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Abstract

Partially occluded faces are common in many applica-
tions of face recognition. While algorithms based on sparse
representation have demonstrated promising results, they
achieve their best performance on occlusions that are not
spatially correlated (i.e. random pixel corruption). We show
that such sparsity-based algorithms can be significantly im-
proved by harnessing prior knowledge about the pixel error
distribution. We show how a Markov Random Field model
for spatial continuity of the occlusion can be integrated into
the computation of a sparse representation of the test im-
age with respect to the training images. Our algorithm ef-
ficiently and reliably identifies the corrupted regions and
excludes them from the sparse representation. Extensive ex-
periments on both laboratory and real-world datasets show
that our algorithm tolerates much larger fractions and vari-
eties of occlusion than current state-of-the-art algorithms.

1. Introduction
Occlusion is a common difficulty encountered in appli-

cations of automatic face recognition. Sources of occlu-
sion include apparel such as eyeglasses, sunglasses, hats,
or scarves, as well as objects such as cell phones placed
in front of the face. Moreover, even in the absence of
an occluding object, violations of an assumed model for
face appearance may act like occlusions: e.g., shadows due
to extreme illumination violate the assumption of a low-
dimensional linear illumination model [2]. Robustness to
occlusion is therefore essential to practical face recognition.

If the face image is partially occluded, popular recog-
nition algorithms based on holistic features such as Eigen-
faces and Fisherfaces [22, 3] are no longer applicable, since
all of the extracted features will be corrupted. If the spatial
support of the occlusion can be reliably determined (e.g.,
using features such as color [10, 11]), the occluded region
can be discarded and recognition can proceed on the re-
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maining part of the image. However, if the spatial sup-
port of the occlusion is initially unknown, one traditional
approach is to rely on spatially localized features such as
local image patches [18, 20, 1], or randomly sampled pixels
[15, 21]. Data-dependent spatially localized bases can also
be computed using techniques such as independent compo-
nent analysis (ICA) or localized nonnegative matrix factor-
ization (LNMF) [12, 16]. Clearly, such local features are
less likely to be corrupted by partial occlusion than holistic
features. However, as observed in [25], operating on a small
set of local features could discard useful redundant informa-
tion in the test image, which is essential for detecting and
correcting gross errors.

To avoid losing useful information with local feature ex-
traction, [25] casts face recognition as the problem of find-
ing a sparse representation of the entire test image in terms
of the training images, except for a sparse portion of the
image that might be corrupted due to occlusion. The ni

frontal1 training images of each subject i under varying illu-
minations are stacked as columns of a matrix Ai ∈ Rm×ni .
Concatenating the training images of all K subjects gives
a large matrix A = [A1, A2, . . . , AK ] ∈ Rm×n, (n =∑

i ni). [25] then represents the given test image y ∈ Rm

as a sparse linear combination Ax of all images in the data
set, plus a sparse error e due to occlusion: y = Ax + e.
The sparse coefficients x and sparse error e are recovered
by solving the `1-norm minimization problem

min ‖x‖1 + ‖e‖1 s.t. y = Ax + e. (1)

This approach has demonstrated good potential in handling
occlusion, especially when the dimension of the image sig-
nal is high [24]. Experiments in [25] showed that the al-
gorithm can tolerate up to 70% random pixel corruption or
40% random block occlusion while still maintaining recog-
nition rates higher than 90% on the Yale B database.

However, in experiments on face images the `1-
minimization algorithm is not nearly as robust to contiguous

1In [25], both the training and test data are assumed to be well-
registered frontal images. We also make this assumption, in order to isolate
the effect of occlusion.



occlusion as it is to random pixel corruption. On the AR
database sunglasses and scarf occlusions it achieves only
87% and 59.5% respectively. This algorithm does not ex-
ploit any prior information about the corruption or occlu-
sion (it is invariant to pixel ordering). To try to improve
performance for these cases, [25] proposed to partition the
image into blocks and compute an independent sparse rep-
resentation for each block. This significantly improves the
recognition rates (up to 97.5% and 93.5% respectively).
However, such fixed partition schemes only work for lim-
ited types of occlusion, and are less likely to scale well
to large databases, since they essentially treat small image
blocks independently.

