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ABSTRACT

In this paper, we propose a new Distributed Video Coding
algorithm based on Compressive Sampling principles. The
encoding algorithm transmits a set of measurements of every
frame block. Using these measurements, the decoder finds
an approximation of each block as a linear combination of a
small number of blocks in previously transmitted frames. Ex-
perimental results show that the coding efficiency of our al-
gorithm is close to the efficiency of Distributed Video coders
based on Wyner-Ziv techniques.

Index Terms— Compressive sampling, Wyner-Ziv video
coding, distributed video coding, sparse representations.

1. INTRODUCTION

Distributed Video Coding (DVC) is a new coding paradigm
for those applications where the coding resources are more
limited at the encoder than at the decoder [1]. Hence, in DVC,
encoders are much less complex systems than their correspon-
dent decoders. This complexity distribution is achieved by
performing intra-frame encoding and inter-frame decoding.

The most popular DVC technique is Wyner-Ziv Video
(WZV) coding. In WZV coding, frames are intra-frame en-
coded but are conditionally decoded using side information
(SI). The decoder obtains the SI of a frame by extrapolat-
ing or interpolating previously decoded frames [1]. In each
frame, the WZV encoder applies a channel code (usually a
turbo code or a LDPC code) to the frame and transmits a por-
tion of the resulting parity bits. The decoder uses the received
parity bits and the SI of the frame to perform its decoding.

In this paper, we propose a DVC scheme based on Com-
pressive Sampling (CS) principles. CS is a novel paradigm
that allows the recovery of sparse signals from fewer samples
or measurements than traditional methods [2,3]. Our proposal
of using CS in video coding is motivated by the fact that, gen-
erally, the pixels of a block in a video frame can be accurately
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predicted by using a linear combination of a small number of
blocks in other frames (in many cases, a single block suffices).
This property justifies the use of motion compensated predic-
tion in most video coders [4]. Hence, frame blocks are sparse
signals when they are represented as linear combinations of
blocks in other frames, and according to the CS theory, they
can be approximately recovered from a small number of block
measurements.

Our CS encoder divides each frame into non-overlapping
blocks. Then, it obtains, quantizes, and transmits a proper
set of measurements of each block. Using the received mea-
surements, the decoder obtains an approximation of the block
as a linear combination of blocks from previously transmitted
frames. As our algorithm performs intra-frame encoding but
inter-frame decoding, it is a DVC technique that can be used
in applications that require low complexity encoding.

2. COMPRESSIVE SAMPLING

In this section, we review the basics of the CS of discrete sig-
nals [2, 3]. Let x ∈ Rn be a discrete signal and let u be its
coefficients in some orthonormal basis {ψi}, i ∈ {1, . . . , n}.
Then, u = Ψx where the representation functions ψi are the
rows of the n×n matrix Ψ. If only k of the n coefficients are
different to zero, then x is said to be k-sparse with respect to
Ψ. A k-sparse signal can be efficiently compressed by encod-
ing the position and the values of the non-zero coefficients if
k � n. However, this acquisition-compression process is in-
efficient because while n signal samples have to be acquired,
only a small number k of coefficients are delivered by the en-
coder system.

CS improves the acquisition-compression process of
sparse signals. In CS, instead of encoding the non-zero k
coefficients of a k-sparse signal x, we encode the values of
m < n measurements of x. The vector of measurements
y ∈ Rm is obtained through

y = Φx

where the rows of the m × n matrix Φ are called measure-
ment functions {φi}. The recovery of the coefficients from



the measurements can be made by searching for the set of
coefficients with the minimum `0 norm that agrees with the
measurements:

min ‖u‖0 subject to y = ΦΨTu. (1)

Unfortunately, this optimization problem is intractable for
typical values of n. CS theory establishes that if m > ck
where c > 1 is an overmeasuring factor, the solution to (1)
can be found by solving the problem

min ‖u‖1 subject to y = ΦΨTu. (2)

This problem can be recast as a linear program that can be
efficiently solved. The minimum number of measurements
necessary to recover the k non-zero coefficients of x depends
on k, n, and the degree of incoherence between the sets {φi}
and {ψi} [2].

In practice, signals of interest are not sparse but approx-
imately sparse, i.e., their coefficients are generally different
to zero, although only a small number of them have signifi-
cant amplitude values. Under some conditions, the solution to
problem (2) can still recover the most significant coefficients,
and hence, provide a good approximation of the signal [2].
Another problem is that, in practice, all the measurements will
be corrupted by noise. To deal with noisy measurements, we
can solve the problem

min ‖u‖1 subject to ‖y − ΦΨTu‖2 ≤ ε (3)

where ε bounds the amount of noise. Problem (3) can be re-
formulated as

min
(
λ‖u‖1 + ‖y − ΦΨTu‖2

)
(4)

where λ > 0 trades off measurement fidelity and sparsity.
Both `1 regularization problems (3) and (4) can be efficiently
solved.

