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PCANet: A Simple Deep Learning Baseline for
Image Classification?

Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma

Abstract —In this work, we propose a very simple deep learning network for image classification which comprises only the very
basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms. In the
proposed architecture, PCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms
for indexing and pooling. This architecture is thus named as a PCA network (PCANet) and can be designed and learned extremely
easily and efficiently. For comparison and better understanding, we also introduce and study two simple variations to the PCANet,
namely the RandNet and LDANet. They share the same topology of PCANet but their cascaded filters are either selected randomly
or learned from LDA. We have tested these basic networks extensively on many benchmark visual datasets for different tasks, such
as LFW for face verification, MultiPIE, Extended Yale B, AR, FERET datasets for face recognition, as well as MNIST for hand-written
digits recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state of the art features, either
prefixed, highly hand-crafted or carefully learned (by DNNs). Even more surprisingly, it sets new records for many classification tasks
in Extended Yale B, AR, FERET datasets, and MNIST variations. Additional experiments on other public datasets also demonstrate the
potential of the PCANet serving as a simple but highly competitive baseline for texture classification and object recognition.

Index Terms —Convolution Neural Network, Deep Learning, PCA Network, Random Network, LDA Network, Face Recognition,
Handwritten Digit Recognition, Object Classification.

✦

1 INTRODUCTION

Image classification based on visual content is a very
challenging task, largely because there is usually large
amount of intra-class variability, arising from different
lightings, misalignment, non-rigid deformations, occlu-
sion and corruptions. Numerous efforts have been made
to counter the intra-class variability by manually design-
ing low-level features for classification tasks at hand.
Representative examples are Gabor features and local
binary patterns (LBP) for texture and face classification,
and SIFT and HOG features for object recognition. While
the low-level features can be hand-crafted with great suc-
cess for some specific data and tasks, designing effective
features for new data and tasks usually requires new do-
main knowledge since most hand-crafted features cannot
be simply adopted to new conditions [1], [2].

Learning features from the data of interest is con-
sidered as a plausible way to remedy the limitation of
hand-crafted features. An example of such methods is
learning through deep neural networks (DNNs), which
draws significant attention recently [1]. The idea of deep
learning is to discover multiple levels of representation,
with the hope that higher-level features represent more
abstract semantics of the data. Such abstract represen-
tations learned from a deep network are expected to
provide more invariance to intra-class variability. One
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key ingredient for success of deep learning in image
classification is the use of convolutional architectures [3]–
[10]. A convolutional deep neural network (ConvNet)
architecture [3]–[5], [8], [9] consists of multiple train-
able stages stacked on top of each other, followed by
a supervised classifier. Each stage generally comprises
of “three layers” – a convolutional filter bank layer, a
nonlinear processing layer, and a feature pooling layer.
To learn a filter bank in each stage of ConvNet, a variety
of techniques has been proposed, such as restricted
Boltzmann machines (RBM) [7] and regularized auto-
encoders or their variations; see [2] for a review and
references therein. In general, such a network is typically
learned by stochastic gradient descent (SGD) method.
However, learning a network useful for classification
critically depends on expertise of parameter tuning and
some ad hoc tricks.

While many variations of deep convolutional net-
works have been proposed for different vision tasks and
their success is usually justified empirically, arguably
the first instance that has led to clear mathematical
justification is the wavelet scattering networks (ScatNet)
[6], [10]. The only difference there is that the convolu-
tional filters in ScatNet are prefixed – they are simply
wavelet operators, hence no learning is needed at all.
Somewhat surprisingly, such a pre-fixed filter bank, once
utilized in a similar multistage architecture of ConvNet
or DNNs, has demonstrated superior performance over
ConvNet and DNNs in several challenging vision tasks
such as handwritten digit and texture recognition [6],
[10]. However, as we will see in this paper, such a
prefixed architecture does not generalize so well to tasks
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Fig. 1. Illustration of how the proposed PCANet extracts
features from an image through three simplest processing
components: PCA filters, binary hashing, and histogram.

such as face recognition where the intra-class variability
includes significant illumination change and corruption.

1.1 Motivations

An initial motivation of our study is trying to re-
solve some apparent discrepancies between ConvNet
and ScatNet. We want to achieve two simple goals:
First, we want to design a simple deep learning network
which should be very easy, even trivial, to train and to
adapt to different data and tasks. Second, such a basic
network could serve as a good baseline for people to
empirically justify the use of more advanced processing
components or more sophisticated architectures for their
deep learning networks.

The solution comes as no surprise: We use the most ba-
sic and easy operations to emulate the processing layers
in a typical (convolutional) neural network mentioned
above: The data-adapting convolution filter bank in each
stage is chosen to be the most basic PCA filters; the non-
linear layer is set to be the simplest binary quantization
(hashing); for the feature pooling layer, we simply use
the block-wise histograms of the binary codes, which is
considered as the final output features of the network.
For ease of reference, we name such a data-processing
network as a PCA Network (PCANet). As example, Figure
1 illustrates how a two-stage PCANet extracts features
from an input image.

At least one characteristic of the PCANet model seem
to challenge common wisdoms in building a deep learn-
ing network such as ConvNet [4], [5], [8] and ScatNet
[6], [10]: No nonlinear operations in early stages of the
PCANet until the very last output layer where binary
hashing and histograms are conducted to compute the
output features. Nevertheless, as we will see through

extensive experiments, such drastic simplification does
not seem to undermine performance of the network on
some of the typical datasets.

A network closely related to PCANet could be two-
stage oriented PCA (OPCA), which was first proposed
for audio processing [11]. Noticeable differences from
PCANet lie in that OPCA does not couple with hashing
and local histogram in the output layer. Given covariance
of noises, OPCA gains additional robustness to noises
and distortions. The baseline PCANet could also incor-
porate the merit of OPCA, likely offering more invari-
ance to intra-class variability. To this end, we have also
explored a supervised extension of PCANet, we replace
the PCA filters with filters that are learned from linear
discriminant analysis (LDA), called LDANet. As we will
see through extensive experiments, the additional dis-
criminative information does not seem to improve per-
formance of the network; see Sections 2.3 and 3. Another,
somewhat extreme, variation to PCANet is to replace
the PCA filters with totally random filters (say the filter
entries are i.i.d. Gaussian variables), called RandNet.
In this work, we conducted extensive experiments and
fair comparisons of these types of networks with other
existing networks such as ConvNet and ScatNet. We
hope our experiments and observations will help people
gain better understanding of these different networks.