In this paper, we propose a more principled and general
method for face recognition with contiguous occlusion. We
do not assume any explicit prior knowledge about the loca-
tion, size, shape, color, or number of the occluded regions;
the only prior information we have about the occlusion is
that the corrupted pixels are likely to be adjacent to each
other in the image plane. The goal of this paper is to show
how to effectively incorporate this prior information into
the sparse representation framework, significantly improv-
ing its robustness to all types of realistic occlusions.

2. Motivation for imposing local spatial conti-
nuity for sparse error correction

Before introducing a model for the contiguous occlusion
and incorporating it into a solution for face recognition, let
us first justify why imposing spatial continuity could poten-
tially help with finding the sparse errors (in our case, the oc-
cluded pixels). As discussed above, face recogntion can be
cast as a problem of recovering an input signal x ∈ Rn from
corrupted measurements y = Ax + e, where A ∈ Rm×n

with m > n. Let F be a matrix whoose rows span the left
nullspace of A2. Applying F to both sides of the measure-
ment equation gives

ỹ
.= Fy = F (Ax + e) = Fe.

So the recovery problem is reduced to the problem of re-
constructing a sparse error vector e from the observation
Fe. While this problem is very hard in general, in many
situations solving the convex relaxation

min ‖v‖1 s.t. Fv = ỹ = Fe

exactly recovers e.
Candes et. al. [6] have characterized the recoverability

of the sparse solution to the above problem in terms of the
restricted isometry property (RIP) of the matrix F . The k-
restricted isometry constant δk ∈ R is defined as the small-
est quantity such that for any k-sparse x,

(1− δk)‖x‖2 ≤ ‖Fx‖2 ≤ (1 + δk)‖x‖2. (2)
2rank(F ) = m− rank(A) and FA = 0

A typical result states `1-minimization is guaranteed to re-
cover any k-sparse x whenever the matrix F satisfies δ2k <
1. Notice that this argument treats every possible k-sparse
supports equally. However, in many applications, we have
prior information about the distribution of the supports. To
extend the theory to such structured sparsity, [8] introduced
the (k, ε)-probabilistic RIP (PRIP). A matrix F is said to
satisfy the PRIP if there exists a constant δk > 0 such that
for a k-sparse signal x whose support is a considered as a
random variable, (2) holds with probability ≥ 1− ε.

Based on results from Compressed Sensing theory, for
a randomly chosen matrix to have RIP of order k requires
at least m = O(k log(n/k)) measurements [6]. However,
it has been shown that a matrix can have PRIP of order k
with only m = O(k + log(D)) measurements, where D
is the cardinality of the smallest set of supports of size k
for which the probability that the support of a k-sparse sig-
nal x does not belong to the set is less than ε [8]. Then
for distributions that allow a small D, the required number
of measurements essentially grows linearly in k, much less
than the general case. The distribution of contiguous sup-
ports precisely falls into this category3. Thus, we should ex-
pect to recover sparse errors with such supports from much
fewer measurements. Or equivalently, from a fixed number
measurements, we should expect to correct a larger fraction
of errors from `1-minimization if we know how to properly
harness information about the distribution.

3. Using a Markov random field assumption to
impose local spatial continuity of the error
support

Consider the error vector e ∈ Rm incurred by some con-
tiguous occlusion. Its nonzero entries should be both sparse
and spatially continuous. Given an error vector e ∈ Rm,
we let s ∈ {−1, 1}m denote its support vector. That is,
s[i] = −1 when e[i] = 0 and s[i] = 1 when e[i] 6= 0. The
image domain can be considered as a graph G = (V,E),
where V = {1, . . . ,m} denotes the set of m pixels and E
denotes the edges connecting neighboring pixels.

