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Abstract—We consider the problem of recovering a low-
rank matrix when some of its entries, whose locations are not
known a priori, are corrupted by errors of arbitrarily large
magnitude. It has recently been shown that this problem can
be solved efficiently and effectively by a convex program named
Principal Component Pursuit (PCP), provided that the fraction of
corrupted entries and the rank of the matrix are both sufficiently
small. In this paper, we extend that result to show that the same
convex program, with a slightly improved weighting parameter,
exactly recovers the low-rank matrix even if “almost all” of
its entries are arbitrarily corrupted, provided the signs of the
errors are random. We corroborate our result with simulations
on randomly generated matrices and errors.

I. INTRODUCTION

Low-rank matrix recovery and approximation have been
extensively studied lately for their great importance in theory
and practice. Low-rank matrices arise in many real data
analysis problems when the high-dimensional data of interest
lie on a low-dimensional linear subspace. This model has
been extensively and successfully used in many diverse areas,
including face recognition [1], system identification [2], and
information retrieval [3], just to name a few.

Principal Component Analysis (PCA) [4] is arguably the
most popular algorithm to compute low-rank approximations
to a high-dimensional data matrix. Essentially, PCA solves the
following optimization problem:

min
L
‖D − L‖ s.t. rank(L) ≤ r, (1)

where D ∈ Rm×n is the given data matrix, and ‖ · ‖ denotes
the matrix spectral norm. The optimal solution to the above
problem is the best rank-r approximation (in an `2 sense) to
D [5]. Furthermore, PCA offers the optimal solution when the
matrix D is corrupted by i.i.d. Gaussian noise. In addition to
theoretical guarantees, the PCA can be computed stably and
efficiently via the Singular Value Decomposition (SVD).

The major drawback of PCA is its brittleness to errors of
large magnitude, even if such errors affect only a few entries
of the matrix D. In fact, a single corrupted entry can throw
the low-rank matrix L̂ estimated by PCA arbitrarily far from
the true solution. Unfortunately, these kinds of non-Gaussian,
gross errors and corruptions are prevalent in modern data. For
example, shadows in a face image corrupt only a small part of
the image, but the corrupted pixels can be arbitrarily far from
their true values in magnitude.

Thus, the problem at hand is to recover a low-rank matrix
L0 (the principal components) from a corrupted data matrix

D = L0 + S0,

where the entries of S0 can have arbitrary magnitude. Al-
though this problem is intractable (NP-hard) to solve under
general conditions, recent studies have discovered that certain
convex program can effectively solve this problem under sur-
prisingly broad conditions. The work of [6], [7] has proposed a
convex program to recover low-rank matrices when a fraction
of their entries have been corrupted by errors of arbitrary
magnitude i.e., when the matrix S0 is sufficiently sparse. This
approach, dubbed Principal Component Pursuit (PCP) by [6],
suggests solving the following convex optimization problem:

min
L,S
‖L‖∗ + λ ‖S‖1 s.t. D = L+ S, (2)

where ‖ ·‖∗ and ‖ ·‖1 denote the matrix nuclear norm (sum of
singular values) and 1-norm (sum of absolute values of matrix
entries), respectively, and λ > 0 is a weighting parameter. For
square matrices of size n × n, the main result of [6] can be
summarized as follows:

If the singular vectors of L0 are not too coherent
with the standard basis, and the support of S0 is
random, then solving the convex program (2) with
λ = n−1/2 exactly recovers L0 of rank O(n/ log2 n)
from errors S0 affecting ρn2 of the entries, where
ρ > 0 is a sufficiently small positive constant.

In this work, we extend the above result to show that under
the same assumptions, (2) recovers low-rank matrices even
if the fraction of corrupted entries ρ is arbitrarily close to
one, provided the signs of the errors are random. Equivalently
speaking, almost all of the matrix entries can be badly
corrupted by random errors. The analysis in this paper is a
nontrivial modification to the arguments of [6] and leads to a
better estimate of the weighting parameter λ that enables this
dense error-correction performance. We verify our result with
simulations on randomly generated matrices.

II. ASSUMPTIONS AND MAIN RESULT

For convenience of notation, we consider square matrices of
size n×n. The results stated here easily extend to non-square
matrices.