1.2 Contributions

Although our initial intention of studying the simple
PCANet architecture is to have a simple baseline for
comparing and justifying other more advanced deep
learning components or architectures, our findings lead
to some pleasant but thought-provoking surprises: The
very basic PCANet, in fair experimental comparison,
is already quite on par with, and often better than,
the state-of-the-art features (prefixed, hand-crafted, or
learned from DNNs) for almost all image classification
tasks, including face images, hand-written digits, tex-
ture images, and object images. More specifically, for
face recognition with one gallery image per person, it
achieves 99.58% accuracy in Extended Yale B dataset,
and over 95% accuracy for across disguise/illumination
subsets in AR dataset. In FERET dataset, it obtains the
state-of-the-art average accuracy 97.25% and achieves
the best accuracy of 95.84% and 94.02% in Dup-1 and
Dup-2 subsets, respectively.1 In LFW dataset, it achieves
competitive 86.28% face verification accuracy under “un-
supervised setting”. In MNIST datasets, it achieves the
state-of-the-art results for subtasks such as basic, back-
ground random, and background image. See Section
3 for more details. Overwhelming empirical evidences
demonstrate the effectiveness of the proposed PCANet
in learning robust invariant features for various image
classification tasks.

1. The results were obtained by following FERET standard training
CD, and could be marginally better when the PCANet is trained on
MultiPIE database.
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The method hardly contains any deep or new tech-
niques and our study so far is entirely empirical.2 Never-
theless, a thorough report on such a baseline system has
tremendous value to the deep learning and visual recog-
nition community, sending both sobering and encouraging
messages: On one hand, for future study, PCANet can
serve as a simple but surprisingly competitive baseline
to empirically justify any advanced designs of multistage
features or networks. On the other hand, the empirical
success of PCANet (even that of RandNet) confirms
again certain remarkable benefits from cascaded feature
learning or extraction architectures. Even more impor-
tantly, since PCANet consists of only a (cascaded) linear
map, followed by binary hashing and block histograms,
it is now amenable to mathematical analysis and jus-
tification of its effectiveness. That could lead to funda-
mental theoretical insights about general deep networks,
which seems in urgent need for deep learning nowadays.

2 CASCADED L INEAR NETWORKS

2.1 Structures of the PCA Network (PCANet)

Suppose that we are given N input training images
{Ii}

N
i=1 of size m × n, and assume that the patch size

(or 2D filter size) is k1 × k2 at all stages. The proposed
PCANet model is illustrated in Figure 2, and only the
PCA filters need to be learned from the input images
{Ii}

N
i=1. In what follows, we describe each component

of the block diagram more precisely.

2.1.1 The first stage: PCA

Around each pixel, we take a k1 × k2 patch, and we
collect all (overlapping) patches of the ith image; i.e.,
xi,1,xi,2, ...,xi,mn ∈ R

k1k2 where each xi,j denotes the
jth vectorized patch in Ii. We then subtract patch mean
from each patch and obtain X̄i = [x̄i,1, x̄i,2, ..., x̄i,mn],
where x̄i,j is a mean-removed patch. By constructing
the same matrix for all input images and putting them
together, we get

X = [X̄1, X̄2, ..., X̄N ] ∈ R
k1k2×Nmn. (1)

Assuming that the number of filters in layer i is Li, PCA
minimizes the reconstruction error within a family of
orthonormal filters, i.e.,

min
V ∈Rk1k2×L1

‖X − V V TX‖2F , s.t. V TV = IL1
, (2)

where IL1
is identity matrix of size L1×L1. The solution

is known as the L1 principal eigenvectors of XXT . The
PCA filters are therefore expressed as

W 1
l

.
= matk1,k2

(ql(XXT )) ∈ R
k1×k2 , l = 1, 2, ..., L1, (3)

where matk1,k2
(v) is a function that maps v ∈ R

k1k2

to a matrix W ∈ R
k1×k2 , and ql(XXT ) denotes the

lth principal eigenvector of XXT . The leading principal

2. We would be surprised if something similar to PCANet or vari-
ations to OPCA [11] have not been suggested or experimented with
before in the vast learning literature.

eigenvectors capture the main variation of all the mean-
removed training patches. Of course, similar to DNN or
ScatNet, we can stack multiple stages of PCA filters to
extract higher level features.

2.1.2 The second stage: PCA

Almost repeating the same process as the first stage. Let
the lth filter output of the first stage be

Il
i

.
= Ii ∗W

1
l , i = 1, 2, ..., N, (4)

where ∗ denotes 2D convolution, and the boundary
of Ii is zero-padded before convolving with W 1

l so
as to make Il

i having the same size of Ii. Like the
first stage, we can collect all the overlapping patches
of Il

i , subtract patch mean from each patch, and form
Ȳ l
i = [ȳi,l,1, ȳi,l,2, ..., ȳi,l,mn] ∈ R

k1k2×mn, where ȳi,l,j is
the jth mean-removed patch in Il

i . We further define
Y l = [Ȳ l

1 , Ȳ
1
2 , ..., Ȳ

l
N ] ∈ R

k1k2×Nmn for the matrix col-
lecting all mean-removed patches of the lth filter output,
and concatenate Y l for all the filter outputs as

Y = [Y 1,Y 2, ...,Y L1 ] ∈ R
k1k2×L1Nmn. (5)

The PCA filters of the second stage are then obtained as

W 2
ℓ

.
= matk1,k2

(qℓ(Y Y T )) ∈ R
k1×k2 , ℓ = 1, 2, ..., L2. (6)

For each input Il
i of the second stage, we will have L2

outputs, each convolves Il
i with W 2

ℓ for ℓ = 1, 2, ..., L2:

Ol
i

.
= {Il

i ∗W
2
ℓ }

L2

ℓ=1. (7)

The number of outputs of the second stage is L1L2. One
can simply repeat the above process to build more (PCA)
stages if a deeper architecture is found to be beneficial.

2.1.3 Output stage: hashing and histogram

For each of the L1 input images Il
i for the second

stage, it has L2 real-valued outputs {Il
i ∗ W 2

ℓ }
L2

ℓ=1 from
the second stage. We binarize these outputs and get
{H(Il

i ∗W
2
ℓ )}

L2

ℓ=1, where H(·) is a Heaviside step (like)
function whose value is one for positive entries and zero
otherwise.

Around each pixel, we view the vector of L2 binary
bits as a decimal number. This converts the L2 outputs
in Ol

i back into a single integer-valued “image”:

T l
i

.
=

L2
∑

ℓ=1

2ℓ−1H(Il
i ∗W

2
ℓ ), (8)

whose every pixel is an integer in the range
[

0, 2L2 − 1
]

.
The order and weights of for the L2 outputs is irrelevant
as we here treat each integer as a distinct “word.”