The spatial continuity among the corrupted pixels (and
also the uncorrupted pixels as well) can then be modeled by
a Markov random field (MRF). We adopt the classical Ising
model for the probability mass function of error supports s:

p(s) ∝ exp
{ ∑

(i,j)∈E

λijs[i]s[j] +
∑
i∈V

λis[i]
}
. (3)

Here, λij controls the interaction between support values
s[i] and s[j] on neighboring pixels and λi indicates any
prior information about the supports. In this paper, we fix
λ ≥ 0 and let

3Simple counting arguments similar to that in [8] indicate that D can
be upper-bounded by a polynomial of the dimension m.



Figure 1. Approximation to the likelihood of e given the error sup-
port. Left: p(e|s = −1) (unoccluded pixels). Right: p(e|s = 1)
(occluded pixels).

λij = λ ∀ (i, j) ∈ E, and λi = 0 ∀ i.

The first condition means that each pair of neighboring pix-
els exert the same influence on each other, while the second
condition indicates that we do not make any additional prior
assumptions about the locations of the erroneous pixels.

The Ising model makes the fundamental assumption that
the pixel values are independent of each other given the sup-
port. Hence we can write down the joint probability density
function of the error vector e in exponential form as:

p(e, s) = p(s)p(e|s) = p(s)
∏

i

p(e[i]|s[i])

∝ exp
{∑
(i,j)∈E

λs[i]s[j] +
∑
i∈V

log p(e[i] | s[i])
}
.

We normalize the range of error values to [0, 1], and ap-
proximate the log-likelihood function log p(e[i] | s[i]) as
follows:

log p(e[i] | s[i] = −1) =
{
− log τ if |e[i]| ≤ τ ,
log τ if |e[i]| > τ,

log p(e[i] | s[i] = 1) =
{

0 if |e[i]| > τ,
log τ if |e[i]| ≤ τ .

This corresponds to the piecewise-constant likelihood func-
tion p(e | s) pictured in Figure 1. While the precise form
of the approximation is not essential to the success of the
method, in this model τ effectively acts as a threshold for
considering pixels as errors, subject to the spatial continu-
ity prior. The constant τ should be set so that it is larger
than the noise level and within-class variability of the non-
occluded pixels, but smaller than the magnitude of the er-
rors due to occlusion. In Section 3.2 we will see how this
threshold can be chosen adaptively without prior knowledge
of the statistics of the training and test images.

3.1. Error correction with both MRF and sparsity

Now consider an image y of subject k. Without occlu-
sion, it can be well-approximated as a linear combination of
training images of the same subject: y = Akxk. If, how-
ever, a portion of the image is occluded, we need to discard
that portion in order for the same linear equation to hold.
Thus, a natural goal is to identify the most likely portion on

which y = Akxk holds for some xk. In terms of the er-
ror model introduced above, we want to solve the following
optimization problem:

ŝ = arg max
xk,e,s

p(s, e) s.t. y = Akxk + e. (4)

This is a difficult nonconvex optimization problem in many
variables s, e,xk. We will locally optimize this objective
function by iterating between estimating the support s and
estimating the regressor xk, with the other fixed.

1. Estimating Linear Regressor xk with Sparsity.
Given an initial estimate of the error support s,4 we sim-
ply exclude that part, and use the rest of the image to esti-
mate the linear regressor xk. Let A∗k and y∗ denote Ak and
yk with the rows marked as occlusion (s = −1) removed.
If estimate of s was exactly correct, then we would have
y∗ = A∗kxk for some xk, and could simply estimate xk

by linear regression. However, it is more reasonable to as-
sume that the intermediate estimate of the support s could
be wrong in a subset of its entries, and some pixels in y∗

might be still corrupted. If s is a reasonable guess, however,
these violations will be relatively few and we can estimate
xk via the following convex program:

(x̂k, ê
∗) = arg min ‖e∗‖1 s.t. y∗ = A∗kx + e∗,x ≥ 0.