Assumption A: Incoherence Model for L0. It is clear that
for some low-rank and sparse pairs (L0, S0), the problem of
separating M = L0 +S0 into the components that generated it
is not well-posed, e.g., if L0 is itself a sparse matrix. In both
matrix completion and matrix recovery, it has proved fruitful
to restrict attention to matrices whose singular vectors are not
aligned with the canonical basis. This can be formalized via
the notion of incoherence introduced in [8]. If L0 = UΣV ∗

denotes a reduced singular value decomposition of L0, with
U, V ∈ Rn×r, and Σ ∈ Rr×r, then L0 is µ-incoherent if

maxi ‖U∗ei‖2 ≤ µr/n,
maxi ‖V ∗ei‖2 ≤ µr/n,

‖UV ∗‖∞ ≤
√
µr/n2,

(3)

where the ei’s are the canonical basis vectors in Rn. Here,
‖ · ‖∞ denotes the matrix ∞-norm (maximum absolute value
of matrix entries).
Assumption B: Random Signs and Support for S0. Simi-
larly, it is clear that for some very sparse patterns of corruption,
exact recovery is not possible, e.g., if S0 affects an entire row
or column of the observation. In [6], such ambiguities are
avoided by placing a random model on Ω .= supp(S0), which
we also adopt. In this model, each entry (i, j) is included
in Ω independently with probability ρ. We say Ω ∼ Ber(ρ)
whenever Ω is sampled from the above distribution. We further
introduce a random model for the signs of S0: we assume that
for (i, j) ∈ Ω, sgn((S0)ij) is an independent random variable
taking values ±1 with probability 1/2. Equivalently, under this
model, if E = sgn(S0), then

Eij =

 1, w.p. ρ/2,
0, w.p. 1− ρ,
−1, w.p. ρ/2.

(4)

This error model differs from the one assumed in [6], in
which the error signs come from any fixed (even adversarial)
n×n sign pattern. The stronger assumption that the signs are
random is necessary for dense error correction.

Our main result states that under the above assumptions
and models, PCP corrects large fractions of errors. In fact,
provided the dimension is high enough and the matrix L0 is
sufficiently low-rank, ρ can be any constant less than one:

Theorem 1 (Dense Error Correction via PCP). Fix any
ρ < 1. Suppose that L0 is an n× n matrix of rank r obeying
(3) with incoherence parameter µ, and the entries of sign(S0)
are sampled i.i.d. according to (4). Then as n becomes large1,
Principal Component Pursuit (2) exactly recovers (L0, S0)
with high probability, provided

λ = C1

(
4
√

1− ρ+
9
4

)−1√1− ρ
ρn

, r <
C2n

µ log2 n
, (5)

where 0 < C1 ≤ 4/5 and C2 > 0 are certain constants.

In other words, provided the rank of a matrix is of the order
of n/µ log2 n, PCP can recover the matrix exactly even when

1For ρ closer to one, the dimension n must be larger; formally, n > n0(ρ).
By “high probability”, we mean with probability at least 1 − cnβ for some
fixed β > 0.

an arbitrarily large fraction of its entries are corrupted by errors
of arbitrary magnitude and the locations of the uncorrupted
entries are unknown.
Relations to Existing Results. While [6] has proved that
PCP succeeds, with high probability, in recovering L0 and
S0 exactly with λ = n−1/2, the analysis required that the
fraction of corrupted entries ρ is small. The new result shows
that, with random error signs, PCP succeeds with ρ arbitrarily
close to one. This result also suggests using a slightly modified
weighting parameter λ. Although the new λ is of the same
order as n−1/2, we identify a dependence on ρ that is crucial
for correctly recovering L0 when ρ is large.

This dense error correction result is not an isolated phe-
nomenon when dealing with high-dimensional highly corre-
lated signals. In a sense, this work is inspired by a conceptually
similar result for recovering sparse signal via `1 minimization
[9]. To summarize, to recover a sparse signal x from corrupted
linear measurements: y = Ax + e, one can solve the convex
program min ‖x‖1 +‖e‖1, s.t. y = Ax+e. It has been shown
in [9] that if A is sufficiently coherent and x sufficiently sparse,
the convex program can exactly recover x even if the fraction
of nonzero entries in e approaches one.

The result is also similar in spirit to results on matrix
completion [8], [10], [11], which show that under similar
incoherence assumptions, low-rank matrices can be recovered
from vanishing fractions of their entries.

III. MAIN IDEAS OF THE PROOF

The proof of Theorem 1 follows a similar line of arguments
presented in [6], and is based on the idea of constructing a
dual certificate W whose existence certifies the optimality of
(L0, S0). As in [6], the dual certificate is constructed in two
parts via a combination of the “golfing scheme” of David
Gross [11], and the method of least squares. However, several
details of the construction must be modified to accommodate
a large ρ.

