it more challenging to meet QoS targets, espe-
cially for QoS-H where resource conflicts become more severe due
to stingier QoS requirements. AuRORA, on the other hand, with
its fast mechanism to manage and bind virtual target accelerators,
supports accelerator reallocation faster in the environment with
dynamically changing computation demands.
AuRORA’s dynamic memory management further improves
target satisfaction rate. Figure 7a shows that AuRORA-All
improves SLA satisfaction by 2.02× in geomean (max 3.32× in
Workload-B/QoS-H) over Veltair and 1.7× over MoCA (max 2.54×
in Workload-B/QoS-H). To evaluate the impact of AuRORA’s
memory resource management, we further compare AuRORA-
Compute and -All. AuRORA-All improves SLA satisfaction rate
over AuRORA-Compute by 1.07× in geomean. Among the workload
sets, Workload-B results in the most improvement over AuRORA-
Compute, by 1.12×. This shows that AuRORA’s memory manage-
ment scheme is particularly effective in more memory-constrained
environments, as heavier workloads have larger weights that would
stress thememory system. Across the QoS groups, QoS-H shows the
most improvement of AuRORA-All over -Compute, by 1.12×. This
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Figure 8: STP improvement of AuRORA over evaluatedmulti-
tenancy baselines (normalized to Veltair baseline) with dif-
ferent QoS targets and DNN workload sizes.

is because AuRORA’s memory management feature can further en-
hance the target satisfying ability when QoS requirements become
harder to meet by prioritizing memory requests of workloads with
less time margin with its memory partitioning scheme.

5.1.2 NoC configuration.
AuRORA’s NUMA-aware virtual accelerator management is
efficient in NoC deployed scenarios. The impact of system-level
interference varies among distributed accelerator nodes connected
via NoC, primarily due to the NUMA effect. Furthermore, the extent
of performance degradation differs among different DNN models,
depending on the sensitivity of the workloads to a NUMA-based
memory system. AuRORA’s NUMA aware compute partitioning
scheme captures this and optimizes through better allocation of ac-
celerators and accelerator swapping. As Figure 7b shows, compared
to baselines, AuRORA-All achieves 2.41× geomean improvement
over Veltair (max 3.99× in Workload-A/QoS-H) and 1.87× over
MoCA (2.85× in Workload-C/QoS-H). AuRORA-All, which enables
both NUMA-aware compute resource partitioning and dynamic
memory resource management, increase SLA satisfaction rate by
1.25× on geomean compared to AuRORA-Compute. Across the
workload sets, AuRORA-All achieved a geomean improvement
of 1.05× for Workload-A, 1.38× for Workload-B, and 1.33× for
Workload-C, over AuRORA-Compute. NUMA and memory opti-
mization achieve a higher increase in heavy or mixed sets than
light ones, as the NUMA effect is more pronounced for workloads
that cause more memory traffic. Thus, AuRORA-All would benefit
in those scenarios by alleviating the NUMA effect with better com-
pute partitioning and alleviating memory contention by memory
partitioning.

5.2 System Throughput Analysis
We evaluate the STP of multi-tenant scenarios, as described in Sec-
tion 4, to demonstrate that AuRORA improves the STP compared
to the baselines.

AuRORA’s virtual accelerator allocation increases overall
system throughput. Figure 8a shows an improvement in sys-
tem throughput in the crossbar-based system. AuRORA-Compute
exhibits 1.26× geomean improvement over Veltair (max 1.34×
in Workload-A/QoS-H). Compared to MoCA, AuRORA-Compute
demonstrates 1.18× geomean improvement (max 1.28×Workload-
C/QoS-H). Although STP improvement is overall consistent, across
different scenarios, the improvement increases as the QoS require-
ment gets stricter, showing the highest improvement of 1.28× over
Veltair in the QoS-H group. This indicates that accelerator virtu-
alization with AuRORA can improve resource utilization across
all scenarios with flexible and fast resource reallocation, especially
under the increase in resource conflicts.
AuRORA’s memory resource management improves STP.
As Figure 8a shows, AuRORA-All achieves 1.33× improvement over
Veltair and 1.25× over MoCA (max 1.38× and 1.37× respectively
in Workload-A/QoS-L), which is 1.06× geomean STP improvement
over AuRORA-Compute. Across the workload sets, AuRORA-All
shows the most improvement over AuRORA-Compute inWorkload-
B with a 1.12× improvement. This is because memory access rate
management would alleviate performance degradation due to mem-
ory interference, which becomes more prominent with heavier
workloads.
AuRORA’s NUMA-aware accelerator allocation improves
STP. Figure 8b shows NoC deployment results. When both NUMA
and memory resource optimizations are enabled, AuRORA-All im-
proves STP 1.79× over Veltair (2.04× max in Workload-C/QoS-H)
and 1.59× over MoCA (1.97× max in Workload-C/QoS-M). Com-
pared to AuRORA-Compute, AuRORA-All achieves 1.32× STP im-
provement, which is greater than the crossbar scenario, which
further shows the effectiveness of AuRORA-All in the system with
NUMA effect in improving throughput. The impact is most promi-
nent in Workload-C, where there was a 1.46× improvement over
AuRORA-Compute across all QoS levels. The NUMA effect is more
pronounced for heavier workloads and the degree of variance in
the NUMA effect gets severe with workload heterogeneity. Thus,
enabling NUMA optimization can alleviate this effect, leading to
an improvement in the overall STP.