For each of the L1 images T l
i , l = 1, . . . , L1, we

partition it into B blocks. We compute the histogram
(with 2L2 bins) of the decimal values in each block, and
concatenate all the B histograms into one vector and
denote as Bhist(T l

i ). After this encoding process, the
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Fig. 2. The detailed block diagram of the proposed (two-stage) PCANet.

“feature” of the input image Ii is then defined to be
the set of block-wise histograms; i.e.,

fi
.
= [Bhist(T 1

i ), . . . ,Bhist(T
L1

i )]T ∈ R
(2L2)L1B. (9)

The local blocks can be either overlapping or non-
overlapping, depending on applications. Our empiri-
cal experience suggests that non-overlapping blocks are
suitable for face images, whereas the overlapping blocks
are appropriate for hand-written digits, textures, and
object images. Furthermore, the histogram offers some
degree of translation invariance in the extracted features,
as in hand-crafted features (e.g., scale-invariant feature
transform (SIFT) [12] or histogram of oriented gradients
(HOG) [13]), learned features (e.g., bag-of-words (BoW)
model [14]), and average or maximum pooling process
in ConvNet [3]–[5], [8], [9].

The model parameters of PCANet include the filter
size k1, k2, the number of filters in each stage L1, L2, the
number of stages, and the block size for local histograms
in the output layer. PCA filter banks require that k1k2 ≥
L1, L2. In our experiments in Section 3, we always set
L1 = L2 = 8 inspired from the common setting of
Gabor filters [15] with 8 orientations, although some
fine-tuned L1, L2 could lead to marginal performance
improvement. Moreover, we have noticed empirically
that two-stage PCANet is in general sufficient to achieve
good performance and a deeper architecture does not
necessarily lead to further improvement. Also, larger
block size for local histograms provides more translation
invariance in the extracted feature fi.

2.1.4 Comparison with ConvNet and ScatNet

Clearly, PCANet shares some similarities with ConvNet
[5]. The patch-mean removal in PCANet is reminiscent of
local contrast normalization in ConvNet.3 This operation
moves all the patches to be centered around the origin of
the vector space, so that the learned PCA filters can bet-
ter catch major variations in the data. In addition, PCA

3. We have tested the PCANet without patch-mean removal and the
performance degrades significantly.

can be viewed as the simplest class of auto-encoders,
which minimizes reconstruction error.

The PCANet contains no non-linearity process be-
tween/in stages, running contrary to the common wis-
dom of building deep learning networks; e.g., the abso-
lute rectification layer in ConvNet [5] and the modulus
layer in ScatNet [6], [10]. We have tested the PCANet
with an absolute rectification layer added right after the
first stage, but we did not observe any improvement
on the final classification results. The reason could be
that the use of quantization plus local histogram (in
the output layer) already introduces sufficient invariance
and robustness in the final feature.

The overall process prior to the output layer in
PCANet is completely linear. One may wonder what
if we merge the two stages into just one that has an
equivalently same number of (PCA-like) filters and size
of receptive field. To be specific, one may be interested
in how the single-staged PCANet with L1L2 filters of
size (k1 + k2 − 1) × (k1 + k2 − 1) could perform, in
comparison to the two-staged PCANet we described in
Section 2.1. We have experimented with such settings
on various image classification tasks including face and
handwritten digit and observed that the two-staged
PCANet consistently outperforms this single-stage al-
ternative. Note that within the capability of learning, it
is more desirable to use a larger receptive field, since
it contains more holistic observations of the objects in
images, and learning invariance from it can essentially
capture more semantic information. Our comparative
experiments suggest that hierarchical architectures with
multiple stacked stages are more efficient in learning
semantically related representations from relatively large
receptive fields of input images, which coincides with
what have been observed in [7].

2.2 Computational Complexity

The components for constructing the PCANet are ex-
tremely basic and computationally efficient. To see how
light the computational complexity of PCANet would
be, let us take the two-staged PCANet as an example. In
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each stage of PCANet, forming the patch-mean-removed
matrix X costs k1k2 + k1k2mn flops; the inner product
XXT has complexity of 2(k1k2)

2mn flops; and the com-
plexity of eigen-decomposition is O((k1k2)

3). The PCA
filter convolution takes Lik1k2mn flops for stage i. In
the output layer, the conversion of L2 binary bits to a
decimal number costs 2L2mn, and the naive histogram
operation is of complexity O(mnBL2 log 2). Assuming
mn ≫ max(k1, k2, L1, L2, B), the overall complexity of
PCANet is easy to be verified as

O(mnk1k2(L1 + L2) +mn(k1k2)
2).

The above computational complexity applies to training
phase and testing phase of PCANet, as the extra compu-
tational burden in training phase from testing phase is
the eigen-decomposition, whose complexity is ignorable
when mn ≫ max(k1, k2, L1, L2, B).

In comparison to ConvNet, the SGD for filter learn-
ing is also a simple gradient-based optimization solver,
but the overall training time is still much longer than
PCANet. For example, training PCANet on around
100,000 images of 80×60 pixel dimension took only half a
hour, but CNN-2 took 6 hours, excluding the fine-tuning
process; see Section 3.1.1.D for details.

2.3 Two Variations: RandNet and LDANet

The PCANet is an extremely simple network, requiring
only minimum learning of the filters from the training
data. One could immediately think of two possible vari-
ations of the PCANet towards two opposite directions:

1) We could further eliminate the necessity of training
data and replace the PCA filters at each layer with
random filters of the same size. Be more specific,
for random filters, i.e., the elements of W 1

l and W 2
l ,

are generated following standard Gaussian distri-
bution. We call such a network Random Network,
or RandNet as a shorthand. It is natural to won-
der how much degradation such a randomly cho-
sen network would perform in comparison with
PCANet.

2) If the task of the learned network is for classifica-
tion, we could further enhance the supervision of
the learned filters by incorporating the information
of class labels in the training data and learn the
filters based on the idea of multi-class linear dis-
criminant analysis (LDA). We called so composed
network LDA Network, or LDANet for ease of
reference. Again we are interested in how much
the enhanced supervision would help improve the
performance of the network.