Before continuing, we fix some notation. Given the compact
SVD of L0 = UΣV ∗, we let T ⊂ Rn×n denote the linear
subspace {UX∗+Y V ∗ |X,Y ∈ Rn×r}. By a slight abuse of
notation, we also denote by Ω the linear subspace of matrices
whose support is a subset of Ω. We let PT and PΩ denote the
projection operators T and Ω, respectively.

The following lemma introduces a dual vector that in turn,
ensures that (L0, S0) is the unique optimal solution to (2).

Lemma 1. (Dual Certificate) Assume λ < 1 − α and
‖PΩPT ‖ ≤ 1 − ε for some α, ε ∈ (0, 1). Then, (L0, S0) is
the unique solution to (2) if there is a pair (W,F ) obeying

UV ∗ +W = λ (sgn(S0) + F + PΩD)

with PTW = 0 and ‖W‖ ≤ α, PΩF = 0 and ‖F‖∞ ≤ 1
2 ,

and ‖PΩD‖F ≤ ε2.

We prove this lemma in the appendix. Lemma 1 generalizes
Lemma 2.5 of [6] as follows:

1) [6] assumes that ‖PΩPT ‖ ≤ 1/2, whereas we only
require that ‖PΩPT ‖ is bounded away from one. By



Lemma 2, the former assumption is justified only for
small values of ρ (or for small amounts of corruption).

2) While [6] requires that ‖W‖ ≤ 1/2, we impose a more
general bound on ‖W‖. We find that a value of α closer
to 1 gives a better estimate of λ.

For example, by setting α = 9/10, to prove that (L0, S0) is
the unique optimal solution to (2), it is sufficient to find a dual
vector W satisfying

PTW = 0,
‖W‖ < 9

10 ,
‖PΩ(UV ∗ +W − λsgn(S0))‖F ≤ λε2,
‖PΩ⊥(UV ∗ +W )‖∞ < λ

2 ,

(6)

assuming that ‖PΩPT ‖ ≤ 1− ε and λ < 1/10.
We construct a dual certificate in two parts, W = WL+WS

using a variation of the golfing scheme [11] presented in [6].
1) Construction of WL using the golfing scheme. The golf-

ing scheme writes Ωc = ∪j0j=1Ωj , where the Ωj ⊆
[n] × [n] are independent Ber(q), with q chosen so that
(1 − q)j0 = ρ.2 The choice of q ensures that indeed
Ω ∼ Ber(ρ), while the independence of the Ωj’s allows
a simple analysis of the following iterative construction:

Starting with Y0 = 0, we iteratively define
Yj = Yj−1 + q−1PΩjPT (UV ∗ − Yj−1),

and set
WL = PT⊥Yj0 . (7)

2) Construction of WS using least squares. We set

WS = arg min ‖Q‖F s.t. PΩQ = λ sgn(S0),
PTQ = 0.

Since ‖PΩPTPΩ‖ = ‖PΩPT ‖2 < 1, it is not difficult to
show that the solution is given by the Neumann series

WS = λPT⊥
∑
k≥0

(PΩPTPΩ)ksgn(S0). (8)

In the remainder of this section, we present three lemmas
that establish the desired main result Theorem 1. The first
lemma validates the principal assumption of Lemma 1 that
‖PΩPT ‖ is bounded away from one. The other two lemmas
collectively prove that the dual certificate W = WL + WS

generated by the procedure outlined above satisfies (6) with
high probability, and thereby, prove Theorem 1 by virtue of
Lemma 1.

Lemma 2. (Corollary 2.7 in [6]) Suppose that Ω ∼ Ber(ρ) and
L0 obeys the incoherence model (3). Then, with high proba-
bility, ‖PΩPT ‖2 ≤ ρ+δ, provided that 1−ρ ≥ C0δ

−2 µr logn
n

for some numerical constant C0 > 0.

This result plays a key role in establishing the following
two bounds on WL and WS , respectively.

Lemma 3. Assume that Ω ∼ Ber(ρ), and ‖PΩPT ‖ ≤ σ
.=√

ρ+ δ < 1. Set j0 = 2dlog ne. Then, under the assumptions
of Theorem 1, the matrix WL obeys, with high probability,
(a) ‖WL‖ < 1/10,

2The value of j0 is specified in Lemma 3.

