Towards a robust face recognition system using compressive sensing
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Abstract

An application of compressive sensing (CS) theory in image-
based robust face recognition is considered. Most contemporary
face recognition systems suffer from limited abilities to handle
image nuisances such as illumination, facial disguise, and pose
misalignment. Motivated by CS, the problem has been recently
cast in a sparse representation framework: The sparsest linear
combination of a query image is sought using all prior training
images as an overcomplete dictionary, and the dominant sparse
coefficients reveal the identity of the query image. The ability to
perform dense error correction directly in the image space also
provides an intriguing solution to compensate pixel corruption
and improve the recognition accuracy exceeding most existing
solutions. Furthermore, a local iterative process can be applied
to solve for an image transformation applied to the face region
when the query image is misaligned. Finally, we discuss the
state of the art in fast £;-minimization to improve the speed of
the robust face recognition system. The paper also provides
useful guidelines to practitioners working in similar fields, such
as acoustic/speech recognition.

Index Terms: face recognition, compressive sensing, ¢i-
minimization

1. Introduction

Face recognition has been a classical problem in pattern recog-
nition. The main research can be categorized in two closely re-
lated areas. First, due to the concern of high dimensionality in
the facial image space, investigators are interested in searching
for effective dimensionality reduction methods to extract use-
ful image features, either holistic [1, 2] or local [3, 4], to con-
cisely represent the appearance of facial images. These low-
dimensional vector representations are often called face fea-
tures. Second, most existing classifiers have been applied to
face recognition using the extracted face feature space, includ-
ing nearest neighbor (NN) and support vector machines (SVM).

Although human perception is known to be very effective
in identifying human subjects from facial images, most contem-
porary face recognition systems have failed to achieve equally
good recognition accuracy. It is well understood that the per-
formance is affected by image nuisances, including illumina-
tion, pixel corruption, facial disguise, and 3-D pose variation
(as shown in Figure 1). Traditional methods would have dif-
ficulty in compensating these nuisances in the image space or
extracting robust face features that are not sensitive to the nui-
sances.
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Figure 1: Examples of image nuisances in face recognition.
Left: Illumination. Middle Left: Pixel corruption. Middle
Right: Disguise. Right: Occlusion and misalignment, where
an irrelevant image is superimposed to occlude the right-eye re-
gion. The green bounding box indicates the initial alignment;
the red bounding box is the final position after misalignment
correction (see Section 4).

In this paper, we provide an overview about a recent solu-
tion to robust face recognition [5, 6], which has been motivated
by the emerging theory of compressive sensing (CS) [7, 8]. The
method reformulates the face recognition problem as a sparse
representation problem. In this framework, the distribution of
multiple classes is modeled as a mixture of subspaces, one for
each class. Given C classes and a query image b (stacked in
vector form), the method seeks the sparsest linear representa-
tion of the sample with respect to all training examples:

b=[A1, Ay, -, Ac]x = Az € R?, )

where the column vectors of each A; represent training exam-
ples from the ith class. The method stipulates that if b is a
valid sample from the true class i, it satisfies a linear model
b = A;x;. Therefore, the corresponding representation in (1)
admits a sparse representation = |- - - ,07 =T o7, ... ]T S
R™: on average only a fraction of % coefficients are nonzero.
Furthermore, the dominant nonzero coefficients in « reveal the
true class of sample b, as shown in Figure 2.

05H
|
04H s
o3
[ o
=02} 1
o1f]
N N
v

TestingInput  Feature Extraction

e oy

L L L L . .
0 200 400 600 800 1000 1200

Figure 2: Sparse representation of a 12x 10 downsampled query
image, which belongs to Class 1 [5].

In addition, extensions of the basic formulation (1) also pro-
vide quite surprising results to address a wide arrange of prob-
lems in face recognition, such as dimensionality reduction, im-
age corruption, and face alignment. In certain conditions, the
performance of the new algorithm may even exceed that of hu-
man perception.