To be more clear, we here describe with more details
how to construct the LDANet. Suppose that the N
training images are classified into C classes {Ii}i∈Sc

,
c = 1, 2, ..., C where Sc is the set of indices of images in
class c, and the mean-removed patches associated with
each image of distinct classes X̄i ∈ R

k1k2×mn, i ∈ Sc

(in the same spirit of X̄i in (1)) are given. We can first

compute the class mean Γc and the intra-class variability
Σc for all the patches as follows,

Γc =
∑

i∈Sc

X̄i/|Sc|, (10)

Σc =
∑

i∈Sc

(X̄i − Γc)(X̄i − Γc)
T /|Sc|. (11)

Each column of Γc denotes the mean of patches around
each pixel in the class c, and Σc is the sum of all the
patch-wise sample covariances in the class c. Likewise,
the inter-class variability of the patches is defined as

Φ =
C
∑

c=1

(Γc − Γ)(Γc − Γ)T /C, (12)

where Γ is the mean of class means. The idea of LDA
is to maximize the ratio of the inter-class variability
to sum of the intra-class variability within a family of
orthonormal filters; i.e.,

max
V ∈Rk1k2×L1

Tr(V T
ΦV )

Tr(V T (
∑C

c=1 Σc)V )
, s.t. V TV = IL1

, (13)

where Tr(·) is the trace operator. The solution is known

as the L1 principal eigenvectors of Φ̃ = (
∑C

c=1 Σc)
†
Φ,

where the superscript † denotes the pseudo-inverse. The

pseudo inverse is to deal with the case when
∑C

c=1 Σc is
not of full rank, though there might be another way of
handling this with better numeric stability [16]. The LDA
filters are thus expressed as W 1

l = matk1,k2
(ql(Φ̃)) ∈

R
k1×k2 , l = 1, 2, ..., L1. A deeper network can be built

by repeating the same process as above. .

3 EXPERIMENTS

We now evaluate the performance of the proposed
PCANet and the two simple variations (RandNet and
LDANet) in various tasks, including face recognition,
face verification, hand-written digits recognition, texture
discrimination, and object recognition in this section.

3.1 Face Recognition on Many Datasets

We first focus on the problem of face recognition with
one gallery image per person. We use part of MultiPIE
dataset to learn PCA filters in PCANet, and then apply
such trained PCANet to extract features of new subjects
in MultiPIE dataset, Extended Yale B, AR, and FERET
datasets for face recognition.

3.1.1 Training and Testing on MultiPIE Dataset.

MultiPIE dataset [17] contains 337 subjects across simul-
taneous variation in pose, expression, and illumination.
Of these 337 subjects, we select the images of 129 subjects
that enrolled all the four sessions. The images of a
subject under all illuminations and all expressions at
pose −30◦ to +30◦ with step size 15◦, a total of 5
poses, were collected. We manually select eye corners
as the ground truth for registration, and down-sample
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Fig. 3. Recognition accuracy of PCANet on MultiPIE
cross-illumination test set for varying number of filters in
the first stage. (a) PCANet-1; (b) PCANet-2 with L2 = 8.

the images to 80×60 pixels. The distance between the
two outer eye corners is normalized to be 50 pixels. This
generic training set comprises around 100,000 images,
and all images are converted to gray scale.

We use these assembled face images to train the
PCANet and together with data labels to learn LDANet,
and then apply the trained networks to extract fea-
tures of the new subjects in Multi-PIE dataset. As men-
tioned above, 129 subjects enrolling all four sessions
are used for PCANet training. The remaining 120 new
subjects in Session 1 are used for gallery training and
testing. Frontal view of each subject with neutral ex-
pression and frontal illumination is used in gallery,
and the rest is for testing. We classify all the possible
variations into 7 test sets, namely cross illumination,
cross expression, cross pose, cross expression-plus-pose,
cross illumination-plus-expression, cross illumination-
plus-pose, and cross illumination-plus-expression-and-
pose. The cross-pose test set is specifically collected over
the poses −30◦, −15◦, +15◦, +30◦.

A. Impact of the number of filters. Before comparing
RandNet, PCANet, and LDANet with existing methods
on all the 7 test sets, we first investigate the impact of
the number of filters of these networks on the cross-
illumination test set only. The filter size of the networks
is k1 = k2 = 5 and their non-overlapping blocks is of size
8×6. We vary the number of filters in the first stage L1

from 2 to 12 for one-staged networks. When considering
two-staged networks, we set L2 = 8 and vary L1 from
4 to 24. The results are shown in Figure 3. One can see
that PCANet-1 achieves the best results for L1 ≥ 4 and
PCANet-2 is the best for all L1 under test. Moreover,
the accuracy of PCANet and LDANet (for both one-
staged and two-staged networks) increases for larger L1,
and the RandNet also has similar performance trend.
However, some performance fluctuation is observed for
RandNet due to the filters’ randomness.

B. Impact of the the block size. We next examine the
impact of the block size (for histogram computation) on
robustness of PCANet against image deformations. We
use the cross-illumination test set, and introduce artificial
deformation to the testing image with a translation, in-
plane rotation or scaling; see Figure 4. The parameters

(-6,-6)-translated 10
o
-rotated 0.9-scaledInput face

Fig. 4. Original image and its artificially deformed images.

TABLE 1
Face recognition rates (%) of PCANet on MultiPIE
cross-illumination test set, with respect to different

amount of generic training images (S).

S 100 500 1,000 5,000 10,000 50,000

PCANet-1 98.01 98.44 98.61 98.65 98.70 98.70
PCANet-2 100.00 100.00 100.00 100.00 100.00 100.00

of PCANet are set to k1 = k2 = 5 and L1 = L2 = 8. Two
block sizes 8×6 and 12×9 are considered. Figure 5 shows
the recognition accuracy for each artificial deformation.
It is observed that PCANet-2 achieves more than 90
percent accuracy with translation up to 4 pixels in all
directions, up to 8◦ in-plane rotation, or with scale
varying from 0.9 to 1.075. Moreover, the results suggest
that PCANet-2 with larger block size provides more
robustness against various deformations, but a larger
block side may sacrifice some performance for PCANet-
1.

C. Impact of the number of generic training samples. We
also report the recognition accuracy of the PCANet for
differen number of the generic training images. Again,
we use cross-illumination test set. We randomly select S
images from the generic training set to train the PCANet,
and varies S from 10 to 50, 000. The parameters of
PCANet are set to k1 = k2 = 5, L1 = L2 = 8, and
block size 8×6. The results are tabulated in Table 1.
Surprisingly, the accuracy of PCANet is less-sensitive
to the number of generic training images. The perfor-
mance of PCANet-1 gradually improves as the number
of generic training samples increases, and PCANet-2
keeps perfect recognition even when there are only 100
generic training samples.

D. Comparison with state of the arts. We compare the
RandNet, PCANet, and LDANet with Gabor4 [15], LBP5

[18], and two-staged ScatNet (ScatNet-2) [6]. We set the
parameters of PCANet to the filter size k1 = k2 = 5,
the number of filters L1 = L2 = 8, and 8×6 block size,
and the learned PCANet filters are shown in Figure 6.
The number of scales and the number of orientations

4. Each face is convolved with a family of Gabor kernels with 5
scales and 8 orientations. Each filter response is down-sampled by a
3× 3 uniform lattice, and normalized to zero mean and unit variance.