(b) ‖PΩ(UV ∗ +WL)‖F < λ(1− σ)2,
(c) ‖PΩ⊥(UV ∗ +WL)‖∞ < λ

4 .

The proof of this lemma follows that of Lemma 2.8 of [6]
exactly – the only difference is that here we need to use tighter
constants that hold for larger n. The main tools needed are
bounds on the operator norm of PΩjPT (which follow from
Lemma 2), as well as bounds on

‖Q− q−1PΩjPTQ‖∞/‖Q‖∞, ‖Q− q−1PΩjQ‖/‖Q‖∞,

for any fixed nonzero Q (which are given by Lemmas 3.1
and 3.2 of [6]). These bounds can be invoked thanks to the
independence between the Ωj’s in the golfing scheme. We omit
the details here due to limited space and invite the interested
reader to consult [6].

Lemma 4. Assume that Ω ∼ Ber(ρ), and that the signs of S0

are i.i.d. symmetric (and independent of Ω). Then, under the
assumptions of Theorem 1, the matrix WS obeys, with high
probability,

(a) ‖WS‖ < 8/10,
(b) ‖PΩ⊥W

S‖∞ < λ
4 .

See the appendix for the proof details. The proof of this
lemma makes heavy use of the randomness in sgn(S0),
and the fact that these signs are independent of Ω. The
idea is to first bound the norm of the linear operator
R = PT⊥

∑
k≥1(PΩPTPΩ)k, and then, conditioning on Ω,

we use Hoeffding’s inequality to obtain a tail bound for
x∗R(sgn(S0))y for any fixed x, y. This extends to a bound on
‖WS‖ = sup‖x‖≤1,‖y‖≤1 x

∗R(sgn(S0))y via a union bound
across an appropriately chosen net. We state this argument
formally in the appendix.

Although the line of argument here is similar to the proof
of Lemma 2.9 in [6], there are some important differences
since that work assumed that ρ (and hence, ‖PΩPT ‖) is
small. Our analysis gives a tighter probabilistic bound for
‖PT⊥

∑
k≥1(PΩPTPΩ)kE‖, which in turn yields a better

estimate of the weighting parameter λ as a function of ρ.

IV. SIMULATIONS

In this section, we provide simulation results on randomly
generated matrices to support our main result, and suggest
potential improvements to the value of λ predicted by our
analysis in this paper. For a given dimension n, rank r, and
sparsity parameter ρ, we generate L0 and S0 as follows:

1) L0 = R1R
∗
2, where R1, R2 ∈ Rn×r are random matrices

whose entries are i.i.d. distributed according to a normal
distribution with mean zero and variance 100/n.

2) S0 is a sparse matrix with exactly ρn2 non-zero entries,
whose support is chosen uniformly at random from all
possible supports of size ρn2.3 The non-zero entries of
S0 take value ±1 with probability 1/2.

3As argued in Appendix 7.1 of [6], from the perspective of success of the
algorithm, this uniform model is essentially equivalent to the Bernoulli model.



(a) r = 1, C1 = 0.8 (b) r = 1, C1 = 4

Fig. 1. Dense error correction for varying dimension. Given n, r, and ρ, we generate L0 = R1R∗
2 as the product of two independent n × r i.i.d.

N (0, 100/n) matrices, and S0 is a sparse matrix with ρn2 non-zero entries taking values ±1 with probability 1/2. For each pair (n, ρ), the plots show the
fraction of successful recoveries over a total of 10 independent trials. Here, white denotes reliable recovery in all trials, and black denotes failure in all trials,
with a linear scale for intermediate fractions.

We use the augmented Lagrange multiplier method (ALM)
[12] to solve (2). This algorithm exhibits good convergence
behavior, and since its iterations each have the same com-
plexity as an SVD, it is scalable to reasonably large matrices.
Let (L̂, Ŝ) be the optimal solution to (2). The recovery is
considered successful if ‖L0−L̂‖F

‖L0‖F < 0.01, i.e., the relative
error in the recovered low-rank matrix is less than 1%.

For our first experiment, we fix rank(L0) = 1. This case
demonstrates the best possible error correction behavior for
any given dimension n. We vary n from 400 upto 1600, and
for each n consider varying ρ ∈ (0, 1). For each (n, ρ) pair,
we choose

λ = C1 ·
(

4
√

1− ρ+
9
4

)−1 √1− ρ
nρ

(9)

with C1 = 0.8 as suggested by Theorem 1. Figure 1(a) plots
the fraction of successes across 10 independent trials. Notice
that the amount of corruption that PCP can handle increases
monotonically with dimension n.

