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ABSTRACT
We provide a comprehensive review of five representative `1-
minimization methods, i.e., gradient projection, homotopy,
iterative shrinkage-thresholding, proximal gradient, and aug-
mented Lagrange multiplier. The repository is intended to fill
in a gap in the existing literature to systematically benchmark
the performance of these algorithms using a consistent ex-
perimental setting. The experiment will be focused on the
application of face recognition, where a sparse representa-
tion framework has recently been developed to recover human
identities from facial images that may be affected by illumi-
nation change, occlusion, and facial disguise. The paper also
provides useful guidelines to practitioners working in similar
fields.

1. INTRODUCTION
`1-minimization (`1-min) has been one of the hot topics in the
signal processing and optimization communities in the last
five years. In the emerging compressive sensing (CS) theory
[4], it has been shown to be an efficient approach to recover
sparsest solutions to certain underdetermined systems of lin-
ear equations. More specifically, given an unknown signal
x0 ∈ Rn, an underdetermined full-rank matrix A ∈ Rd×n,
and a b = Ax, the `1-min problem solves the following con-
vex program:

(P1) : min ‖x‖1 subject to b = Ax. (1)

Although the formulation of (P1) constitutes a linear inverse
problem, as the number of measurements in b is smaller than
the number of unknowns in x, CS theory shows that if x0

is sufficiently sparse and the sensing matrix A is incoherent
with the basis under which x0 is sparse, x0 can be exactly
recovered [5, 4]. This sparsity-seeking property of (P1) has
been shown to have tremendous applications in geophysics,
data compression, image processing, and sensor networks.

In practice, the equality b = Ax is often relaxed to take
into account the existence of measurement error in the sens-
ing process: b = Ax + e. Particularly, if the error term e is
assumed to be white noise such that ‖e‖2 ≤ ε, the ground
truth signal x0 can be well approximated by the so-called ba-
sis pursuit denoising (BPDN) [6, 5]:
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(P1,2) : min ‖x‖1 subject to ‖b−Ax‖2 ≤ ε. (2)

In light of the high interest in finding more efficient al-
gorithms to solve these problems, in this paper, we provide a
comprehensive review of five representative methods, namely,
gradient projection (GP) [10, 14], homotopy [19, 16, 8], iter-
ative shrinkage-thresholding (IST)[7, 13, 22], proximal gra-
dient (PG) [18, 1, 2], and augmented Lagrange multiplier
(ALM) [24]. A full version of the study [23] together with
the benchmark scripts is provided at http://www.eecs.
berkeley.edu/~yang/software/l1benchmark/.

2. FAST `1-MIN ALGORITHMS
2.1. Gradient Projection (GP) Methods
We start with the `1-min problem (P1,2). Using the La-
grangian method, the problem can be rewritten as:

x∗ = arg min
x
F (x) = arg min

x

1
2
‖b−Ax‖22 + λ‖x‖1, (3)

where λ is the Lagrangian multiplier.
In the literature, there exist two slightly different methods

to engage (3) as a quadratic programming problem, namely,
gradient projection sparse representation (GPSR) [10] and
truncated Newton interior-point method (TNIPM) [14]. In
the following, we mainly discuss the TNIPM algorithm.1 The
reader is referred to our technical report [23] for the discus-
sion of GPSR.

TNIPM transforms the objective function (3) to a quadratic
program with inequality constraints

min 1
2‖Ax− b‖

2
2 + λ

∑n
i=1 ui

s.t. −ui ≤ xi ≤ ui, i = 1, · · · , n. (4)

Then a logarithmic barrier for the constraints−ui ≤ xi ≤ ui
can be constructed [11]:

Φ(x,u) = −
∑
i

log(ui + xi)−
∑
i

log(ui − xi). (5)

Over the domain of (x,u), the central path consists of the
unique minimizer (x∗(t),u∗(t)) of the convex function

Ft(x,u) = t(‖Ax− b‖22 + λ

n∑
i=1

ui) + Φ(x,u), (6)

where the parameter t ∈ [0,∞). The function can then be
minimized by standard interior-point algorithms [17, 15].

1A MATLAB Toolbox for TNIPM called L1LS is available at http:
//www.stanford.edu/~boyd/l1_ls/.