Firstly, for dimensionality reduction, if a linear projection
R is chosen to reduce the dimension of the linear model:

b = Rb = RAz = Az, 2

one can show that the recognition rates of most classical feature
spaces (e.g., principal component analysis (PCA) and locality
preserving projection (LPP) [2]) all converge to high accuracy,
if the dimension of the feature space is sufficiently high. Fur-
thermore, random projections [7, 8, 5] as an unconventional lin-
ear operator can achieve equally high accuracy compared to the
traditional operators. To this end, the choice of face features
becomes insignificant, as long as x is properly sought.
Secondly, for error corruption to compensate image corrup-
tion and disguise, a slightly modified linear constraint can be
considered:
b=Ax + e, 3)

where e is another unknown vector whose nonzero entries cor-
respond to the corrupted pixels in the observation b. One can
show that simultaneously minimizing the sparsity of & and e
can effectively compensate the corrupted pixel values in b, and
at the same time correctly classify the identity of the underly-
ing face with very high accuracy. To this end, the percentage
of corrupted pixels that the algorithm can correct approaches
100% asymptotically [9].

Thirdly, in the general setup (1), we often assume both the
training images and the query image are properly aligned to the
frontal position. In other words, salient facial features such as
the eyes, nose, or mouth are assumed to share the same im-
age coordinates, respectively. In the presence of large misalign-
ment in the query image b, the solution & may not be sparse.
Nevertheless, a local iterative process can be applied as a pre-
processing step to correct the misalignment up to some finite-
dimensional group of transformations 7" on the image plane [6]:

bor=Ax + e, 4)

where 7 € T represents a 2-D transformation applied to the
query image b. The experiment has shown that the algorithm
that primarily applies to the 2-D image plane can effectively
compensate 3-D pose variation up to +45° away from the
frontal position.

Finally, practitioners should be concerned about the compu-
tational complexity of recovering a sparse signal from systems
of linear equations (3) or (4). Traditionally, they have been for-
mulated as a linear or quadratic programming problem in con-
vex optimization, which is called basis pursuit (BP). The com-
plexity of the standard steepest descent interior-point methods
for BP is bounded by O(n?), where n denotes the number of
training examples. More recently, several first-order approxi-
mations of the linear programming problem have been proposed
[10]. These algorithms can be efficiently implemented to pro-
cess very high-dimensional data, and they are much faster than
the interior-point methods.

2. Sparsity-based Classification

For a sparse signal xo, denote k = ||zol|o as its sparsity (i.e.,
the number of nonzero coefficients). In a system of linear
equations (1), if the dictionary A is overdetermined, the solu-
tion can be uniquely determined by taking the pseudo-inverse:
x* = ATb, which is a linear least squares problem. In sparsity-
based classification (SBC), we are interested in the case where
A is underdetermined. Since the number of observations in b

is usually much smaller than the number of unknowns in x,
clearly there exist infinitely many solutions of «.

The results in CS [11, 7, 8, 12] reveal that if x is suffi-
ciently sparse and A is incoherent to the basis in which x¢ is
sparse, the solution can be uniquely recovered by solving the
following ¢;-minimization (¢1-min) program:

(P): " =argmin|z|1 subj.to b= Az. (5)

The literature of convex optimization has provided several ¢; -
min solvers that actually predate CS theory, including orthog-
onal matching pursuit (OMP)[13], basis pursuit (BP)[14], and
the LASSO[15]. In Section 5, we will discuss how to improve
the speed of ¢;-min solvers by contemporary first-order meth-
ods.

One particular problem in solving (P1) is that the dimen-
sion of a face image b may be very high.' High dimensionality
not only affects the complexity of the (P;) algorithm, but also
violates the fundamental assumption in CS that the dictionary
A shall be underdetermined. For face recognition, it means the
dimension of the images in vector form is much larger than the
number of available training examples, i.e., d > n.

Since the number of training examples n is often deter-
mined by the application, in order to maintain an underdeter-
mined dictionary A, dimensionality reduction methods can be
employed. Many well-known operators such as PCA, LDA, and
LPP can be treated as a linear projection R € RY %4 as shown
in (2). After the projection, the dimension of the system be-
comes smaller than the dimension of x, i.e., d < n.

In CS, random projections have been considered as a uni-
versal dimensionality reduction technique. In particular, R is a
Gaussian random matrix if its entries are drawn independently
from a Gaussian distribution. One can show that, in general,
random projections are incoherent to most classical orthonor-
mal basis. A short insight to this result is that with high prob-
ability, randomly generated column vectors of A are linearly
independent. We have compared the performance of the SBC
algorithm under different dimensionality reduction methods in
[5]. The results corroborate the theoretical findings in CS that
random projections perform equally well or even better than
many traditional methods when the feature space dimension is
sufficiently high (e.g., d > 500). In addition to good perfor-
mance, it is worth noting that random projections are data in-
dependent and extremely efficient to generate at any dimension
compared to other methods such as PCA and LPP.