(5)
That is, we look for a regressor xk such that the `1-norm
of the error e∗ is minimized. The complete error vector
e ∈ Rm can then be estimated as ê = y −Ax̂k.

2. Estimating Error Support s with MRF. Given an ini-
tial estimate of the regressor xk and corresponding estimate
of the error vector e = y − Axk, we may re-estimate the
support vector s as the one that maximizes the log likeli-
hood log p(e, s):

ŝ = arg max
s∈{−1,1}m

∑
(i,j)∈E

λs[i]s[j] +
∑
i∈V

log p(e[i]|s[i]). (6)

This is an integer programming problem, but due to the spe-
cial structure of the Ising model, it can be solved exactly in
linear time, using graph cuts [13].

Empirically, we observe that the above iteration between
steps 1. and 2. converges in about five or six iterations.
Once we have obtained final estimates of the error support
s, error values e, and regressors x, we still need to iden-
tify the subject based on some measure of goodness-of-fit
within the unoccluded region. Here, we choose to assign
the test image to the class that minimizes the `1-error in that
region, divided by the square of the number of unoccluded
pixels:

identity(y) = arg min
k

‖y∗ −A∗kxk‖1
|{i | sk[i] = −1}|2

.

4We initialize the algorithm with empty error support (s = −1).



Here, squaring encourages the algorithm to choose solu-
tions with as few occluded pixels as possible.

We summarize the overall procedure as Algorithm 1 be-
low. Since this algorithm operates on each subject’s images
individually, the overall complexity is linear in the number
of subjects. Moreover, with fast implementations of both
`1-minimization and graph cuts,5 the computation time per
subject is fairly small. On a Dual-Core Intel Xeon 2.66GHz
computer, with 19 training images of resolution 96×84 per
subject, our C++ implementation requires approximately
0.3 seconds per subject.

Algorithm 1 (Sparse Error Correction with MRF)
1: Input: A matrix of normalized training samples A =

[A1, A2, . . . , AK ] ∈ Rm×n forK classes, a test sample
y ∈ Rm.

2: for each subject k do
3: Initialize the error support s

(0)
k = −1m.

4: repeat
5: A∗k = Ak[s(t−1)

k = −1, : ], y∗ = y[s(t−1)
k = −1];

6: Solve the convex program
(x̂k, ê

∗) = arg min ‖e∗‖1
s.t. y∗ = A∗kx + e∗, x ≥ 0;

7: êk ← y −Akx̂k;
8: Update error support via graph cuts:

s
(t)
k = argmax

s∈{−1,1}m

∑
i,j∈E

λs[i]s[j]+
∑
i∈V

log
(
p(êk[i]|s[i])

)
;

9: until maximum iterations or convergence.
10: Compute the normalized error

rk(y) =
‖y∗ −A∗kx̂k‖1
|{i | sk[i] = −1}|2

.

11: end for
12: Output: identity(y) = arg mink rk(y).

3.2. Choosing τ
The parameter τ in the Ising model indicates the level

of error we would accept before considering an entry of the
image as occluded. We normalize the error value to be in
the range [0, 1], so τ should also be chosen in [0, 1]. This is
not an easy task for at least three reasons. First, it is sensi-
tive to the choice of the other parameter of MRF, λ. Figure
2 shows the estimate of error supports for a face image with
scarf occlusion versus different values of τ . With λ = 3,
we can set τ = 0.05 and obtain almost perfect identifica-
tion of occluded area, but this is not true if λ = 1; in this
case we obtain many false positives. Second, the choice of
τ depends on the level of noise and within-class variation
in the training and testing data. Third, the initial solution

5Our implementation of `1-minimization is a custom interior point
method, while the graph cuts are computed with package of [5, 13, 4],
downloaded from http://www.csd.uwo.ca/˜olga/code.html.
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Figure 3. Number of entries estimated as unoccluded versus τ for
the sequence of images in the first row in figure 2. The o indicates
the point at which the algorithm detects a sudden drop and stops
decreasing τ .

to the `1-minimization problem may be somewhat unreli-
able in the presence of large amounts of occlusion. In this
case, starting with a small τ will result in many pixels being
falsely labelled as occluded early in the iteration.