2.2. Homotopy Methods
Recall that in (3), w.r.t. a fixed λ, the optimal solution is
achieved when 0 ∈ ∂F (x). If we define X .= {x∗λ : λ ∈
[0,∞)}, X identifies a solution path that follows the change
in λ: when λ → ∞, x∗λ = 0; when λ → 0, x∗λ converges to
the solution of (P1). The homotopy methods exploit the fact
that the objective function F (x) undergoes a homotopy from
the `2 constraint to the `1 objective in (3) as λ decreases. Fur-
thermore, one can show that the solution path X is piece-wise
constant as a function of λ [19, 9, 8]. Therefore, in construct-
ing a decreasing sequence of λ, it is only necessary to identify
those “breakpoints” that lead to changes of the support set of
x∗λ, namely, either a new nonzero coefficient added or a pre-
vious nonzero coefficient removed.

The major obstacle in computing ∂F (x) is that the `1-
norm term is not globally differentiable. Therefore, we can
consider the subdifferential of ‖x‖1 defined as the following:

u(x) .= ∂‖x‖1 =
{
u ∈ Rn :

ui = sign(xi), xi 6= 0
ui ∈ [−1, 1], xi = 0

}
. (7)

The algorithm operates in an iterative fashion with an ini-
tial value x(0) = 0. In each iteration w.r.t. a nonzero λ,
we assign ∂F (x) = 0: c(x) = AT b − ATAx = λu(x).
Hence, from the definition (7), we maintain a sparse support
set: I .= {i : |c(l)i | = λ}. Then the algorithm computes the
update for x(k) in terms of the positive/negative directions for
its coefficients and the magnitude.2

2.3. Iterative Shrinkage-Thresholding (IST) Methods
In a nutshell, IST considers (P1,2) as a special case of the
following composite objective function:

min
x
F (x) .= f(x) + λg(x), (8)

where f(x) = 1
2‖Ax− b‖

2 and g(x) = ‖x‖1.
The update rule of the algorithm is defined based on an

approximation of f [22, 1]:

x(k+1) ≈ arg minx{(x− x(k))T∇f(x(k))
+α(k)

2 ‖x− x
(k)‖22 + λg(x)}

= arg minx{ 1
2‖x− u

(k)‖22 + λ
α(k) g(x)}.

(9)
where u(k) = x(k)− 1

α(k)∇f(x(k)), and the hessian∇2f(x)
is approximated by a diagonal matrix αI .

Now since the `1-norm ‖x‖1 is a separable function, (9)
has a closed-form solution w.r.t. each scalar coefficient:

x
(k+1)
i = arg min

xi

{ (xi − u(k)
i )2

2
+
λ|xi|
α(k)

} = soft(u(k)
i ,

λ

α(k)
),

(10)
where soft(u, a) .=

{
sign(u)(|u| − a) if |u|>a

0 otherwise is the so-

called soft-thresholding function.3
2A MATLAB implementation can be found at http://users.ece.

gatech.edu/~sasif/homotopy/.
3A MATLAB implementation called SpaRSA is available at http://

www.lx.it.pt/~mtf/SpaRSA/.

2.4. Proximal Gradient (PG) Methods
PG algorithms represent another class of algorithms that solve
convex optimization problems defined in (8). Assume f is a
smooth convex function with Lipschitz continuous gradient,
and g is a continuous convex function. The principle behind
proximal gradient algorithms is to iteratively form quadratic
approximationsQ(x,y) to F around a carefully chosen point
y, and to minimizeQ(x,y) rather than the original cost func-
tion F .

Again, we define g(x) = ‖x‖1, and f(x) = 1
2‖Ax−b‖

2
2.

We note that ∇f(x) = AT (Ax − b) is Lipschitz continu-
ous with Lipschitz constant Lf

.= ‖A‖24. Define Q(x,y) .=
f(y) + 〈∇f(y),x− y〉+ Lf

2 ‖x− y‖
2
2 + λ g(x). Thus, we

have a slightly different problem whose solution gets closer
to the solution set of (1) as λ→ 0.

Given a proximal point y, we already know the closed-
form solution for x is given by the soft-thresholding operator:
arg minx Q(x,y) = soft(u, λ

Lf
), where u = y− 1

Lf
∇f(y).