5.3 Fairness Analysis
We evaluate the overall system fairness of multi-tenant execution,
as defined in Section 4, to demonstrate the effectiveness of AuRORA
in improving this metric. We compare the fairness of AuRORA with
the baseline strategies and normalize the results to Veltair’s fairness,
shown in Figure 9.
AuRORA virtual accelerator support improves fairness. Fig-
ure 9a demonstrates AuRORA-Compute increases overall fairness
by 1.25× over Veltair (max 1.50× inWorkload-C/QoS-L), and by 1.2×
over MoCA (max 1.41× in Workload-C/QoS-M). The improvement
is consistent across different QoS levels, but across workload sets,
Workload-C shows the highest improvement (1.48× over Veltair,
1.38× over MoCA). Baseline physical accelerator allocation suffers
latency overhead upon thread synchronization for accelerator re-
allocation, which impact varies across tasks, resulting in fairness
degradation. This gets most pronounced for the mixed set where



AuRORA: Virtualized Accelerator
Orchestration for Multi-Tenant Workloads MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

(a) Crossbar

(b) NoC

Figure 9: Fairness improvement of AuRORA over evaluated
multi-tenancy baselines (normalized to Veltair baseline) with
different QoS targets and DNN workload sizes.

Figure 10: Real-time (RT) score, QoE score and Overall score
improvement of AuRORA over evaluated multi-tenancy
baselines for Workload set-XR Gaming usage scenario.

synchronizations between heavy and light models happen. Au-
RORA helps promote a fair system by enabling efficient acquisition
and release of accelerators.
Memory resource and NUMA optimization helps further
improve fairness. As shown in Figure 9b, AuRORA-All achieves
1.41× overall improvement in fairness over Veltair (max 1.61×,
Workload-C/QoS-H) and 1.31× over MoCA (max 1.46×, Workload-
C/QoS-L). Specifically, Workload-C shows the most improvement
(1.35× comparing AuRORA-All over -Compute). Since the degree
of NUMA effect differs greatly for mixed workload sets, a poorly
assigned accelerator would unfairly impact some workloads, which
NUMA optimization can help alleviate the issue leading to fairness
improvement. For the crossbar result in Figure 9a, AuRORA-All
improves fairness over Veltair by 1.34× on geomean and over MoCA
by 1.3× (max 1.68× and 1.57× respectively in Workload-C/QoS-H).
The memory resource management feature helps resolve shared
memory system contention whose impact differs due to different
compute-to-memory ratios of the workloads.

Table 7: Area breakdown of accelerator designwith AuRORA.