We therefore choose τ adptively, starting with a rela-
tively large value, reducing it by a constant step size at each
iteration. We base our stopping criterion on the observation
that for many test images, there is a range of τ over which
the estimate of s is stable. For example, in Figure 2, any
τ between 0.2 and 0.05 is good; in the second row of Fig-
ure 2, any τ between 0.17 and 0.11 is good. As shown in
Figure 2(g) and Figure 3, this stable range is followed by a
sudden drop in the number of pixels considered unoccluded
when τ falls below a certain critical value. For our algo-
rithm, we start with τ1 = 0.17. At the ith iteration, we set
τi = τi−1−0.03. LetNi denote the number of good entries
at ith iteration. We stop decreasing τ whenNi < k×Ni−1,
i.e. when there is a sudden increase in occluded pixels. k is
an empirically chosen constant, which we set to 0.4 in our
experiments. After fixing τ , we allow the algorithm to con-
tinue iterating between estimating x and estimating s until
convergence.

3.3. Effect of λ

The parameter λ in the Markov random field model con-
trols the strength of mutual interaction between adjacent
pixels. Hence, it should correspond to the smoothness level
of error supports for each individual test image. Note that
for λ = 0, maximizing the probability of the Ising model re-
duces to simply thresholding based on τ , and our algorithm
becomes similar in spirit to reweighted `1-minimization [7],
but with a nonlinear reweighting step that more agressively
discounts occluded pixels.

We will see that even simple thresholding works quite
well in cases where the occlusion the is uncorrelated with
the face and hence relatively easy to distinguish. This is
especially true when the image resolution (i.e., the number
of measurements) is high. With fewer measurements, how-
ever, enforcing prior information about the spatial continu-



(a) (b) (c) (d) (e) (f) (g)
Figure 2. Effect of τ . Left: test image from AR database, occluded by scarf. Right: estimated error supports for varying τ . First row:
λ = 3. Second row: λ = 1. (a) τ = 0.2, (b) τ = 0.17, (c) τ = 0.14, (d) τ = 0.11, (e) τ = 0.08, (f) τ = 0.05, (g) τ = 0.02.

(a) (b) (c) (d)
Figure 4. Recovering a face image in Yale database from synthetic
occlusion with λ = 3. Top: first iteration, Middle: second itera-
tion, Bottom: final result. (a) Test image with 60% occlusion. (b)
Estimated error e. (c) Error support estimated by graph cuts. (d)
Reconstruction result.

ity of the error supports by properly choosing λ is essential.

4. Simulations and Experiments
In this section, we conduct experiments using three

publicly available databases. Using the Extended Yale B
database [9, 14], we will investigate the breakdown point of
our algorithm under varying levels of (synthetic) contigu-
ous occlusion. In this setting, the algorithm maintains high
recognition rates up to 80% occlusion. Then with AR Face
database [19], we will show that this good performance car-
ries over to more realistic occlusions such as sunglasses and
scarves, and furthermore, that by exploiting knowledge of
the spatial distribution of the occlusion, one can recover an
occluded face from far fewer measurements (i.e., lower res-
olution images). Finally, we test algorithm with a database
obtained from the authors of [23], which contains multiple
categories of occluded test images taken under realistic il-
lumination conditions.

Recognition with synthetic occlusion. For this experi-
ment, we use the Extend Yale B database to test the robust-
ness of our algorithm to synthetic occlusion. Among 1238
frontal face images of 38 subjects under varying laboratory
lighting conditions in Subset 1, 2 and 3 of Extended Yale B
database, we choose four illuminations from Subset 1 (mild

illuminations), two from Subset 2 (moderate illuminations)
and two from Subset 3 (extreme illumiations) for testing and
the rest for training. The total numbers of images in training
and testing sets are 935 and 303, respectively. The images
are cropped to 96× 84 pixels.