We have found that the λ given by our analysis is actually
somewhat pessimistic for moderate n – better error correction
behavior in relatively low dimensions can be observed by
choosing λ according to (9), but with a larger constant C1 = 4.
Figure 1(b) verifies this by repeating the same experiment
as in Figure 1(a), but with the modified λ. Indeed, we see
larger fractions of error successfully corrected. For instance,
we observe that for n = 1600, choosing C1 = 0.8 enables
reliable recovery when upto 35% of the matrix entries are
corrupted, whereas with C1 = 4, PCP can handle upto 75%
of corrupted entries. As discussed below, this suggests there is
still room for improving our bounds, either by tighter analysis
of the current construction or by constructing dual certificates
WS of smaller norm.

V. DISCUSSION

This work showed that PCP in fact corrects large fractions
of random errors, provided the matrix to be recovered satisfies
the incoherence condition and the corruptions are random
in both sign and support. The fact that a higher value of
the constant C1 offers better error-correction performance in
moderate dimensions suggests that the analysis in this work
can be further strengthened. In our analysis, the value of λ

is essentially determined by the spectral norm of WS ; it is
reasonable to believe that dual certificates of smaller spectral
norm can be constructed by methods other than least squares.
Finally, while we have stated our results for the case of
square matrices, similar results can be obtained for non-square
matrices with minimal modification to the proof.

APPENDIX: PROOF OF LEMMA 1 AND LEMMA 4
Proof of Lemma 1.

Proof: Let UV ∗ + W0 be a subgradient of the nuclear
norm at L0, and sgn(S0) + F0 be a subgradient of the `1-
norm at S0. For any feasible solution (L0 + H,S0 − H) to
(2),

‖L0 +H‖∗ + λ ‖S0 −H‖1 ≥
‖L0‖∗ + λ ‖S0‖1 + 〈UV ∗ +W0, H〉 − λ〈sgn(S0) + F0, H〉

Choosing W0 such that 〈W0, H〉 = ‖PT⊥H‖∗ and F0 such
that 〈F0, H〉 = −‖PΩ⊥H‖14 gives

‖L0 +H‖∗ + λ‖S0 −H‖1
≥ ‖L0‖∗ + λ‖S0‖1 + ‖PT⊥H‖∗ + λ‖PΩ⊥H‖1

+〈UV ∗ − λsgn(S0), H〉.

By assumption, UV ∗−λsgn(S0) = λF −W +λPΩD. Since
‖W‖ ≤ α, and ‖F‖∞ ≤ 1

2 , we have

|〈UV ∗ − λsgn(S0), H〉|
≤ α‖PT⊥H‖∗ + λ

2 ‖PΩ⊥H‖1 + λ|〈PΩD,H〉|.
Substituting the above relation, we get

‖L0 +H‖∗ + λ ‖S0 −H‖1
≥ ‖L0‖∗ + λ‖S0‖1 + (1− α)‖PT⊥H‖∗ + λ

2 ‖PΩ⊥H‖1
−λ|〈PΩD,H〉|

≥ ‖L0‖∗ + λ‖S0‖1 + (1− α)‖PT⊥H‖∗ + λ
2 ‖PΩ⊥H‖1

−λε2‖PΩH‖F
We note that
‖PΩH‖F ≤ ‖PΩPTH‖F + ‖PΩPT⊥H‖F

≤ (1− ε)‖H‖F + ‖PT⊥H‖F
≤ (1− ε) (‖PΩH‖F + ‖PΩ⊥H‖F ) + ‖PT⊥H‖F

4For instance, F0 = −sgn(PΩ⊥H) and W0 = PT⊥W , where ‖W‖ = 1
and 〈W,PT⊥H〉 = ‖PT⊥H‖∗. Such a W exists due to the duality between
‖ · ‖ and ‖ · ‖∗.



and, therefore,

‖PΩH‖F ≤ 1−ε
ε ‖PΩ⊥H‖F + 1

ε ‖PT⊥H‖F
≤ 1−ε

ε ‖PΩ⊥H‖1 + 1
ε ‖PT⊥H‖∗.

In conclusion, we have

‖L0 +H‖∗ + λ ‖S0 −H‖1
≥ ‖L0‖∗ + λ‖S0‖1 + ((1− α)− λε) ‖PT⊥H‖∗

+λ
(

1
2 − (1− ε)ε

)
‖PΩ⊥H‖1.