Component Area ( 𝜇m2) % of Area
CPU tile 168K 100%

AuRORA Client 2K 1.2%
Rocket CPU 166K 98.8%

Accelerator tile 732K 100%
AuRORA Manager 22K 3%
Accelerator 710K 97%

Mesh 76K 10.4%
Accumulator 260K 35.5%
Scratchpad 150K 20.5%

Total (CPU tile+Accelerator tile) 900K 100%
AuRORA Client + Manager 24K 2.7%

5.4 Real-time and QoE Analysis
AuRORA improves meeting real-time requirements. As Fig-
ure 10 shows, AuRORA-All achieves 1.61× RT score improvement
over Veltair and 1.44× over MoCA for crossbar deployment, and
2.24× over Veltair and 2.02× over MoCA for NoC deployment. Vir-
tual accelerator allocation alone (AuRORA-Compute) shows 1.57×
improvement over Veltair for the crossbar and 1.54× for the NoC
scenario, which indicates the effectiveness of AuRORA’s virtual
compute resource management.
AuRORA improves quality of experience. AuRORA’s improve-
ment of both RT and QoE scores indicates that AuRORA is able
to preserve the target FPS as well as maintain the timing require-
ments for the executed frames. As Figure 10 shows, AuRORA-All
achieves QoE improvement of 1.12× over Veltair and 1.1 ×MoCA
for crossbar, and 1.41× over Veltair and MoCA for NoC deployment.
Thus, AuRORA-All’s Overall score improves by 1.66× and 1.49×
over Veltair and MoCA for the crossbar scenario, and 2.74× and
2.45× for the NoC scenario.

5.5 Physical Design and Area Analysis
We synthesize AuRORA Manager-integrated Gemmini accelerator
and AuRORA Client-integrated Rocket CPU using Cadence Genus
with commercial 16nm process technology with the configuration
used in the evaluation. As shown in Table 7, AuRORA incurs an
overhead of 2.7% of the total area. Specifically, Client incurs 1.2%
and Manager incurs 3% of CPU and accelerator tile area, respec-
tively. Client overhead is minimal as it only needs enough bits to
track which accelerators are assigned to the current resident thread.
Manager also causes very low physical area overhead compared
to an accelerator, as the critical architectural shadowed state is
less than 100 bits of storage. The majority of its overhead is the
page table walker and TLB, which is present in any accelerator that
requires an IOMMU.

6 CONCLUSION
This work proposes AuRORA, a scalable accelerator integration
approach that enables efficient execution of multi-tenant workloads
using a virtual accelerator abstraction. Unlike existing accelerator
integrations, AuRORA optimizes for dynamic contention-aware
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scheduling of multi-tenant tasks with minimal performance over-
head with a full-stack architecture. We implement AuRORA’s mi-
croarchitecture, messaging protocol, ISA, and runtime, and demon-
strate its ability to improve end-to-end metrics for multi-tenant
DNN workloads. Our evaluation of diverse workload sets, latency
targets, and hardware deployment shows AuRORA achieves overall
SLA 2.41×, STP 1.79×, and fairness 1.41× improvement compared
to existing multi-tenant solution for NoC deployed scenario, and
overall improvement of SLA 2.02×, STP 1.33×, and fairness 1.34×
for crossbar deployed scenario, with 2.7% area overhead.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact appendix section describes how to access, exercise, and
evaluate the artifacts for each AuRORA component, as performed
in Section 5. As described in Section 4, FireSim FPGA-accelerated
simulations will be used to evaluate AuRORA in a full-stack envi-
ronment.

A.2 Artifact meta-information checklist
• Runtime environment: AWS FPGA Developer AMI 1.12.2
• Hardware: AWS EC2 instances (c5.4xlarge, f1.2xlarge)
• How much disk space is required?: 300 GB (on EC2 instance).
• Experiments: FireSim simulations of the SoCs in Section 4,
which integrate RISC-V-based DNN accelerators and CPUs
with AuRORA infrastructure, runningmulti-tenant inference
queries.
• Program: Chisel (RTL), C (Runtime, Scheduler), Python
(Script)
• Metric: Target satisfaction rate (rate for each query thatmeets

the target deadline), STP (System Throughput), Fairness, and
Real-time/QoE score metrics defined in Section 4.4.
• Output: Parsed result from UART output of SoC, perfor-
mance comparison bar plot between baselines and AuRORA
(AuRORA-All, AuRORA-Compute) for each QoS level and
Workload sets. (Evaluation Figure 7-10)
• How much time is needed to prepare the workflow?: 2 hours
(setting up FireSim manager instance and running scripted
installation).
• Howmuch time is needed to complete experiments?: 12 hours
(workload image generation, running experiment, result pars-
ing)
• Publicly available: Yes.
• Code licenses: Several, see download.

A.3 Description
A.3.1 How to access. The artifacts consist of:

(1) firesim-aurora-ae: FireSim FPGA-Accelerated RTL Simula-
tion Environment. (Zenodo: https://doi.org/10.5281/zenodo.
8354298)

(2) chipyard-aurora-ae: Chipyard RISC-V SoC Generation
Framework. AuRORA microarchitecture is included. (Zen-
odo: https://doi.org/10.5281/zenodo.8354250)

(3) gemmini-aurora-ae: Gemmini DNN accelerator hardware
(RTL) used for the AuRORA evaluation (Zenodo: https://doi.
org/10.5281/zenodo.8354236).

