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Abstract

Recently, a new image deformation technique called
content-preserving warping (CPW) has been successfully
employed to produce the state-of-the-art video stabilization
results in many challenging cases. The key insight of CPW
is that the true image deformation due to viewpoint change
can be well approximated by a carefully constructed warp
using a set of sparsely constructed 3D points only. How-
ever, since CPW solely relies on the tracked feature points
to guide the warping, it works poorly in large textureless
regions, such as ground and building interiors. To over-
come this limitation, in this paper we present a hybrid ap-
proach for novel view synthesis, observing that the texture-
less regions often correspond to large planar surfaces in
the scene. Particularly, given a jittery video, we first seg-
ment each frame into piecewise planar regions as well as
regions labeled as non-planar using Markov random fields.
Then, a new warp is computed by estimating a single ho-
mography for regions belong to the same plane, while in-
heriting results from CPW in the non-planar regions. We
demonstrate how the segmentation information can be ef-
ficiently obtained and seamlessly integrated into the stabi-
lization framework. Experimental results on a variety of
real video sequences verify the effectiveness of our method.

1. Introduction
With the fast development of hand-held digital cameras,

we have seen a dramatic increase in the amount of ama-
teur videos shot over the past decade. However, very often
people find their videos hard to watch, mainly due to the ex-
cessive amount of shake and undirected camera motions in
the footage. Therefore, there has been an urgent demand
in developing high-quality video stabilization algorithms,
which are able to remove the undesirable jitters from ama-
teur videos so that they look like to be taken under smooth,
directed camera paths.

In general, there are two major steps in stabilizing a jit-
tery input video, namely (1) designing new smooth camera
paths, and (2) synthesizing stabilized video frames accord-

ing to the new path. In this paper, we focus ourselves on the
second step, which still remains a highly challenging prob-
lem nowadays. Most existing methods [19, 10, 6, 15, 13]
apply a full-frame 2D transformation to each input frame
to obtain the stabilized output frame. Despite its compu-
tational efficiency and robustness, this approach is well-
known for its inability in handling the parallax effects of
a non-degenarate scene and camera motion, as illustrated in
Figure 1 (first row).

In fact, in the ideal case one will need the dense 3D
structures of the scene in order to create a novel view of
it. However, obtaining such a dense reconstruction from 2D
images is extremely challenging in terms of both effective-
ness and efficiency. Several attempts have been made along
this direction [5, 7, 3], which rely on image-based render-
ing (IBR) to generate new images of a scene as seen along
the smooth camera path. But these techniques are all lim-
ited to static scenes, among other issues. In a recent work
[16], Liu et al. propose a novel method, namely content-
preserving warping (CPW), which instead uses the sparse
3D points obtained by any structure from motion system for
synthesis. The key idea of CPW is that the true dense de-
formation can be well approximated by diffusing the sparse
displacements suggested by the reconstructed 3D points via
a carefully chosen regularization term. This approximation
is shown to be sufficient for stabilization, producing state-
of-the-art results in many challenging cases, as long as there
are enough feature tracks in each image region. In practice,
however, large textureless regions often exist in the scene,
such as ground, building facades, and indoor walls, where
feature tracks are rare. It has been noticed that CPW per-
forms poorly in these regions, as illustrated in Figure 1 (sec-
ond row).

In this paper, we propose a new synthesizing scheme
which aims to remedy this important issue of CPW. Our key
observation is that real scenes often exhibit strong structural
regularities, in the form of one or more planar surfaces,
which are largely ignored so far by existing methods. More
importantly, these planar surfaces typically correspond to
the textureless regions in the scene, which are problematic
to CPW as well as many other methods.



Figure 1. Effects of various warping methods. Each row shows a sequences of warps of a single input frame created by pulling the camera
away from its original location. First row: Warping based on 2D transformation (e.g., homography) is too rigid to handle general motion
and structures, resulting in large distortions in non-planar regions (e.g., buildings). Second row: Content-preserving warping preserves
the non-planar structures well, but yields increasingly visible distortion in the textureless regions (i.e., the ground) where features are rare.
Third row: Our plane-based warping is able to produce visual-pleasing results by combining the strengths of both methods. Red line
represents the boundary of planar and non-planar regions obtained by our video segmentation algorithm.