To compare our method with the algorithm in [25], we
simulate various levels of contiguous occlusion from 10%
to 90% by replacing a random located block of a face image
with the image of a baboon. Figure 4(a) shows an example
of a 60% occluded face image. Figure 4(c) illustrates the
iterative estimates of the error supports with λ = 3. For this
test image, convergence occurs after six iterations.

We compare our result to the algorithm in [25] as well as
other baseline linear projection based algorithms, such as
Nearest Neighbor (NN), Nearest Subspace (NS) and Lin-
ear Discriminant Analysis (LDA). Since these algorithms
do not consider the special structure of the error supports,
they are not expected to work well for high levels of occlu-
sion. For this experiment, we choose λ = 3 for our algo-
rithm. The results for our algorithm are listed in Table 1. We
compare the results of all five algorithms in Figure 5(a). Up
to 70% occlusion, our algorithm performs almost perfectly,
while the recognition rates for all the other algorithms fall
below 50%. Even with 80% occlusion, only 11.5% of im-
ages are misclassified. This is quite surprising because to
the human eye, a face image is barely recognizable if the
block occlusion is more than 60%.
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Figure 5. Recognition with synthetic occlusion on the Yale dataset.
(a) The recognition rate for various algorithms with 10% to 90%
occlusion. Our algorithm remains perfect at 70% occlusion while
all the other algorithms drop below 50%. (b) Results of our algo-
rithm with different choices of λ.



Percent occluded 10% 20% 30% 40% 50% 60% 70% 80% 90%
Recognition rate 100% 100% 100% 100% 100% 100% 99.7% 88.5% 40.3%

Table 1. Recognition rates on the Extended Yale B dataset with varying level of synthetic occlusion (λ = 3).

In Figure 5(b) we show the results of our algorithm for
λ = 0, 1, 2, 3, 5. All the choices work upto 80% occlusion
with above 80% recognition rates. However, compared to
setting λ = 0 and ignoring the spatial structure of the er-
ror, enforcing continuity by setting λ = 3 results in an 8%
increase in recognition rate for the 80% occlusion case.

Finally, instead of using a single block as occlusion, we
test our algorithm with occlusion by multiple small blocks.
We consider three block sizes, 8× 8, 16× 16, and 32× 32.
For each fixed block size, we add blocks to random selected
locations of the original face images until the total amount
of coverage achieves a desired occlusion level. Example
test images for each block size are shown in Figure 6. Table
2 reports the recognition rate as a function of block size and
λ. Notice that λ = 2 provides uniformly good results (>
92% recognition for all cases). As expected, for small λ the
recognition performance decreases with increasing spatial
continuity (block size), while for large λ the recognition
performance improves as the block size increases.

(a) (b) (c)
Figure 6. Test images with multiple-block occlusion. (a) 32 × 32
blocks. (b) 16× 16 blocks. (c) 8× 8 blocks. All images are 80%
occluded.

Block Size λ = 0 λ = 1 λ = 2 λ = 3 λ = 5

32× 32 89.4 88.8 92.7 86.5 68.6
16× 16 92.1 93.7 93.7 85.8 68.65
8× 8 90.4 94.4 96.0 85.2 29.7

Table 2. Recognition rates with 80% occlusion by multiple blocks.

Recognition with disguises. We next test our algorithm
on real disguises using a subset of the AR Face Database.
The training set consists 799 unoccluded face images of
100 subjects (about 8 per subject) with varying facial ex-
pression. We consider two test sets of 200 images each.
The first test set contains images of subjects wearing sun-
glasses, which cover about 30% of the images. The second
set contains images of subjects wearing a scarf, which cov-
ers roughly half of the image.