5. Each face is divided into several blocks, each of size the same
as PCANet. The histogram of 59 uniform binary patterns is then com-
puted, where the patterns are generated by thresholding 8 neighboring
pixels in a circle of radius 2 using the central pixel value.
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Fig. 5. Recognition rate of PCANet on MultiPIE cross-illumination test set, for different PCANet block size and
deformation to the test image. Two block sizes [8 6] and [12 9] for histogram aggregation are tested. (a) Simultaneous
translation in x and y directions. (b) Translation in x direction. (c) Translation in y direction. (d) In-plane rotation. (e)
Scale variation.

MultiPIEFig. 6. The PCANet filters learned on MultiPIE dataset.
Top row: the first stage. Bottom row: the second stage.

in ScatNet-2 are set to 3 and 8, respectively. We use
the nearest neighbor (NN) classifier with the chi-square
distance for RandNet, PCANet, LDANet and LBP, or
with the cosine distance for Gabor and ScatNet. The NN
classifier with different distance measure is to secure the
best performances of respective features.

We also compare with CNN. Since we could not find
any work that successfully applies CNN to the same face
recognition tasks, we use Caffe framework [19] to pre-
train a two-staged CNN (CNN-2) on the generic training
set. The CNN-2 is fully-supervised network with filter
size 5×5; 20 channels for the first stage and 50 channels
for the second stage. Each convolution output is fol-
lowed by a rectified linear function relu(x) = max(x, 0)
and 2×2 max-pooling. The output layer is a softmax
classifier. After pre-training the CNN-2 on the generic
training set, the CNN-2 is also fine-tuned on the 120
gallery images for 500 epochs.

The performance of all methods are given in Table
2. Except for cross-pose test set, the PCANet yields
the best precision. For all test sets, the performance of
RandNet and LDANet is inferior to that of PCANet, and
LDANet does not seem to take advantage of discrimina-
tive information. One can also see that whenever there
is illumination variation, the performance of LBP drops

significantly. The PCANet overcomes this drawback and
offers comparable performance to LBP for cross-pose
and cross-expression variations. As a final note, ScatNet
and CNN seem not performing well. This is the case
for all face-related experiments below, and therefore
ScatNet and CNN are not included for comparison in
these experiments. We also do not include RandNet and
LDANet in the following face-related experiments, as
they did not show performance superior over PCANet.

Another issue worth mentioning is the efficiency of
the PCANet. Training PCANet-2 on the generic training
set (i.e., around 100,000 face images of 80×60 pixel
dimension) took only half a hour, but CNN-2 took 6
hours, excluding the fine-tuning process.

3.1.2 Testing on Extended Yale B Dataset.

We then apply the PCANet with the PCA filters learned
from MultiPIE to Extended Yale B dataset [20]. Extended
Yale B dataset consists of 2414 frontal-face images of
38 individuals. The cropped and normalized 192×168
face images were captured under various laboratory-
controlled lighting conditions. For each subject, we select
frontal illumination as the gallery images, and the rest
for testing. To challenge ourselves, in the test images,
we also simulate various levels of contiguous occlusion,
from 0 percent to 80 percent, by replacing a randomly
located square block of each test image with an unre-
lated image; see Figure 7 for example. The size of non-
overlapping blocks in the PCANet is set to 8×8. We
compare with LBP [18] and LBP of the test images being
processed by illumination normalization, P-LBP [21].
We use the NN classifier with the chi-square distance
measure.
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TABLE 2
Comparison of face recognition rates (%) of various methods on MultiPIE test sets.

Test Sets Illum. Exps. Pose Exps.+Pose Illum.+Exps. Illum.+Pose Illum.+Exps.+Pose

Gabor [15] 68.75 94.17 84.17 64.70 38.09 39.76 25.92
LBP [18] 79.77 98.33 95.63 86.88 53.77 50.72 40.55
ScatNet-2 [6] 20.88 66.67 71.46 54.37 14.51 15.00 14.47
CNN-2 [8] 46.71 75.00 73.54 57.50 23.38 25.05 18.74
RandNet-1 80.88 98.33 87.50 75.62 46.57 42.80 31.85
RandNet-2 97.64 97.50 83.13 75.21 63.87 53.50 42.47
PCANet-1 98.70 99.17 94.17 87.71 72.40 65.76 53.80
PCANet-2 100.00 99.17 93.33 87.29 87.89 75.29 66.49
LDANet-1 99.95 98.33 92.08 82.71 77.89 68.55 57.97
LDANet-2 96.02 99.17 93.33 83.96 65.78 60.14 46.72

0% occlusion 40% occlusion 80% occlusion

Fig. 7. Illustration of varying level of an occluded test face
image.

TABLE 3
Recognition rates (%) on Extended Yale B dataset.

Percent occluded 0% 20% 40% 60% 80%

LBP [18] 75.76 65.66 54.92 43.22 18.06
P-LBP [21] 96.13 91.84 84.13 70.96 41.29
PCANet-1 97.77 96.34 93.81 84.60 54.38
PCANet-2 99.58 99.16 96.30 86.49 51.73

The experimental results are given in Table 3. One can
see that the PCANet outperforms the P-LBP for different
levels of occlusion. It is also observed that the PCANet is
not only illumination-insensitive, but also robust against
block occlusion. Under such a single sample per per-
son setting and various difficult lighting conditions, the
PCANet surprisingly achieves almost perfect recognition
99.58%, and still sustains 86.49% accuracy when 60%
pixels of every test image are occluded! The reason
could be that the learned PCA filters in PCANet provide
sufficient robustness to occlusion. Specifically, each PCA
filter can be seen as a detector with the maximum
response for patches from a face. In other words, the
contribution from occluded patches would somehow be
ignored after PCA filtering and are not passed onto the
output layer of the PCANet, thereby yielding striking
robustness to occlusion.

3.1.3 Testing on AR Dataset.

We further evaluate the ability of the MultiPIE-learned
PCANet to cope with real possibly malicious occlusions
using AR dataset [22]. AR dataset consists of over 4,000
frontal images for 126 subjects. For each individual,
26 pictures were taken in two separate sessions. These

TABLE 4
Recognition rates (%) on AR dataset.

Test sets Illum. Exps. Disguise Disguise + Illum.

LBP [18] 93.83 81.33 91.25 79.63
P-LBP [21] 97.50 80.33 93.00 88.58
PCANet-1 98.00 85.67 95.75 92.75
PCANet-2 99.50 85.00 97.00 95.00

images include different facial expressions, illumination
conditions and disguises. In the experiment, we chose a
subset of the data consisting of 50 male subjects and 50
female subjects. The images are cropped with dimension
165×120 and converted to gray scale. For each subject,
we select the face with frontal illumination and neural
expression in the gallery training, and the rest are all
for testing. The size of non-overlapping blocks in the
PCANet is set to 8×6. We also compare with LBP [18]
and P-LBP [21]. We use the NN classifier with the chi-
square distance measure.