Because ‖PΩPT ‖ < 1, the intersection of Ω ∩ T = {0}, and
hence, for any nonzero H , at least one of the above terms
involving H is strictly positive.
Proof of Lemma 4.

Proof:
Proof of (a). Let E = sgn(S0). By assumption, the

distribution of each entry of E is given by (4). Using (8)
we can express WS as:

WS = λPT⊥E + λPT⊥
∑
k≥1

(PΩPTPΩ)kE

:= PT⊥WS
0 + PT⊥WS

1 .

For the first term, we have ‖PT⊥WS
0 ‖ ≤ λ‖E‖. Using

standard arguments on the norm of a matrix with i.i.d. entries,
we have ‖E‖ ≤ 4

√
nρ with overwhelming probability [13].

For the second term, we set R = PT⊥
∑
k≥1(PΩPTPΩ)k,

so WS
1 = λR(E). Notice that whenever ‖PΩPT ‖ < 1,

‖R‖ = ‖PT⊥
∑
k≥1

(PΩPTPΩ)k‖

≤ ‖PT⊥PΩPTPΩ‖ · ‖
∑
k≥0

(PΩPTPΩ)k‖

≤ ‖PT⊥PΩPT ‖ · ‖PTPΩ‖ ·
∑
k≥0

‖PΩPTPΩ‖k

= ‖PT⊥PΩ⊥PT ‖ · ‖PTPΩ‖ ·
∑
k≥0

‖PΩPT ‖2k

≤ ‖PΩ⊥PT ‖ · ‖PΩPT ‖
1− ‖PTPΩ‖2

. (10)

Consider the two events:
E1 := {‖PΩPT ‖ ≤

√
ρ+ δ},

E2 := {‖PΩ⊥PT ‖ ≤
√

1− ρ+ δ}.

For any fixed η > 0, we can choose δ(η, ρ) > 0, such that on
E1 ∩ E2,

‖R‖ ≤ (1 + η)
√

ρ

1− ρ
. (11)

Since Ω ∼ Ber(ρ) and Ωc ∼ Ber(1−ρ), by Lemma 2, E1∩E2
occurs with high probability provided

r ≤ δ(η, ρ)2 min(ρ, 1− ρ)n/µ log n. (12)

Since by assumption r ≤ Cn/µ log2 n, (12) holds for n
sufficiently large.

For any τ ∈ (0, 1), let Nτ denote an τ -net for Sn−1 of size
at most (3/τ)n (see [14] Lemma 3.18). Then, it can be shown
that

‖R(E)‖ = sup
x,y∈Sn−1

〈y,R(E)x〉 ≤ (1−τ)−2 sup
x,y∈Nτ

〈y,R(E)x〉

For a fixed pair (x, y) ∈ Nτ × Nτ , we define X(x, y) .=
〈y,R(E)x〉 = 〈R(yx∗), E〉. Conditional on Ω = supp(E),
the signs of E are i.i.d. symmetric and by Hoeffding’s in-
equality, we have

P(|X(x, y)| > t|Ω) ≤ 2 exp
(
− 2t2

‖R(xy∗)‖2F

)
.

Since ‖xy∗‖F = 1, we have ‖R(xy∗)‖F ≤ ‖R‖, so

P
(

sup
x,y∈Nτ

|X(x, y)| > t|Ω
)
≤ 2|Nτ |2 exp

(
− 2t2

‖R‖2

)
,

and for any fixed Ω ∈ E1 ∩ E2

P (‖R(E)‖ > t|Ω) ≤ 2
(

3
τ

)2n

exp
(
−2(1− τ)4(1− ρ)t2

(1 + η)2ρ

)
.

In particular, for any C > (1 + η) (1 − τ)−2
√

log
(

3
τ

)
, Ω ∈

E1 ∩ E2,

P
(
‖R(E)‖ > C

√
ρn

1−ρ | Ω
)
< exp(−C ′n),

where C ′(C) > 0. Since inf0<τ<1 (1 − τ)−2
√

log (3/τ) <
9/4, by an appropriate choice of τ and η > 0, we have

P
(
‖R(E)‖ > 9

4

√
ρn

1− ρ

)
< exp(−C ′n) + P((E1 ∩ E2)c).

Thus,
‖WS‖ < λ

(
4
√
ρ+

9
4

√
ρ

1− ρ

)√
n ≤ 8/10

with high probability, provided n is sufficiently large.
Proof of (b) follows the proof of Lemma 2.9 (b) of [6].
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