An example from the scarf set is shown in Figure 7(a).
Figure 7(c) illustrates the iterative estimates of the error
supports with λ = 3. The algorithm converges after six
iterations and the occluded part is correctly identified. Note
that this is a harder case than the synthetic occlusion. At
the first iteration, one can tell from the eye area that the re-
construction result is biased by the occlusion. By gradually
locating the scarf part with a smoothness constraint, the al-
gorithm is able to give a much better reconstruction based
on the unoccluded part after several iterations.

(a) (b) (c) (d)
Figure 7. Recovering a face image with scarf occlusion. Top: first
iteration, Middle: second iteration, Bottom: final result. (a) Test
image. (b) Estimated error. (c) Estimated error support. (d) Re-
construction result.

We consider the effect of varying λ and image resolution:
in addition to testing on the full size images (83 × 60), we
reduce the image size to 50% (42 × 30), 25% (21 × 15)
and 15% (13 × 9). Figure 8(a) plots the recognition rates
for scarf images as a function of resolution, for each λ ∈
{0, 1, 2, 3}. For the full size images, we achieve 95.0%,
97.0%, 97.0% and 97.5% recognition rates6 with λ =0, 1,
2, and 3, respectively, about 4% higher than the result of
[25] and on par with [10]. Notice that the recognition rate
is relatively insensitive to the choice of λ in the case.

In fact, for high-resolution images, the data still contains
enough information to efficiently determine the identity of
the subject without exploiting prior knowledge about the
location of the occlusion. However, as the dimension de-
creases, the use of prior knowledge of the error supports be-
comes much more important. As shown in Figure 8(a), with
13 × 9 images the best recognition rate, 88%, is achieved
with λ = 2. As expected, the performance degrades by
34% when the λ is too small (λ = 0) or by 11.5% when the
λ is too large (λ = 3).

Figure 8 (b) plots the results for images occluded by sun-
glasses. With full 83× 60 images, the recognition rates are
99.5%, 100%, 99.0%, 99.0% with λ =0, 1, 2, and 3 respec-
tively, compared to 93.5% for [25]. With severely down-
sampled (13×9) images, we again achieved the best results
(89.5%) by setting λ = 2 and exploiting spatial continuity
of the error.

Comparison with morphological filtering. Figure 8(a)
also compares our algorithm to a simple alternative based

6Because the dark scarf occludes as much as half of the image, for cer-
tain subjects not pictured in the test image, there is a degenerate solution
that considers the scarf as the correct signal (with very small magnitude,
x̂k ≈ 0) and the remainder of the face as error. For this dataset we penal-
ize such solutions by dividing the normalized error by ‖x̂k‖1.
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Figure 8. Recognition with disguises. (a) Scarf occlusion. (b) Sun-
glasses occlusion. In both cases, λ = 2 outperforms other choices
of λ when the image resolution is low.
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Figure 9. ROC curve for outlier rejection. (a) 60% occlusion. (b)
80% occlusion. Our algorithm (red curve) is perfect for 60% oc-
clusion, and is the only algorithm significantly better than chance
with 80% occlusion.

on morphological filtering. The idea is to replace the MRF
and graph cuts step of our algorithm with a step that thresh-
olds the error and then applies open and close operations to
the binary error support map [17]. These operations supress
small, disconnected regions of error. Figure 8(a) contains
variants of this morphological alternative: one based on a
fixed threshold τ = 0.2 and one based on a similar adaptive
thresholding strategy that starts at τ = 0.2 and linearly de-
creases it by 0.03 at each iteration. We started with a disk of
radius 6 as the structuring element at the original resolution
and shrunk it in proportional to the resolution of the image.
In both cases, the number of iterations is fixed at 4, and the
algorithm parameters are chosen to achieve optimal test per-
formance. Figure 8(a) plots the results of both variants as a
function of image resolution. In all cases, the MRF-based
approach achieves superior performance to the simple alter-
native outlined here. However, the difference is much larger
for low-resolution images (54% at 13×9, compared to only
2% at 83×60), again highlighting the importance of spatial
information when the number of measurements is small.