Unlike the iterative thresholding algorithm described earlier,
we use a smoothed computation of the sequence y(k). It has
been shown that choosing

y(k) = x(k) +
tk−1 − 1

tk
(x(k) − x(k−1)), (11)

where {tk} is a positive real sequence satisfying t2k − tk ≤
t2k−1, achieves an accelerated non-asymptotic convergence
rate of O(k−2) [18, 1]. 5

2.5. Augmented Lagrange Multiplier (ALM) Methods
Lagrange multiplier methods are a popular class of algorithms
in convex programming. ALM methods differ from other
penalty-based approaches by simultaneously estimating the
optimal solution and Lagrange multipliers iteratively.

We consider the general `1-min problem (1) with the op-
timal solution x∗. The corresponding augmented Lagrangian
function is

Lµ(x,λ) = ‖x‖1 + 〈λ, b−Ax〉+
µ

2
‖b−Ax‖22, (12)

where µ > 0 is a constant that determines the penalty for
infeasibility, and λ is a vector of Lagrange multipliers. Let λ∗

be a Lagrange multiplier vector satisfying the second-order
sufficiency conditions for optimality (see section 3.2 in [3]
for more details). Then, for sufficiently large µ, it has been
shown that

x∗ = arg min
x

Lµ(x,λ∗). (13)

Thus, we can solve the above unconstrained optimization
problem to compute x∗.

It is clear that to compute x∗ by minimizing Lµ(x,λ),
we must choose λ close to λ∗ and set µ to be a very large

4‖A‖ represents the spectral norm of the matrix A.
5An implementation of the PG algorithm called FISTA is available for

download from the website of the paper. Another Matlab toolbox called
NESTA is available at: http: //www.acm.caltech.edu/ nesta/.



positive constant. The following iterative procedure has been
proposed in [3] to simultaneously compute λ∗ and x∗:{

xk+1 = arg minx Lµk
(x,λk)

λk+1 = λk + µk(b−Axk+1) , (14)

where {µk} is a monotonically increasing positive sequence.
We note that the first step in the above procedure is itself a
convex optimization problem. Thus, the above iterative pro-
cedure is computationally efficient only if it is easier to min-
imize the augmented Lagrange function compared to solving
the the original constrained optimization problem (1) directly.

Although it is not possible to obtain a closed-form solu-
tion for minimizing the first step of (14), since the quadratic
penalty term is smooth and has a Lipschitz continuous gradi-
ent, we can still solve it efficiently using PG methods. 6

3. SIMULATION: RANDOM SPARSE SIGNALS

We present two simulations to benchmark the performance
of the five fast `1-min algorithms on random sparse signals,
namely, L1LS, Homotopy, SpaRSA, FISTA, and ALM.

Firstly, we are interested in measuring the performance in
the low-sparsity regime, where the ambient dimension n =
2000 and the sparsity k = 200 are fixed, and the dimension
d of the random projection A varies between 800 and 1900.
Secondly, we are interested in measuring the performance
when x becomes dense w.r.t. a fixed sampling rate, where
n = 2000 and d = 1500, and the sparsity ratio ρ = k/n
varies from 0.1 to 0.26. In both experiments, we corrupt
the measurement vector with e, an additive white noise term
whose entries are i.i.d. distributed as N(0, 0.01). The illus-
trations of the results are shown in our technical report [23].

We draw the following observations. First, when a low
sparsity ratio of ρ = 0.1 is fixed, `1-min becomes better con-
ditioned as the projection dimension d increases.

1. In terms of speed, L1LS and Homotopy take much
longer time to converge than the first order methods.

2. The average run time of DALM is one of the lowest
over all projection dimensions, which makes it the best
algorithm in this comparison.

Second, when the projection dimension d = 1500 is fixed,
we compare both the average run time and the average esti-
mation error when the sparsity varies.

1. Among the five algorithms, only the run time of Ho-
motopy grows mostly linearly with the increase of the
sparsity ratio. It shows Homotopy becomes inefficient
when the signal becomes dense.

2. DALM is the fastest algorithm in the low-sparsity
regime, but its run time approaches that of the other
first-order methods in the high-sparsity regime.

6An implementation of ALM in both the primal and dual spaces can be
found on the website of the paper. Another implementation in the dual space
called YALL1 can be obtained from the authors of [24].