Therefore, our goal is to develop a novel 3D stabilization
method that can explicitly take advantage of the presence of
(relatively large) planar surfaces in the scene. To this end,
we propose to automatically detect large planes in the scene,
and partition each frame into regions associated with each
plane, as well as regions that are “non-planar”. Note that,
since our ultimate goal is to improve the stabilization sys-
tem and produce jitter-free videos, it is crucial for our seg-
mentation algorithm to process the entire video in a short
period of time, and obtain results which can be seamlessly
integrated into the stabilization pipeline. To achieve this
goal, we develop a novel algorithm which directly works on
the same uniform grid mesh that is employed by CPW, and
only uses geometric cues for fast processing. This is con-
trary to the existing piecewise planar scene segmentation
algorithms, which operate at the per-pixel level and rely on
multiple low-level and high-level photometric cues. These
methods are generally too slow for stabilization purpose,
taking hours to process a video with a few hundred frames.
We demonstrate that our algorithm is capable of processing
the entire video in about 30 seconds, and obtaining results
that are sufficient for stabilization.

With the segmentation information, our new plane-based
warping method computes a single homography for image
regions that belong to the same plane, while borrowing the
results of CPW for non-planar regions (Figure 1 third row).
In this way, we not only seamlessly integrate the informa-
tion about planar structures of the scene into the stabiliza-
tion framework, but also provide an unified framework for
2D-3D stabilization. When the scene is dominated by com-

plex non-planar or dynamic structures, our method becomes
CPW which is known to work well in such cases, whereas
on the other end, if the scene contains a single large plane,
it reduces to the robust and efficient 2D method.

1.1. Related Work

In general, depending on the level of scene geometry
one recovers, existing video stabilization techniques can be
roughly divided into two categories. Methods in the first
category [19, 10, 6, 15, 13] aim to estimate a single 2D
transformation between each pair of frames. Stabilization
is then obtained by smoothing the parameters of 2D trans-
formations followed by synthesizing a new video using the
smoothed parameters. It is well known that 2D stabiliza-
tion can only achieve limited smoothing before introducing
noticeable artifacts to the output video. Several ideas have
been examined in recent years to alleviate this problem, in-
cluding interpolating the homography matrices in a trans-
formed space [10], considering user’s capturing intention
[6], directly smoothing a set of robust feature trajectories
[15], and designing an `1-optimal camera path [13].

In order to fully handle general scene structure and cam-
era motion, 3D stabilization methods [5, 7, 3, 16] attempt to
recover true camera motion and scene structures via struc-
ture from motion (SFM) systems. Stabilization is subse-
quently done by smoothing the camera path in 3D and syn-
thesizing a new video based on the smoothed path. To
avoid the dependency on structure from motion techniques,
[17] directly smoothes the 2D feature trajectories based
on the observation that they approximately lie in a low-



dimensional subspace over any short period of time. Alter-
natively, [11] resorts to epipolar point transfer, which only
requires projective reconstruction. However, all these meth-
ods except [11] solely rely on features that allow reliable
tracking, hence suffer from the presence of large textureless
regions. In [11], epipolar constraints are used to search for
additional matches along edges. But this approach is very
sensitive to noise, and does not work if there is no strong
edge in the scene. Recently, [18] proposes to use additional
depth sensors to compensate for the lack of feature tracks,
but access to depth data is unrealistic for the vast majority
of amateur videos.

The problem of segmenting video into motion layers that
admit parametric transformation models is first studied in
[25], and remains an active research topic in computer vi-
sion today. Since its goal is to obtain simultaneous mo-
tion estimation and segmentation, it typically involves iter-
ative schemes which are prone to local minima. Given cam-
era motion and 3D point cloud, early works on piecewise-
planar scene segmentation from multiple images [1, 26] are
based on line grouping and plane sweeping, whose com-
plexity is prohibitive beyond a few images. More recently,
[2] and [24] both combine the idea of random sampling con-
sensus (RANSAC) with photometric consistency check to
obtain piecewise planar scene models. However, the exper-
iment results in both papers only involve simple examples
with little non-planar structure. In addition, their compu-
tational complexity is still too high for our purpose. For
example, it is reported in [24] that it takes 14 hours to pro-
cess a sequence consisting of 380 frames. Finally, planes
extracted from 3D point clouds or depth maps have been re-
cently explored to improve the performance of multi-view
stereo (MVS) systems [21, 8, 9, 20]. But these methods are
again too slow for more than a few images. In summary,
none of the existing methods meets our goal of obtaining
satisfactory segmentation results within a few seconds for
long video sequences.