3. Corruption and Disguise Compensation

In this section, we consider the situation where the query im-
age b may be severely corrupted or occluded. The problem is
modeled by a linear system (3) with an additional error term e.
In [5], the authors have proposed to simultaneously recover the
sparse signals  and e in the following ¢;-min problem:

min ||w|1 subj.to b= [A, Iw, (6)
where I € R4 is an identity matrix and w = [, e”]T €
R™*4 is also assumed sparse.

In (6), the new dictionary [A, I] has been dubbed as a cross-
and-bouquet (CAB) model in the following sense. The columns
of A are highly correlated, as the convex hull spanned by all

For example, a grayscale 640 x 480 image contains more than
300,000 pixels, i.e., the dimension of the linear system d >300,000.



face images only occupies an extremely tiny portion of the im-
age space R?. These training vectors are tightly bundled to-
gether as a “bouquet”’; whereas the vectors in the identity ma-
trix and their negative counterparts -/ form a d-dim “cross”, as
shown in Figure 3. A quite surprising result was shown in [9]
that accurate recovery of sparse signals z is still possible and
computationally feasible even when the fraction of corruption
approaches 100% as the dimension d goes to infinity.

Highly coherent
(volume < 1.5x 107229 )

Figure 3: The CAB model for face recognition. The raw images
of human faces expressed as columns of A are clustered with
very small variance. (Courtesy of John Wright [9])

4. Image Alignment

In addition to possible pixel corruption from the previous sec-
tion, suppose b is also subject to some misalignment (as shown
in Figure 1 Right). Therefore, the observation can be approxi-
mated as a warped image b = bo o 7! for some 2-D transfor-
mation 7. In this case, directly seeking a sparse representation
of b against properly aligned training images is no longer appro-
priate. Nevertheless, if the true deformation 7 can be efficiently
found, then we can still recover by and it becomes possible to
find a sparse representation x in (4).

Naturally, one would like to use the sparsity as a strong
cue for finding the correct deformation 7, such as simultane-
ous minimization of ||x||1 and ||e||1 as in (6). However, after
adding the unknown transformation 7 on the left-hand side, it
becomes a difficult nonconvex optimization problem. Further-
more, due to the concern of local minima, the query image b
may be aligned to multiple subjects in the database. Hence, it
is more desirable to locally seek the best alignment w.r.t. each
subject ¢ as:

7, = arg min |lell; subj.to bor =Ax+e ()

In (7), ||z||1 is no longer penalized, since A; only contains
images of the same subject. In practice, the initial values of the
transformation parameters 7 are usually obtained by apply-
ing a face detector to the test image. Then the estimate of 7 can
be iteratively refined by repeatedly linearizing (7), which leads
to a convex program:

min |le||; subj. tobor; +V,(bor;) A, = Ajxz+e. (8)

x,e,AT;

During each iteration &, the current alignment parameters Ti(k)

correct the observation as bgk) =bo Ti(k). Denote Ji(k) =
V. (bo Ti(k>), then the update A7; of the transformation esti-
mate can be computed by solving the following problem:

min |lell; subj.to b =[4;, —JFw+e, (9

where w = [, A7;]T. The convex program (9) can then be
solved by ¢;-min algorithms (with necessary modifications).

5. Fast /,-Min Algorithms

Finally, we briefly discuss the state of the art in solving the
convex program (Pp) via accelerated ¢1-min techniques. A
comprehensive review of existing fast ¢1-min algorithms can
be found in [10].

The convex program (P ) has traditionally been formulated
as a linear programming problem called basis pursuit (BP),
which has several well-known solutions via interior-point meth-
ods. However, the computational complexity of these interior-
point methods is often too high for many real-world, large-scale
applications. The main reason is that they all involve expensive
operations such as matrix factorization and solving linear least
squares.

Recently, iteraive shrinkage-thresholding (IST) methods
have been proposed as a good approximation to the exact BP
solutions. The approach is also appealing to large-scale appli-
cations because its implementation mainly involves lightweight
operations such as vector operations and matrix-vector multi-
plications, in contrast to other past ¢1-min algorithms.

In a nutshell, IST considers a variation of (P;) that takes
into account the existence of measurement errors in the sensing
process:

(P1,2): minljz|s subj.to ||b—Azx|2<e  (10)

where € is a bound on the additive white noise in b. By the La-
grangian method, (Pi,2) is rewritten as an unconstrained com-
posite objective function:

1
min F(z) = S[b— Az|[3 + M|zl = f(z) + Ag(@), (A1)

where A > 0 is a scalar parameter.