The application of CS to the source coding of a sparse sig-
nal is straightforward [5]. The encoder first obtains the vector
y of measurements of the signal to encode x. Then, it quan-
tizes and encodes the measurements generating a bitstream.
The decoder first decodes the bitstream and dequantizes the
quantization indexes, which provides a reconstructed mea-
surements vector ŷ. Finally, the decoder performs `1 regu-
larization using the measurement vector ŷ. Nevertheless, this
CS-based coder has a worse coding efficiency than the direct
encoding of the position and the value of the significant coef-
ficients of x [5].

3. DVC BASED ON COMPRESSIVE SAMPLING

The general CS-based source coder proposed in Section 2 can
be applied to video compression. As the CS encoder is simple
(measurement and quantization) and the CS decoder is com-
plex (`1 regularization), a CS video coder is a DVC technique

that can be used in video applications that require low com-
plexity encoding.

To reduce the number of measurements to be transmit-
ted, a representation matrix Φ that maximize the sparsity of
video signals should be chosen. Frame blocks are approxi-
mately sparse signals if Φ is built using the basis vectors of
the Discrete Cosine Transform (DCT) or a Discrete Wavelet
Transform. This property is the basis of the algorithms used
to compress frames in intra mode (I-frames). The degree of
sparsity can be improved even more if Φ is made from blocks
from other frames. In fact, this explains the success of mo-
tion compensated prediction in video coding, where a block
can be predicted using one block (as in P-frames), or using
the average of two blocks (as in B-frames) or using a linear
combination of an arbitrary number of blocks (as in multihy-
pothesis prediction [4]). In our CS video coder, we will build
the Φ of each block by picking those blocks from previously
transmitted frames that can be more useful in its recovery.
Note that the representation functions used in our CS coder
do not constitute a fixed and orthonormal basis as in most CS
applications, but rather an adaptive and redundant dictionary
of signals.

Differently to Φ, matrix Ψ must be the same in all blocks
in order to keep the complexity of the CS encoder low. Ad-
ditionally, Ψ should have a high degree of incoherence with
all the Φ matrices of all the blocks. By using a fixed Ψ whose
entries are drawn randomly from a distribution, the incoher-
ence will be high with most Φ matrices, and the complexity
of the encoder will be kept low.

Figure 1 shows the block diagram of our CS video coder.
In our coder, video frames are organized into K-frames and
CS-frames. The K-frames are coded using a conventional
intra-frame coder while the CS-frames are coded using CS
principles. In the encoding of a CS-frame, the frame is first
divided into non-overlapping square blocks of pixels. In each
block x, the encoder first obtains a vector y of m measure-
ments by using a matrix Ψ (y = Ψx). Then, the measure-
ments are quantized using a fixed-rate uniform quantizer and
the resulting bits are transmitted. To decode a block, the de-
coder first dequantizes the measurements obtaining a recon-
structed measurement vector ŷ. Then, the decoder builds a
matrix Φ whose rows are the vectors of a dictionary. The
dictionary contains those decoded blocks from previously de-
coded frames that lie in a window. The window is a square re-
gion centered in the position of x. Using Φ and ŷ, the decoder
recovers an approximation x̂ of x. Finally, all the recovered
blocks of the frame are put together providing the decoded
CS-frame. Note that, similarly to WZV coding, neither the
CS encoder nor the CS decoder can compute the decoding er-
ror of each block. In our CS coder, the transmitted measure-
ments are used to estimate the quality of the decoded video
and to make some coding mode decisions.
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Fig. 1. Block diagram of our CS-based video coder.

To achieve a good rate-distortion performance, the en-
coder should transmit the minimum number of measurements
of each block that guarantees an accurate recovery. Unfortu-
nately, an accurate measurement allocation would highly in-
crease the complexity of the encoder, which is not possible in
DVC. Similarly to most DVC algorithms [1, 6], we solve the
allocation problem by using a buffer together with a feedback
channel (Figure 1). In this setup, the encoder first saves in a
buffer the maximum number of quantized measurements of
each block that it is able to transmit. Then, for each block,
the encoder sends a small group of encoded measurements to
the decoder, which then performs recovery. If the decoder es-
timates that the decoding error is too large, then it requests
the transmission of another group of measurements using the
feedback channel. This transmission-request process is re-
peated until the estimated decoding error is small enough.
The feedback channel solves the allocation problem but in-
creases the decoding latency and cannot be used in unidirec-
tional or non-real time applications.

There are two situations where blocks are recovered with-
out performing l1 regularization. If a block x has changed
very little with respect to its co-located block in the previous
decoded K-frame, our encoder does not transmit any mea-
surement and the recovery is done by copying the co-located
block. We refer to this coding mode as SKIP mode. Be-
fore transmitting any information, the encoder sends a bit in-
dicating whether or not the block is encoded in this mode.
Although deciding if a block must be skipped increases the
complexity of the encoder, the use of this coding mode have
several advantages. Thus, in skipped blocks, the rate is very
small (1 bit/block), the decoding complexity is drastically re-
duced, and the feedback channel is not used. To decide if
a block x must be skipped, the encoder computes the mean
absolute difference d0 between x and the co-located block in
the previously decoded K-frame. Then, if d0 is smaller than a
threshold t0, the block is skipped.