Subject validation. We next test our algorithm’s abil-
ity to reject invalid test images (subjects not present in
the database) despite significant occlusion. We declare
an image to be invalid if the smallest normalized error
mink ‖y∗ −A∗kx̂k‖1/|{i | sk[i] = −1}|2 exceeds a thresh-

old. We divide the Extended Yale B dataset into two parts.
The training database contains the images of the first 19
subjects, while the other 19 subjects are considered invalid
and should be rejected. Figure 9 plots the receiver operat-
ing characteristic (ROC) curve for each algorithm with 60%
and 80% occlusion. Our algorithm performs perfectly up to
60% occlusion. At 80% occlusion, our algorithm still sig-
nificantly outperforms all the other algorithms and is the
only algorithm that performs much better than chance.

Experiments with realistic test images. Finally, we
compare our algorithm to [25] on a large face database
with test images taken under more realistic conditions. The
database, which we obtained from the authors of [23], con-
tains images of 116 subjects. For each subject, 38 frontal-
view training images under varying illumination are pro-
vided. The test set consists of a total of 855 images taken
under realistic illumination conditions (indoors, outdoors),
with various occlusions and disguises. The test set has been
divided into five categories: normal (354 images), occlu-
sion by eyeglasses (118 images), occlusion by sunglasses
(126 images), occlusion by hats (40 images), and occlusion
by various disguises (217 images). Figure 10 shows a few
representative examples from each of these categories.

The test images are unregistered, with mild pose vari-
ations. Since both our algorithm and [25] assume well-
aligned testing and training, we perform registration before
comparing the two algorithms. We align each test image
with the training images of the true subject using an itera-
tive registration algorithm proposed in [23], initialized by
manually selected feature points. Registering the test im-
age to training images of the true subject (as opposed to
separately registering to the training of each subject) may
artificially inflate the absolute recognition rate, but does not
introduce any obvious bias toward either of the algorithms.
Our goal here is simply to demonstrate the improved oc-
clusion handling over [25] that comes from incorporating
spatial information about the error.

We apply both algorithms7 to the registered test images.
Informed by results on public databases in the previous sec-
tion, we fix λ = 3 in Algorithm 1. Table 3 shows the recog-
nition rates of both algorithms on each category. For oc-
clusion by sunglasses, our algorithm outperforms [25] by
15.4%, with similar improvements for hats and disguises.
The overall recognition rates of both algorithms are lower
for these categories, both due to the more challenging na-
ture of the occlusion and due to failures at the registration
step (see Figure 11). For images that are not occluded, or
occluded only by eyeglasses, the recognition rate of our al-

7We consider a more scalable variant of [25] that first regresses against
the training images of each subject separately, and then classifies based
on a global sparse representation in terms of the training images of the
10 subjects with the lowest representation error. For fairness, we enforce
nonnegativity x ≥ 0 in both algorithms.
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Figure 10. Example images from the five test categories.

Normal Glasses Sunglasses Hats Disguises
Algm. 1 91.4 90.9 81.0 55.0 43.6

[25] 99.4 98.3 65.6 40.0 37.8
Table 3. Recogntion rates on real data. Our algorithm outperforms
[25] for all categories of significant occlusion.

Figure 11. Images from the sunglasses category where the align-
ment method of [23] failed, resulting in misclassificaion.

gorithm exceeds 90%, but is lower than that of [25]. No-
tice, however, that in these experiments we have reported
results with a single, fixed value of λ. In practice, different
tradeoffs between robustness to contiguous occlusion and
recognition rate on unoccluded images can be achieved by
varying this parameter.

5. Future work
The most important issue for future work is how to per-

form robust alignment in the presence of large occlusions,
e.g., by integrating a deformation model into the regression
step of our algorithm. It remains to be seen to what extent
such deformations are compatible with the MRF prior.
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