The results are given in Table 4. For test set of
illumination variations, the recognition by PCANet is
again almost perfect, and for cross-disguise related test
sets, the accuracy is more than 95%. The results are
consistent with that on MultiPIE and Extended Yale
B datasets: PCANet is insensitive to illumination and
robust to occlusions. To the best of our knowledge, no
single feature with a simple classifier can achieve such
performances, even if in extended representation-based
classification (ESRC) [23]!

3.1.4 Testing on FERET Dataset.

We finally apply the MultiPIE-learned PCANet to the
popular FERET dataset [24], which is a standard dataset
used for facial recognition system evaluation. FERET
contains images of 1,196 different individuals with up
to 5 images of each individual captured under different
lighting conditions, with non-neural expressions and
over the period of three years. The complete dataset
is partitioned into disjoint sets: gallery and probe. The
probe set is further subdivided into four categories: Fb
with different expression changes; Fc with different light-
ing conditions; Dup-I taken within the period of three to
four months; Dup-II taken at least one and a half year
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TABLE 5
Recognition rates (%) on FERET dataset.

Probe sets Fb Fc Dup-I Dup-II Avg.

LBP [18] 93.00 51.00 61.00 50.00 63.75
DMMA [25] 98.10 98.50 81.60 83.20 89.60
P-LBP [21] 98.00 98.00 90.00 85.00 92.75
POEM [26] 99.60 99.50 88.80 85.00 93.20
G-LQP [27] 99.90 100 93.20 91.00 96.03
LGBP-LGXP [28] 99.00 99.00 94.00 93.00 96.25
sPOEM+POD [29] 99.70 100 94.90 94.00 97.15
GOM [30] 99.90 100 95.70 93.10 97.18
PCANet-1 (Trn. CD) 99.33 99.48 88.92 84.19 92.98
PCANet-2 (Trn. CD) 99.67 99.48 95.84 94.02 97.25
PCANet-1 99.50 98.97 89.89 86.75 93.78
PCANet-2 99.58 100 95.43 94.02 97.26

apart. We use the gray-scale images, cropped to image
size of 150×90 pixels. The size of non-overlapping blocks
in the PCANet is set to 15×15. To compare fairly with
prior methods, the dimension of the PCANet features are
reduced to 1000 by a whitening PCA (WPCA),6 where
the projection matrix is learned from the features of
gallery samples. The NN classifier with cosine distance
is used. Moreover, in addition to PCANet trained from
MultiPIE database, we also train PCANet on the FERET
generic training set, consisting of 1,002 images of 429
people listed in the FERET standard training CD.

The results of the PCANet and other state-of-the-
art methods are listed in Table 5. Surprisingly, both
simple MultiPIE-learned PCANet-2 and FERET-learned
PCANet-2 (with Trn. CD in a parentheses) achieve the
state-of-the-art accuracies 97.25% and 97.26% on average,
respectively. As the variations in MultiPIE database are
much richer than the standard FERET training set, it is
nature to see that the MultiPIE-learned PCANet slightly
outperforms FERET-learned PCANet. More importantly,
PCANet-2 breaks the records in Dup-I and Dup-II.

A prominent message drawn from the above exper-
iments in sections 3.1.1, 3.1.2, 3.1.3, and 3.1.4 is that
training PCANet from a face dataset can be very effective
to capture the abstract representation of new subjects or
new datasets. After the PCANet is trained, extracting
PCANet-2 feature for one test face only takes 0.3 second
in Matlab. We can anticipate that the performance of
PCANet could be further improved and moved toward
practical use if the PCANet is trained upon a wide and
deep dataset that collect sufficiently many inter-class and
intra-class variations.

3.2 Face Verification on LFW Dataset

Besides tests with laboratory face datasets, we also
evaluate the PCANet on the LFW dataset [31] for un-
constrained face verification. LFW contains 13,233 face
images of 5,749 different individuals, collected from the
web with large variations in pose, expression, illumi-
nation, clothing, hairstyles, etc. We consider “unsuper-
vised setting”, which is the best choice for evaluating

6. The PCA projection directions are weighted by the inverse of their
corresponding square-root energies, respectively.

the learned features, for it does not depend on metric
learning and discriminative model learning. The aligned
version of the faces, namely LFW-a, provided by Wolf
et al. [32] is used, and the face images were cropped
into 150× 80 pixel dimensions. We follow the standard
evaluation protocal, which splits the View 2 dataset into
10 subsets with each subset containing 300 intra-class
pairs and 300 inter-class pairs. We perform 10-fold cross
validation using the 10 subsets of pairs in View 2. In
PCANet, the filter size, the number of filters, and the
(non-overlapping) block size are set to k1 = k2 = 7,
L1 = L2 = 8, and 15×13, respectively. The performances
are measured by averaging the 10-fold cross validation.
We project the PCANet features onto 400 and 3,200
dimensions using WPCA for PCANet-1 and PCANet-2,
respectively, and use NN classifier with cosine distance.

Table 6 tabulates the results.7 Note that PCANet fol-
lowed by sqrt in a parentheses represents the PCANet
feature taking square-root operation. One can see that
the square-root PCANet outperforms PCANet, and
this performance boost from square-root operation has
also been observed in other features for this dataset
[33]. Moreover, the square-root PCANet-2 that achieves
86.28% accuracy is quite competitive to the current
state-of-the-art methods. This shows that the proposed
PCANet is also effective in learning invariant features
for face images captured in less controlled conditions.

In preparation of this paper, we are aware of two
concurrent works [34], [35] that employ ConvNet for
LFW face verification. While both works achieve very
impressive results on LFW, their experimental setting
differs from ours largely. These two works require some
outside database to train the ConvNet and the face
images have to be more precisely aligned; e.g., [34]
uses 3-dimensional model for face alignment and [35]
extracts multi-scale features based on detected landmark
positions. On the contrary, we only trained PCANet
based on LFW-a [32], an aligned version of LFW images
using the commercial alignment system of face.com.

TABLE 6
Comparison of verification rates (%) on LFW under

unsupervised setting.

Methods Accuracy

POEM [26] 82.70±0.59
High-dim. LBP [36] 84.08
High-dim. LE [36] 84.58
SFRD [37] 84.81
I-LQP [27] 86.20±0.46
OCLBP [33] 86.66±0.30
PCANet-1 81.18 ± 1.99
PCANet-1 (sqrt) 82.55 ± 1.48
PCANet-2 85.20 ± 1.46
PCANet-2 (sqrt) 86.28 ± 1.14

7. For fair comparison, we only report results of single descriptor.
The best known LFW result under unsupervised setting is 88.57% [33],
which is inferred from four different descriptors.
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TABLE 7
Error rates (%) of PCANet-2 on basic dataset for varying

block overlap ratios (BORs).