Some blocks are accurately approximated by just copy-

ing one block of the dictionary. This speeds up the decoding
since the search for the best block is less complex than the
`1 regularization. Since the original block is not available at
the decoder, our algorithm uses its measurements to perform
the search for the best block. Specifically, if the encoder has
decided not to encode a block in SKIP mode, it transmits its
first m1 measurements. Then, the decoder compares the re-
ceived measurements with the m1 first measurements of each
block in the dictionary and selects the block with the mini-
mum mean square error (MMSE). If the MMSE is below a
threshold d1, then the selected block is considered to be the
decoded block, and the decoder informs the encoder not to
transmit more measurements for this block. We refer to this
coding mode as SINGLE mode.

If a block is not encoded in either SKIP or SINGLE mode,
then it is encoded in L1 mode. In this mode, the encoder iter-
atively request groups of measurements through the feedback
channel and performs `1 regularization until the estimated de-
coded quality is high enough.

4. EXPERIMENTAL RESULTS

In this section, we test the coding efficiency of our CS-
based coding algorithm and compare the results with an-
other WZV coding algorithm. We implemented a CS-based
video coder with the structure shown in Figure 1. As in [6],
in this coder, the odd frames were considered as K-frames
and the even frames were considered CS-frames. In our ex-
periments, we assumed K-frames are losslessly available at
the decoder. Note this configuration is the same as the one
used in [6] where odd frames are encoded using WZV cod-
ing instead of CS principles. In our CS encoder, CS-frames
were divided into blocks of 16 × 16 pixels. The rows of
Φ were samples of an i.i.d. symmetric Bernoulli distribu-
tion (Prob{Φi,j = ±1} = 1/2). Therefore, the measure-
ment process only implied pixel additions and subtractions.
Each measurement was quantized using a uniform quantizer
of b = 8 bits. In blocks encoded in L1 mode, the decoder was
allowed to make only one request of m2 additional measure-
ments. In the blocks coded in this mode, the `1 regularization
problem in (4) width m1 + m2 measurements was solved.
The dictionary of each block included those blocks in the two
closest K-frames that were lying in a square window with a
width of w = 21 pixels.

Two test sequences with QCIF resolution (176× 144 pix-
els/frame) and a frame rate of 30 frames/second were used.
In all the encodings, only the luminance component was con-
sidered. As in [6], we encoded the first 101 frames (51 K-
frames and 50 WZ-frames) of the sequences Foreman, and
Mother and Daughter using our CS coder. To obtain sev-
eral rate-distortion points, each sequence was encoded using
different values of the parameters d0, d1, m1, and m2. The
PSNR values (in dB) and the rate values of the CS-frames
were computed and averaged (the rate values were computed



considering that the WZ-frame rate was 15 frames/second).
The values are shown in Figures 3 and 4. These figures also
show the performance of the WZV coding algorithm in [6],
with the same sequences and coding setup.

Figure 2 shows three different encodings of a frame of
Foreman. Figure 2 (b) shows the result of selecting the dic-
tionary block with the MMSE for each frame block. This
decoding cannot be done in a real decoder since it does not
have access to the original frame blocks. Figure 2 (c) shows
the result of encoding all the blocks in SINGLE mode using
m1 = 15 measurements. This encoding suffers a loss in qual-
ity with respect to the previous one since the MMSE block is
not always selected when m1 = 15 measurements are used to
perform the search. Note that while the quality in the moving
background is good (these blocks have translational motion
and, hence, the SINGLE coding mode provides good recover-
ies), the blocks of the head were poorly decoded. Figure 2 (d)
shows the decoded frame using our CS coder with m1 = 15
andm2 = 20. In this frame, most blocks of the head were en-
coded in L1 mode, which considerably improved the quality
in this region.

(a) (b)

(c) (d)

Fig. 2. Different decodings of a frameof Foreman: (a) original,
(b) using the MMSE block (30.3 dB), (c) using SINGLE mode with
m1 = 15 (28.9 dB), (d) using our coder with m1 = 15 and m2 = 20
(34.7 dB).

Note in Figure 3 that, in Foreman, our algorithm performs
much worse than the WZV coding algorithm of [6] at very
low rates. This is due to the fact that, in the WZV coder,
the starting quality when no parity bit is transmitted (i.e., the
quality of the SI) is high. In our CS coder, however, no SI is
explicitly available at the decoder, and the decoder only per-
forms well when a large enough rate is used. Our algorithm
performs well at low and mid rates in Mother and Daughter
(Figure 4) because in this sequence, most blocks are encoded
in SKIP mode. Note that, in Figures 3 and 4 that, the slope of

the rate-distortion function at high rates is smaller in our al-
gorithm than in the WZV coder. This is a consequence of the
model-based nature of our coder which limits the maximum
video quality that can be achieved.
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Fig. 3. Rate-distortion performance with Foreman
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Fig. 4. Rate-distortion performance with Mother and Daughter
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