2. Overview of the Content-Preserving Warp-
ing Technique

Since our method is built upon the content-preserving
warping (CPW) technique introduced in [16], in this section
we give a brief review of it.

Generally speaking, CPW is an image warping technique
specifically designed for 3D stabilization, which aims to de-
form an input frame according to a set of 2D sparse dis-
placement constraints induced by the 3D viewpoint change,
while minimizing the distortion of local shape and salient
image content. In particular, it takes two sets of correspond-
ing 2D points as input – P̂ in the input frame, and P in the
output frame – and create a dense warp guided by the dis-
placements from P̂ to P . For 3D stabilization, P̂ and P
are obtained by projecting the reconstructed 3D points into

input and output (stabilized) cameras, respectively.
To create the dense warp, CPW first divides the original

video frame Î into anm×n uniform grid mesh, represented
by a set of N vertices V̂ = {v̂q}Nq=1. Then, it estimates a
warped version of the mesh, denoted by V = {vq}Nq=1,
for the output frame by minimizing the following objective
function:

E(V ) = Ed(V ) + αEs(V ), (1)

where α is a scalar weight between the data term Ed(V )
and smoothness term Es(V ).
Data term. The data term penalizes the difference in the
output frame between the projected location of each point
Pt and the location suggested by the estimated mesh V . For
each point P̂t in the input frame, a bilinear interpolation of
the four corners of the enclosing grid cell, denoted by V̂t,
is first computed so that P̂t = wT

t V̂t. Here, the vector wt

contains the four coefficients that sum to 1. Then, the data
term is defined as:

Ed(V ) =
∑

t

‖wT
t Vt − Pt‖2. (2)

Smoothness Term. The smoothness term measures the de-
viation of the estimated 2D transformation of each grid cell
from a similarity transformation. This is inspired by the
work [14], which suggests that warps resembling a simi-
larity transformation can effectively avoid noticeable dis-
tortions of image content due to shearing and non-uniform
scaling, hence should be preferred as long as the viewpoint
change is not too large, which is indeed the case in video
stabilization. [14] further shows that this constraint can
be written in the form of every three vertices that form a
triangle in a grid cell. Specially, let (V̂ ∆

1 , V̂ ∆
2 , V̂ ∆

3 ) and
(V ∆

1 , V ∆
2 , V ∆

3 ) denote the vertices of any triangle ∆ in the
input and output grid mesh, respectively. Then, its deviation
from a similarity transformation can be written as

es(∆) = ‖V ∆
1 −(V ∆

2 +a∆(V ∆
3 −V ∆

2 )+b∆R90(V ∆
3 −V ∆

2 ))‖2,
(3)

where a∆, b∆ satisfy

V̂ ∆
1 = V̂ ∆

2 + a∆(V̂ ∆
3 − V̂ ∆

2 ) + b∆R90(V̂ ∆
3 − V̂ ∆

2 ), (4)

and R90 = [0 1;−1 0] is a 2D rotation matrix.
Finally, the smoothness term Es(V ) is the sum of es(∆)

over all eight triangles of each vertex:

Es(V ) =
∑
∆

es(∆). (5)

Since minimizing the energy E(V ) is a linear least-
squares problem in the set of unknown V , it can be solved
efficiently by any standard linear system solver. The out-
put frame is then generated using standard texture mapping
algorithm according to V .



Finally we note that, according to the above discussion,
the warp obtained by CPW tends to be close to a similarity
transformation, especially in regions where features are rare
or non-existing. However, similarity transformation cannot
faithfully represent the projective effects of the scene, hence
may cause serious wobble effects in the stabilized videos.
Next, we show how this problem can be properly addressed
by incorporating information about scene planes.

3. Fast Piecewise Planar and Non-Planar Scene
Segmentation for Videos

In this section, we propose a fast two-step approach to
automatically segment each video frame into piecewise pla-
nar and non-planar regions. First, we detect scene planes
from 3D point cloud obtained by structure from motion us-
ing a robust multiple structure estimation algorithm called
J-Linkage [23]. Second, we describe a novel video segmen-
tation algorithm, which classifies each grid cell in the CPW
framework into K + 1 classes – one for each of the K de-
tected planes, plus a “non-planar” class. For this problem,
we lay out a MRF formulation for the entire sequence to
simultaneously take into account the spatial coherence be-
tween neighboring cells within each frame, and improve the
segmentation consistency across different frames. We now
describe these two steps in details.