BOR 0.1 0.2 0.3 0.4 0.5 0.6 0.7

RandNet-2 1.31 1.35 1.23 1.34 1.18 1.14 1.24
PCANet-2 1.12 1.12 1.07 1.06 1.06 1.02 1.05
LDANet-2 1.14 1.14 1.11 1.05 1.05 1.05 1.06

3.3 Digit Recognition on MNIST Datasets

We now move forward to test the proposed PCANet,
along with RandNet and LDANet, on MNIST [4] and
MNIST variations [38], a widely-used benchmark for
testing hierarchical representations. There are 9 classi-
fication tasks in total, as listed in Table 8. All the images
are of size 28 × 28. In the following, we use MNIST
basic as the dataset to investigate the influence of the
number of filters or different block overlap ratios for
RandNet, PCANet and LDANet, and then compare with
other state-of-the-art methods on all the MNIST datasets.

3.3.1 Impact of the number of filters

We vary the number of filters in the first stage L1 from
2 to 12 for one-staged networks. Regarding two-staged
networks, we set L2 = 8 and change L1 from 4 to 24.
The filter size of the networks is k1 = k2 = 7, block
size is 7×7, and the overlapping region between blocks
is half of the block size. The results are shown in Figure
8. The results are consistent with that for MultiPIE face
database in Figure 3; PCANet outperforms RandNet and
LDANet for almost all the cases.

3.3.2 Impact of the block overlap ratio

The number of filters is fixed to L1 = L2 = 8, and the
filter size is again k1 = k2 = 7 and block size is 7×7.
We only vary the block overlap ratio (BOR) from 0.1 to
0.7. Table 7 tabulates the results of RandNet-2, PCANet-
2, and LDANet-2. Clearly, PCANet-2 and LDANet-2
achieve their minimum error rates for BOR equal to 0.5
and 0.6, respectively, and PCANet-2 performs the best
for all conditions.

3.3.3 Comparison with state of the arts

We compare RandNet, PCANet, and LDANet with Con-
vNet [5], 2-staged ScatNet (ScatNet-2) [6], and other
existing methods. In ScatNet, the number of scales and
the number of orientations are set to 3 and 8, respectively.
Regarding the parameters of PCANet, we set the filter
size k1 = k2 = 7, the number of PCA filters L1 = L2 = 8;
the block size is tuned by a cross-validation for MNIST,
and the validation sets for MNIST variations8. The over-
lapping region between blocks is half of the block size.
Unless otherwise specified, we use linear SVM classifier

8. Using either cross-validation or validation set, the optimal block
size is obtained as 7×7 for MNIST, basic, rec-img, 4×4 for rot, bg-img,
bg-rnd, bg-img-rot, 14×14 for rec, and 28×28 for convex.
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Fig. 8. Error rate of PCANet on MNIST basic test set for
varying number of filters in the first stage. (a) PCANet-1;
(b) PCANet-2 with L2 = 8.

for ScatNet and RandNet, PCANet and LDANet for the
9 classification tasks.

The testing error rates of the various methods on
MNIST are shown in Table 9. For fair comparison, we
do not include the results of methods using augmented
training samples with distortions or other information,
for that the best known result is 0.23% [39]. We see
that RandNet-2, PCANet-2, and LDANet-2 are compa-
rable with the state-of-the-art methods on this standard
MNIST task. However, as MNIST has many training
data, all methods perform very well and very close –
the difference is not so statistically meaningful.

Accordingly, we also report results of different meth-
ods on MNIST variations in Table 10. To the best of our
knowledge, the PCANet-2 achieves the state-of-the-art
results for four out of the eight remaining tasks: basic,
bg-img, bg-img-rot, and convex. Especially for bg-img, the
error rate reduces from 12.25% [40] to 6.27%.

Furthermore, we also draw the learned PCANet filters
in Figure 9 and Figure 10. An intriguing pattern is
observed in the filters of rect and rect-img datasets. For
rect, we can see both horizontal and vertical stripes,
for these patterns attempt to capture the edges of the
rectangles. When there is some image background in
rect-img, several filters become low-pass, in order to
secure the responses from background images.

TABLE 9
Comparison of error rates (%) of the methods on MNIST,

excluding methods that augment the training data.

Methods MNIST

HSC [41] 0.77
K-NN-SCM [42] 0.63
K-NN-IDM [43] 0.54
CDBN [7] 0.82
ConvNet [5] 0.53
Stochastic pooling ConvNet [44] 0.47
Conv. Maxout + Dropout [3] 0.45
ScatNet-2 (SVMrbf ) [6] 0.43
RandNet-1 1.32
RandNet-2 0.63
PCANet-1 0.94
PCANet-2 0.66
LDANet-1 0.98
LDANet-2 0.62
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TABLE 8
Details of the 9 classification tasks on MNIST and MNIST variations.

Data Sets Description Num. of classes Train-Valid-Test

MNIST Standard MNIST 10 60000-0-10000
basic Smaller subset of MNIST 10 10000-2000-50000
rot MNIST with rotation 10 10000-2000-50000
bg-rand MNIST with noise background 10 10000-2000-50000
bg-img MNIST with image background 10 10000-2000-50000
bg-img-rot MNIST with rotation and image background 10 10000-2000-50000
rect Discriminate between tall and wide rectangles 2 1000-200-50000
rect-img Dataset rect with image background 2 10000-2000-50000
convex Discriminate between convex and concave shape 2 6000-2000-50000

TABLE 10
Comparison of testing error rates (%) of the various methods on MNIST variations.

Methods basic rot bg-rand bg-img bg-img-rot rect rect-img convex

CAE-2 [45] 2.48 9.66 10.90 15.50 45.23 1.21 21.54 -
TIRBM [46] - 4.20 - - 35.50 - - -
PGBM + DN-1 [40] - - 6.08 12.25 36.76 - - -
ScatNet-2 [6] 1.27 7.48 18.40 12.30 50.48 0.01 8.02 6.50
RandNet-1 1.86 14.25 15.97 18.81 51.82 0.21 15.94 6.78
RandNet-2 1.25 8.47 11.65 13.47 43.69 0.09 17.00 5.45
PCANet-1 1.44 10.55 11.11 6.77 42.03 0.15 25.55 5.93
PCANet-2 1.06 7.37 10.95 6.19 35.48 0.24 14.08 4.36
LDANet-1 1.61 11.40 13.03 7.16 43.86 0.15 23.63 6.89
LDANet-2 1.05 7.52 12.42 6.81 38.54 0.14 16.20 7.22

MNIST
Fig. 9. The PCANet filters learned on MNIST dataset. Top
row: the first stage. Bottom row: the second stage.