4. EXPERIMENT: ROBUST FACE RECOGNITION

This experiment is set up to estimate sparse representation
of real face images based on a so-called cross-and-bouquet
(CAB) model [20]. It has been shown in [21] that well-
aligned frontal face images of a single human subject lie
close to a low-dimensional linear subspace determined by:

Ai = [vi,1,vi,2, · · · ,vi,ni ] ∈ Rd×ni , (15)

where vi,j represents the j-th training image from the i-th
subject stacked in the vector form. Given C subjects and a
test image b (in the vector form), we seek the sparsest linear
representation of the image with respect to all training exam-
ples:

b = [A1, A2, · · · , AC ]x = Ax. (16)
where A ∈ Rd×n collects all the training images. Clearly,
if b is a valid test image, b must be associated with one of
the C subjects. Therefore, the corresponding representation
in (16) has a sparse representation x = [· · · ; 0;xi; 0; · · · ]:
on average only a fraction of 1

C coefficients are nonzero, and
the dominant nonzero coefficients in sparse representation x
reveal the true subject class.

In addition, we consider the situation where the query im-
age b is severely occluded or corrupted. The problem is mod-
eled by a corrupted set of linear equations b = Ax+e, where
e ∈ Rd is an unknown vector whose nonzero entries corre-
spond to the corrupted pixels. In [21], the authors proposed
to estimate w .= [x; e] together as the sparsest solution to an
extended equation:

min ‖w‖1 subject to b = [A, I]w. (17)

The distribution of the new dictionary [A, I] was dubbed as a
cross-and-bouquet (CAB) model.

The performance of the five `1-min algorithms is bench-
marked using a subset of the CMU Multi-PIE face database
[12], which contains 249 subjects. The detailed experiment
protocol is explained in the technical report. We measure the
performance of the algorithms in terms of the recognition ac-
curacy and the speed. The results are shown in Tables 1 and
2 w.r.t. different percentages of randomly corrupted pixels.

Table 1. Average recognition accuracy in percentage (bold numbers
indicate the best).

Corruption 0% 20% 40% 60% 80%
L1LS 98.64 99.60 97.84 96.57 21.93

Homotopy 99.88 99.88 99.91 98.67 27.90
SpaRSA 99.69 99.47 98.8 90.51 21.1
FISTA 99.85 99.72 99.04 86.74 19.96
ALM 99.81 99.88 99.85 96.17 29.01

In terms of the accuracy, Homotopy achieves the best
overall performance. For instance, with 60% of the pixels
randomly corrupted, its average recognition rate based on the
CAB model is about 99%. On the other hand, FISTA has the
lowest recognition rates, followed by SpaRSA. In terms of
the speed, Homotopy is also the fastest algorithm when the



Table 2. Average run time in second (bold numbers indicate the
best).

Corruption 0% 20% 40% 60% 80%
L1LS 19.48 18.44 17.47 16.99 14.37

Homotopy 0.33 2.01 4.99 12.26 20.68
SpaRSA 6.64 10.86 16.45 22.66 23.23
FISTA 8.78 8.77 8.77 8.80 8.66
ALM 18.91 18.85 18.91 12.21 11.21

corruption percentage is low. As Homotopy iteratively add
or remove nonzero coefficients one at a time, the algorithm
clearly is more efficient when the signalw is very sparse. It is
also important to know that the speed of the two accelerated
first-order algorithms, namely, FISTA and ALM, does not
increase significantly as the sparsity of w increases.

It is more interesting to compare the difference in accu-
racy between L1LS and Homotopy, which provably solve the
(P1) problem, and SpaRSA, FISTA, and ALM, which essen-
tially rely on the soft thresholding function and approximation
of the gradients of the objective function. We observe that the
exact solutions as a whole outperform the approximate solu-
tions. Another important fact is that among the three first-
order methods, ALM has been shown to boost the accuracy
considerably

5. CONCLUSION AND DISCUSSION

The paper has provided a comprehensive review of the five
fast `1-min methods. The extensive experiment has shown
that, under a wide range of data conditions, there is no clear
winner that always achieves the best performance. For noise-
free data, on average PDIPA is more accurate than the rest of
the algorithms, albeit at a much lower speed. Under random
Gaussian dictionaries, approximate `1-min solutions (i.e.,
SpaRSA, FISTA, and ALM) are more efficient to estimate
sparse signals. In the application of robust face recognition,
a special CAB model was constructed based on real training
images representing a large set of human subjects. Homotopy
and ALM in turn achieve the highest recognition rate.
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