3.1. Multiple Plane Detection

Since real scenes often contain multiple planes as well as
non-planar structures, we adopt a robust multiple structure
estimation method called J-Linkage [23] to detect planes
from 3D point cloud. Similar to the popular RANSAC tech-
nique, this method is based on sampling consensus. Mean-
while, it has been shown in [23] that J-Linkage substan-
tially outperforms other variants of RANSAC for multi-
ple structure detection, such as sequential RANSAC and
multi-RANSAC [29], in many real applications including
3D plane fitting.

Basically, J-Linkage works in the following way. It first
generates a large number (typically a few thousands) of pu-
tative models by random sampling. Next, for each data
point, a preference set (PS) of models is computed, which
include all the models to which the distance from that data
point is less than a threshold ε. J-Linkage then uses a
bottom-up scheme to iteratively group data points that have
similar PS. Here, the PS of a cluster is defined as the inter-
section of the preference sets of its members. Specifically,
in each iteration, J-Linkage computes the Jaccard distance
between any two clusters A and B:

dJ(A,B) =
|A
⋃
B| − |A

⋂
B|

|A
⋃
B|

, (6)

and merge the two clusters with the smallest distance. As
in RANSAC, the only free parameter of J-Linkage is the

Figure 2. Three planes are detected by J-Linkage [23] on the video
shown in FIgure 3.

consensus threshold ε, which is set to 10 in our experiments.
Also, since our goal is to detect large scene planes, we only
keep those clusters with a support size larger than one sixth
of the total number of points.

Figure 2 shows the result of applying J-Linkage to the
3D point cloud for an indoor video sequence taken by a
person walking down the corridor with a hand-held cam-
era (see Figure 3 for some input frames). In this exam-
ple, three planes are detected, namely the ground and two
side-walls. Although J-Linkage fails to detect the other two
planes, namely the ceiling and front door, due to their small
support sizes, we still consider the result successful as these
two planes only occupy a very small portion of the video
frames.

3.2. A Markov Random Field Formulation for
Video Segmentation

Once a set of dominant planes is detected, the next step
is to perform piecewise planar and non-planar segmenta-
tion for each input frame. To take both spatial and tem-
poral consistency into consideration, we define a Markov
random field for the entire sequence. For each frame,
If , f = 1, . . . , F , we divide it into a 64 × 36 uniform grid
mesh and build a graph Gf = (Vf , Ef ) on it. Each ver-
tex p ∈ Vf is a cell of the mesh, while the edges, Ef , de-
note the neighboring relationship between cells. Then, the
graph {Gf} from all frames are merged into a large graph
G = (V, E), by adding edges between the two cells at the
same spatial location in two consecutive frames.

Given a set ofK 3D planes, our goal is to assign a unique
label li to each vertex pi ∈ V . That is, li = k, k =
1, 2, . . . ,K if pi belongs to the k-th plane, and li = 0 if
pi lies on any non-planar surface. The solution L = {li}
can be obtained by minimizing the energy function

E(L) =
∑
pi∈V

Ψi(li) +
∑

eij∈E
Ψij(li, lj), (7)

which involves a unary data function Ψi and a pairwise
smoothness function Ψij . In this paper, we adopt the popu-
lar multi-label graph-cut algorithm [4] to minimizeE(L). It
is guaranteed to find a solution that is within a constant fac-



Figure 3. Piecewise planar and non-planar scene segmentation. First Row: Results of classifying each 3D point (represented by its
image in each frame) into the K + 1 classes based on the proposed distance measure ‖x−x∗

k‖2. Each color represents a class, with black
circles corresponding to the points labeled as “non-planar”, i.e., ‖x− x∗

k‖2 > β,∀k. Second Row: Segmentation results obtained by the
proposed method.

tor of the global minimum, and has been shown to produce
satisfactory results in many vision tasks [22].
Data term. For a vertex in the f -th frame, pi ∈ Vf , the
function Ψi is defined as follows. Let Xi be the set of 3D
points whose images in the f -th frame lie in the cell corre-
sponding to pi. Then, for each point X ∈ Xi, we compute
its projection to the k-th plane, denoted as X∗k . We further
denote x and x∗k as the images of X and X∗k in the f -th
frame, respectively. The function Ψi then measures the im-
age distance between x and x∗k:

Ψi(li) =
{ ∑

X∈Xi
min{‖x− x∗k‖2, dmax}, if li = k > 0

β|Xi|, if li = 0
(8)

where β is a penalty assigned to each point X ∈ Xi if the
corresponding cell is classified as “non-planar”. Note that,
geometrically, β can be viewed as a threshold that deter-
mines how far the images of X and its projection onto the
k-th planeX∗k may be beforeX is considered not belonging
to that plane. On one hand, by comparing the image dis-
tance instead of the distance in 3D, β sets a uniform thresh-
old across all 3D point which is irrelevant to their individual
uncertainty in the 3D space. On the other hand, the value of
β should depend on the overall accuracy of structure from
motion, and is chosen to be 1.5 times the size of each cell
in our paper. For example, for a 640× 360 input frame, we
have β = 15. In addition, the distance measure has been
truncated in Eq. (8) to dmax in order to prevent it from be-
ing dominated by a small number poorly reconstructed 3D
points. We fix dmax = 2β for all the experiments.

In Figure 3 (first row) we show the results of classify-
ing each 3D point (represented by its image in each frame)
into the K + 1 classes based on the proposed distance mea-
sure for an indoor scene. As one can see, the classification
results indeed give us very strong cues for segmentation.
Smoothness term. For each edge eij ∈ E in the same im-
age If , the smoothness function is defined as:

Ψij(li, lj) = δ(li, lj) · g(i, j), (9)

where δ(li, lj) is the indicator function which takes value 0
if li = lj , and 1 otherwise.

The function g(i, j) is designed to improve the estima-
tion of label boundaries by imposing geometric constraints
derived from multiple planes in the scene. First, for each
pair of planes in the scene (if exists), we compute the 2D
intersection line L between them in each frame If . Then,
we find all pairs of neighboring cells (pi, pj) in If where
the centers of pi and pj lie on different sides of L, and ac-
cumulate all such pairs for all intersection lines in a set EL

f .
Finally, the function g(i, j) is defined as

g(i, j) =
{
λ1, if (pi, pj) /∈ EL

f

λ2, otherwise
(10)

For edges eij across two frames, the smooth cost is de-
fined as

Ψij(li, lj) = λ3δ(li, lj). (11)

In this paper, λ1, λ2 and λ3 are empirically set to λ1 =
λ3 = 10, λ2 = 2 for all experiments.

In Figure 3 and Figure 4, we show some representa-
tive results of the proposed method. As one can see, our
segmentation algorithm correctly identifies the large planar
regions in a variety of indoor and outdoor scenes. How-
ever, since our algorithm purely relies on geometric cues,
the label boundaries estimated by it may not be very ac-
curate. This is mainly due to the uncertainty in 3D recon-
struction, which decides the smallest possible threshold β
one can choose to distinguish points on a plane from others.
In addition, the facts that our algorithm only operates on
a coarse spatial grid, and that feature points are not evenly
distributed in the images, could also contribute to the errors.
Nevertheless, we find that these errors have little effect on
the final stabilization results, since the shifts in viewpoint
are usually small for video stabilization.

In terms of speed, for a typical sequence such as the one
shown in Figure 3 with 250 frames, the plane detection1 and

1We use the Matlab code downloaded from the J-Linkage website:
http://www.diegm.uniud.it/fusiello/demo/jlk/.



Scene 1 Scene 2

Scene 3 Scene 4

Scene 5 Scene 6
Figure 4. Additional results on piecewise planar and non-planar scene segmentation.

piecewise planar scene segmentation algorithms take about
10 and 15 seconds on a desktop PC with 3.40GHz CPU and
12GB memory, respectively.

4. Plane-Based Stabilization

As we have already discussed, this paper aims at lever-
aging the flexibility of CPW and the structural regularities
(i.e., planar surfaces) of the scene to produce high-quality
stabilization results, especially in the cases where CPW per-
forms poorly because of large textureless regions. In this
section, we describe our plane-based stabilization algorithm
in details.