3.4 Texture Classification on CUReT Dataset

The CUReT texture dataset contains 61 classes of image
textures. Each texture class has images of the same
material with different pose and illumination conditions.
Other than the above variations, specularities, shad-
owing and surface normal variations also make this
classification challenging. In this experiment, a subset of
the dataset with azimuthal viewing angle less than 60
degrees is selected, thereby yielding 92 images in each
class. A central 200× 200 region is cropped from each of
the selected images. The dataset is randomly split into
a training and a testing set, with 46 training images for
each class, as in [47]. The PCANet is trained with filter
size k1 = k2 = 5, the number of filters L1 = L2 = 8,
and block size 50×50. We use linear SVM classifier. The
testing error rates averaged over 10 different random
splits are shown in Table 11. We see that the PCANet-
1 outperforms ScatNet-1, but the improvement from
PCANet-1 to PCANet-2 is not as large as that of ScatNet.
Note that ScatNet-2 followed by a PCA-based classifier
gives the best result [6].

textureFig. 11. The PCANet filters learned on CUReT database.
Top row: the first stage. Bottom row: the second stage.

TABLE 11
Comparison of error rates (%) on CUReT.

Methods Error rates

Textons [48] 1.50
BIF [49] 1.40
Histogram [50] 1.00
ScatNet-1 (PCA) [6] 0.50
ScatNet-2 (PCA) [6] 0.20
RandNet-1 0.61
RandNet-2 0.46
PCANet-1 0.45
PCANet-2 0.39
LDANet-1 0.69
LDANet-2 0.54

3.5 Object Recognition on Caltech101 Dataset

We finally evaluate the performance of PCANet on Cal-
tech101 dataset for object recognition. Caltech101 dataset
contains 9,144 images in 101 classes, including animals,
vehicles, flowers, etc, with significant variance in shape,
and a background class. The number of images per
category varies from 31 to 800. All the images were
converted to gray scale and resized to be no larger
than 300×300 pixels with preserved aspect ratio. We
randomly partitioned the whole dataset into 15 and 30
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Fig. 10. The PCANet filters learned on various MNIST datasets. For each dataset, the top row shows the filters of the
first stage; the bottom row shows the filters of the second stage.

training images per class, and the rest are for testing.
The PCANet are trained with filter size k1 = k2 = 7,
the number of filters L1 = L2 = 8, and block size
equal to a quarter of the image size. Also, we set
the overlapping region between blocks to half of the
block size. The histogram dimension of each block is
reduced from 256 (2L2) to 64 by WPCA. The performance
is averaged over 5 drawings of the training set, and
for each draw, the accuracy is averaged over the 102
classes (including background class). We do not compare
with LDANet because the image sizes in Caltech101 are
different, incapable of measuring inter-class and intra-
class variabilities in LDA calculation.

The results are shown in Table 12.9 For the setting
with 15 training samples per class, PCANet-2 achieves
the best performance. For the setting with 30 training
samples, PCANet-2 outperforms most of deep learning
techniques, only inferior to hierarchical sparse coding
(HSC) [41]. We noticed that the representation learning
from raw pixels are in general inferior to those based on
SIFT features. Applying PCANet to SIFT features will be
considered as our future study.

4 CONCLUSION

In this paper, we have proposed arguably the sim-
plest convolutional deep learning network— PCANet.

9. Only the methods which learn representations from gray-scale
image pixels are listed.

caltech101Fig. 12. The PCANet filters learned on Caltech101
database. Top row: the first stage. Bottom row: the second
stage.

TABLE 12
Comparison of accuracy (%) of the methods based on

raw pixels of Caltech101 dataset.

Training Size 15 30

CDBN [7] 57.70±1.50 65.40±0.50
ConvNet [9] 57.60±0.40 66.30±1.50
DeconvNet [51] 58.60±0.70 66.90±1.10
Chen et al. [52] 58.20±1.20 65.80±0.60
Zou et al. [53] - 66.50
HSC [41] - 74.00
RandNet-1 46.81 ± 1.69 53.27 ± 1.13
RandNet-2 57.16 ± 1.35 63.68 ± 1.63
PCANet-1 51.10±0.53 56.40±0.98
PCANet-2 61.46±0.76 68.56±1.01

The network processes input images by cascaded PCA,
binary hashing, and block histograms. Like the most
ConvNet models, the network parameters such as the
number of layers, the filter size, and the number of
filters have to be given to PCANet. Once the param-
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eters are fixed, training PCANet is extremely simple
and efficient, for the filter learning in PCANet does not
involve regularized parameters and does not require
numerical optimization solver. Moreover, building the
PCANet comprises only a cascaded linear map, followed
by a nonlinear output stage. Such a simplicity offers
an alternative and yet refreshing perspective to con-
volutional deep learning networks, and could further
facilitate mathematical analysis and justification of its
effectiveness.

A couple of simple extensions of PCANet; that is,
RandNet and LDANet, have been introduced and tested
together with PCANet on many image classification
tasks, including face, hand-written digit, texture, and
object. Extensive experimental results have consistently
shown that the PCANet outperforms RandNet and
LDANet, and is generally on par with and often superior
to ScatNet and variations of ConvNet. Furthermore,
the performance of PCANet is closely comparable and
often better than highly engineered hand-crafted features
(such as LBP and LQP). In tasks such as face recogni-
tion, PCANet also demonstrates remarkable robustness
to corruption and ability to transfer to new datasets.
Regardless, extensive experiments given in this paper
sufficiently establish one fact: The PCANet is a simple
and valuable baseline for studying advanced deep learn-
ing architectures for image classification tasks.

Our experiments also convey that as long as the
images in databases are somehow well prepared; i.e.,
images are roughly aligned and do not exhibit diverse
scales or poses, PCANet is able to eliminate the image
variability and gives reasonably competitive accuracy. In
complex image databases such as ImageNet, PCANet
might not be sufficient to handle the variability and some
preprocessing of pose alignment and scale normalization
might be needed for good performance guarantee. To
accommodate these issues, a more complicated (say
more sophisticated filters) or deeper (more number of
stages) PCANet may be inevitable. The current bottle-
neck that keeps PCANet from growing deeper (e.g.,
more than two stages) is that the dimension of the
resulted feature would increase exponentially with the
number of stages, if the number of filters are fixed in all
stages. An improved version of PCANet that replaces
the 2-dimensional convolution filters with tensor-like
filters would be more scalable and will be investigated
for future study. We will also leave as future work
to augment PCANet with a simple, scalable baseline
classifier, readily applicable to much larger scale datasets
or problems.
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