(4) aurora-rocc-tests-ae: AuRORA runtime and scheduler soft-
ware, scripts and tests. (Zenodo: https://doi.org/10.5281/
zenodo.8354218).

Users do not need to download the latter three repositories manu-
ally—they will be obtained automatically when the FireSim reposi-
tory is set up.

A.3.2 Dependencies - Hardware. One AWS EC2 c5.4xlarge instance
(also referred to as “manager” instance), and two f1.2xlarge in-
stances are required. We split the workload to run on two parallel
f1 instances to reduce evaluation time, one for crossbar-based SoC

and the other for NoC-based SoC. The f1.2xlarge instances will be
launched automatically by the manager instance. We have provided
prebuilt FPGA images to avoid the long latency ( ∼9 hours) of
the FPGA bitstream synthesis process. However, if users want to
build custom FPGA images, two additional z1d.2xlarge instances
are required.

A.3.3 Dependencies - Software. Use ssh or mosh on your local
machine to remotely access EC2 instances. All other requirements
are automatically installed by scripts in the following sections.
Please use a tmux session running on the manager instance to
make sure long-running jobs are not killed as our setup scripts and
tests take a long time to run.

A.4 Installation
First, follow the instructions on the FireSim website3 to create an
EC2 manager instance. You must complete up to and including
Section “Launching a Manager Instance: Key Setup, Part 2” (recom-
mend selecting c5.4xlarge as evaluation use this instance).

Once you have completed up to and including Section “Config-
uring Required Infrastructure in Your AWS Account: Key setup”
in the FireSim docs, you should have a manager instance set up,
with an IP address and key. Either do ssh or mosh to log in to
the instance. From this point, all commands should be run on the
manager instance.

For artifact evaluation, begin by downloading the top-level
FireSim repository from Zenodo:

# Enter as a single line:
$ wget -O firesim-aurora-ae.zip https://zenodo.org/

record/8354298/files/firesim-aurora-ae.zip
$ unzip firesim-aurora-ae.zip

Make sure to copy the key (firesim.pem) to /home/centos on
the launched instance. Next, run the following, which will initialize
all dependencies and run FireSim and Chipyard setup steps (RISC-V
toolchain installation, matching host toolchain installation, Linux
base image build, etc.):

$ cd firesim-aurora-ae
$ ./first-clone-setup.sh

Running the above setup script would also trigger a few prompts
(about 3), so check in occasionally.

After the script finishes running, run the following:

$ source sourceme-f1-manager.sh

Once these steps have been completed, you are fully ready to
evaluate AuRORA.

A.5 Experiment workflow
Now that our environment is set up, we will run AuRORA artifact.
First, we will begin with building the workload image for AuRORA.

3https://docs.fires.im/en/1.17.0/Getting-Started-Guides/AWS-EC2-F1-Getting-
Started/Initial-Setup/index.html

https://doi.org/10.5281/zenodo.8354298
https://doi.org/10.5281/zenodo.8354298
https://doi.org/10.5281/zenodo.8354250
https://doi.org/10.5281/zenodo.8354236
https://doi.org/10.5281/zenodo.8354236
https://doi.org/10.5281/zenodo.8354218
https://doi.org/10.5281/zenodo.8354218
https://docs.fires.im/en/1.17.0/Getting-Started-Guides/AWS-EC2-F1-Getting-Started/Initial-Setup/index.html
https://docs.fires.im/en/1.17.0/Getting-Started-Guides/AWS-EC2-F1-Getting-Started/Initial-Setup/index.html


A.5.1 Building Linux image containing workload. Step 1 is already
contained in the first-clone-setup.sh setup script. Users only
need to follow Step 2.

(1) (Skip - in setup script) On the manager instance, build the
FireSim-compatible RISC-V Linux image using a buildroot-
based Linux distribution. Follow the instructions in “Section
2.1.1 Building target software” of FireSim documentation.

(2) Run the following command to build the baselines and Au-
RORA runtime scheduler written in C on a full Linux envi-
ronment. Running the commands will generate a workload
json file in deploy/workloads.

$ ./build-ae-workload.sh

The above script will generate workload images that contain all
the test scenarios used in our evaluation. It contains two workload
images, one to run on the crossbar-based SoC and the other for the
NoC-based SoC.

A.5.2 Running FireSim simulations. Go to deploy/, and run the
workloads by following the steps below.