Like other 3D stabilization methods, our plane-based
method first applies structure from motion to recover the

original camera motion and sparse 3D point cloud. In this
paper, we use ACTS [27], a publicly available structure
from motion system. To generate the stabilized camera
path, we apply Gaussian filter to the original camera param-
eters. Since a camera can be modeled by a rotation matrix
R ∈ SO(3) and its center C ∈ R3, we apply a Gaussian
filter to these two components separately. Note that, since
the space of rotation matrices is not Euclidean, the filtering
of the rotational component is done in a locally linearized
space at each timestamp in the same way described in [16].

For novel view synthesis, we also follow the same idea
of [16] by processing one input frame at a time to avoid
ghosting effect caused by the moving objects. Each input
frame is divided into a 64 × 36 grid mesh V̂ = {v̂q}Nq=1

and the content-preserving warp is then computed. We de-



Figure 5. Snapshots of the videos used for evaluation.

note the output mesh by V 0 = {v0
q}. To incorporate in-

formation about the piecewise planar scene structures into
stabilization, we give a label, lq , to each vertex of the mesh
according to the labels of its surrounding cells. For any
vertex that lies on the segmentation boundary (hence the
surrounding cells have more than one labels), we simply as-
sign the smallest label to it. Based on the labels, a new mesh
V = {vq} is computed:

vq =
{
Hkv̂q if lq = k, k = 1, . . . ,K
v0

q, if lq = 0 (12)

where Hk is the homography induced by the k-th plane be-
tween the input and output frames. The output frame is then
obtained using standard texture mapping algorithms.

5. Experiments
We have tested our algorithm on 32 video sequences (see

Figure 5) which consist of one or more large scene planes,
including 5 videos that are used in [16] to demonstrate the
performance of CPW. These sequences cover a wide range
of scenes from both natural and indoor/outdoor man-made
environments. Among them, noticeable wobble effects can
be seen in 18 results obtained by CPW, due to the lack
of feature tracks in large planar regions. Meanwhile, our
plane-based method succeeds in 30 of the 32 videos, gener-
ating satisfactory stabilization results. We show a number
of results in our project website.2

Challenging cases. For the other two testing videos shown
in Figure 6, our method is not able to completely remove the
wobble effects, although it still produces better results than
CPW. In the first video, only a very small number of points
are reconstructed on the ground, with a large number of out-
liers due to reflection. Therefore, J-Linkage fails to detect
the ground plane in the case. Consequently, our segmen-
tation algorithm incorrectly assigns the ground regions to
the planes corresponding to the walls, causing undesirable
artifacts in the stabilized video. In the second video, the

2http://perception.csl.illinois.edu/stabilization/

(a) Input frame with points (b) Segmentation result
Figure 6. Challenging cases for our method. First row: In
this case, only a very small number of points are detected on the
ground. Some of them actually correspond to the reflection. Sec-
ond row: In this case, the ground is slightly curved.

ground is slightly curved, which confuses our plane detec-
tion and segmentation algorithms. As a result, a portion of
the ground region is labeled as non-planar, hence the wob-
ble effects remain in the output video.

In fact, both cases reveal the dependency of our method’s
performance on a few free parameters in the plane detection
and segmentation algorithms, for which a set of fixed values
is certainly not enough to handle all cases. Nevertheless, we
have shown in this paper that, by exploiting scene structures
such as the planar surfaces, our method significantly outper-
forms CPW in many challenging cases.

6. Conclusion, Limitations, and Future Work
In this paper we have described a novel method for video

stabilization, which outperforms the state-of-the-art meth-
ods by taking advantage of the presence of large planes in
the scene. Our method is built upon the newly proposed
CPW framework, but is able to avoid the difficulties of CPW
in handling large textureless regions. In particular, we have
proposed an efficient Markov random field formulation to
segment each video frame into piecewise planar and non-



planar regions. This level of scene understanding is shown
to be ideal for generating high-quality jitter-free videos in a
variety of practical scenarios.

Like CPW and many other 3D methods, our algorithm
relies on structure from motion to get accurate information
about the 3D scene structures and camera motions. For this
reason, all the videos tested in this paper are chosen to be
friendly to SFM. Also, we do not address other common
issues in video stabilization, including the smaller field of
view, motion blur [19], and rolling shuttle effects [12].

Another bottleneck of our method is the plane detection
part. Currently we use the robust model estimation package
J-Linkage, but it leaves to the user to decide the minimum
number of inliers for a valid model, hence may fail when
the number of reconstructed 3D points on the plane is ex-
tremely small. A different direction would be combining
plane detection with 3D reconstruction, as studied in [28].
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