We can immediately see that the main issue in optimizing
such a composite function F'(z) is that its second term ||x||1 is
not a smooth function and therefore is not differentiable every-
where. Nevertheless, one can always approximate the objective
function in an iterative fashion as [16, 17]:

2~ argming {(z — x®) TV f(x®)
a®)

2 oM +Ag@),
where the hessian V2 f(x®)) is approximated by a diagonal
matrix a® T to further reduce the computational cost.

Then one can show that the objective function (12) has
a closed-form solution called the soft-thresholding function
[16, 17]. Furthermore, the speed of convergence from an initial
guess (% to the ground-truth sparse signal can be accelerated
by a numerical technique called the augmented Lagrange multi-
plier (ALM) [18]. For ¢1-min, ALM iteratively optimizes both
the sparse signal « and the Lagrange multiplier y:

min (|| -+ o el + 55 [ Aw-+e—bl*~y” (Az-+e-b)},
z.ey 24 2

(13)
where . > 0 is an additional scalar variable. It is easy to see
that when y and e are fixed, (13) can be converted to the stan-
dard IST problem for & in (12); when x is fixed, since the ¢;-
norm ||x||1 becomes a constant, the objective function becomes
smooth and its optimum is trivial to compute.

6. Experiment

We measure the performance of the SBC algorithm for face
recognition, which is capable of correcting image misalignment



in (9) and pixel corruption in (6). In the previous works, it has
been demonstrated that if a query image can be properly aligned
with the training images, the recognition rate for SBC is high
(i.e., above 99% in most normal conditions) [5, 6]. In this paper,
we demonstrate the ability of the SBC algorithm in alignment
correction.

The experiment uses a public face database called CMU
Multi-PIE [19], where a subset of 50 subjects from the database
are chosen, each of which is caputred in 20 frontal images un-
der a fixed set of illumination settings. Out of the 20 images
for each subject, images {0, 1,7, 13,14, 16, 18} with extreme
illumination conditions are chosen as the training images. We
randomly choose one image from the remaining images as the
query image for each subject. All images are cropped and
down-sampled to 40 x 30 pixels.

During the testing stage, a rescaled Baboon image is ran-
domly superimposed in the query image to create an occlusion
of about 10% of the pixels. Then the bounding box of the face
region is manually perturbed from its ground-truth location by
either a translation w.r.t. the = —y axes or an in-plane rotation 6,
as shown in Figure 1 Right and Figure 4 respectively. An ALM
algorithm [10] is then applied to solve for the transformation
parameters 7 and the sparse error e in (9).

Error

Reconstruction

Figure 4: Left: Misalignment correction with 10% pixel occlu-
sion (on the forehead) and a 30° in-plane rotation. The green
bounding box indicates the simulated alignment perturbation;
the red bounding box indicates the alignment result. Upper
Right: Estimated error e that indicates the location of the cor-
ruption. Lower Right: Reconstruction result based on ;.

We measure the accuracy of the algorithm in terms of the
average error of the pixel coordinates of the eye corners be-
tween the ground truth and the estimates. Figure 5 Left shows
the estimation error when the test alignment undergoes = — y
translations up to =8 pixels in the canonical frame (with size
40 x 30), and Figure 5 Right shows the estimation error when
the test alignment undergoes in-plane rotation up to 45°. In
general, the algorithm works well with translation within 4 pix-
els and rotation within 30°. Note that without pixel corruption,
the accuracy of the algorithm shall be even higher. Compared
to interior-point methods used in [6], ALM also improves the
speed for face alignment by 25% on average.
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Figure 5: Alignment error w.r.t. z — y plane and 6 rotation.

7. Conclusion and Discussion

Based on compressive sensing theory, we have proposed a com-
prehensive framework/system to tackle the classical problem of
face recognition. The success of our solution relies on care-
ful analysis of the special data structure in high-dimensional
face images. In addition, to maintain high recognition accu-
racy in the presence of large illumination change, a novel train-
ing image acquisition system has been proposed and patented
[6], which uses four projectors to illuminate the subject from all
directions. For future topics, we believe one open problem is
how to perform small-scale face validation on portable mobile
devices (e.g., iPhones and gPhones). Another open problem
is how to perform large-scale face detection and recognition
in dense urban environments. Parallel implementations of the
current algorithms may be needed to support real-time perfor-
mance of these functions.
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