(1) For configurations in config_runtime.yaml, see “Section
2.1.2. Setting up the manager configuration” of FireSim doc-
umentation. Make sure to modify the following parame-
ters ((b)-(d) should be modified already, but (a) needs to be
changed manually):

(a) “f1.2xlarge: 2” under run_farm_hosts_to_use to boot
2 f1 instances.

(b) “topology: eval_hw_config” under target_config.
(c) “no_net_num_nodes: 2” to launch two f1 instances run-

ning in parallel.
(d) workload_name: gemmini-tests-workload.json.

(2) Run FireSim simulations by launching f1.2xlarge instances.
Follow the instructions in “Section 2.1.3 Launching a Simu-
lation!” of the FireSim documentation.

(3) Wait for about 10 hours for both tests to finish.
(4) The result will be copied to a directory in

deploy/results-workload. The generated result directory
will consist of two sub-directories, each for crossbar (-xbar)
and NoC (-noc) defined on Section 4.1, as each f1 instance
runs each evaluation SoC configuration. Check that uartlog
has been copied to the subdirectory.

The test scripts will run the baselines and AuRORA configurations
on 200 end-to-end turns of inference queries that are dispatched
randomly. Note that this script will not rebuild FPGA images for
the system by default, since each build takes around 8-10 hours. We
instead provide pre-built images by default on config_hwdb.yaml,
which is used in the paper’s evaluation.

Please make sure the running f1 instances are terminated by
running firesim terminaterunfarm after finishing the above
experiment steps, and confirm in your AWS EC2 management
console that no instances remain beside the manager.

A.6 Evaluation and expected results
After finishing running the workloads, follow the steps below to
parse and view the results. Following the procedure will generate

the evaluation figures (Figure 7-10), both (a) and (b). Note that non-
determinism in the Linux Kernel and workload packaging processes
may result in variations in the performance evaluations.

(1) Running the following commands on results-workload
directory will generate figures for each scenario. The re-
sulting directory on the script ($result_dir) should be the
directory that includes two sub-directories.

$ ./build_sla.sh ($result_dir)
$ ./build_fair_stp.sh ($result_dir)
$ ./build_xr.sh ($result_dir)

(2) Run the first command to parse results in Figure 7, which
is the SLA satisfaction rate of each workload set, QoS level,
and SoC deployment. It will produce 6 figures named “[SoC
type]_sla_[workload set].png”.4

(3) The second command is to parse the STP and Fairness results
as in Figure 8 and Figure 9. It will produce 6 figures named
“[SoC type]_stp_[workload set].png” for Figure 8 and
other 6 figures named “[SoC type]_fairness_[workload
set].png” for Figure 9.

(4) The last command is to parse results of Workload set-XR
in Figure 10, which evaluates RT/QoE/Overall score for
Workload set-XR. It will produce 2 figures named “[SoC
type]_xr.png”.

A.7 Experiment customization
A.7.1 Rebuilding FPGA image. Users can change the SoC configura-
tion by changing Gemmini DNN accelerator configuration or other
SoC configuration. For example, on Config.scala of Gemmini
src, users can reconfigure the internal scratchpad or accumulator
size. System configurations such as the shared L2 size, number of
Client and Manager can be changed by modifying cache param-
eters at NoCConfigs.scala. For building a new FPGA bitstream,
please follow the steps in Section “Building Your Own Hardware
Designs (FireSim Amazon FPGA Images)”5.

A.7.2 Customizing experiment parameters. Go to gemmini/
software/gemmini-rocc-tests/include, and change test pa-
rameters in workload_params.h, such as total_workloads for
total number of workloads or SEED to give change in randomly
generated workloads. Repeat appendix A.5 and appendix A.6 to get
the result.

A.8 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-
and-badging-current

• https://ctuning.org/ae/submission-20201122.html

• https://ctuning.org/ae/reviewing-20201122.html

4crossbar, noc for [SoC type] / A, B, C for [workload set]
5https://docs.fires.im/en/1.17.0/Getting-Started-Guides/AWS-EC2-F1-Getting-
Started/Building-a-FireSim-AFI.html

https://docs.fires.im/en/1.17.0/Getting-Started-Guides/AWS-EC2-F1-Getting-Started/Building-a-FireSim-AFI.html
https://docs.fires.im/en/1.17.0/Getting-Started-Guides/AWS-EC2-F1-Getting-Started/Building-a-FireSim-AFI.html
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