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Abstract

The patch-based low-rank approximation model has
shown to be very effective in exploiting the spatial redun-
dancy of natural images and achieves impressive image de-
noising performance. However, the two-dimensional low-
rank model can not fully exploit the correlations among
multidimensional data, such as multispectral images and
dynamic MRI image sequences. To effectively exploit the
multidimensional correlations for multidimensional data,
we propose a novel low-rank tensor approximation model
with Laplacian Scale Mixture (LSM) modeling. Specifically,
similar multidimensional patches are first grouped to form a
tensor of d-order and the the high order Singular Value De-
composition (HOSVD) is then applied to the resulted tensor.
The resulting coefficients array are modeled with the LSM
distribution. The sparse estimation problem is then formu-
lated as a maximum a Posterior (MAP) estimation problem
with the LSM prior. We show that both the sparse coeffi-
cients array and the scalar variables can be efficiently es-
timated via alternative optimization. Specifically, both sub-
problems admit closed-form solutions. Experimental results
on spectral images and 3D MRIs show that the proposed de-
noising algorithm can well preserve the edge sharpness and
substantially outperforms the current state-of-the-art image
denoising methods.

1. Introduction

The past decade has witnessed a considerable progress
in the field of image denoising. Substantial advanced im-
age denoising algorithms have been proposed. The sparse
representation based methods [19, 1], especially combined
with dictionary learning [8, 15, 24], have shown the popu-
larity and effectiveness in removing the noise. Combined
with another popular prior of natural images, i.e., the non-
local self-similarity [3], the denoising performance of the
sparsity-based methods can be significantly improved. Re-
search along this line has led to the success of learned simul-

taneous/structured sparse coding methods [5, 14, 6]. More-
over, the recent development of the two-dimensional low-
rank matrix approximation techniques have also motivated
the patch-based nonlocal low-rank image denoising meth-
ods [7, 10], which are among the current state-of-the-art de-
noising methods.

For multidimensional images, directly applying the pop-
ular sparse and low-rank denoising methods to each band
or frame separately fail to exploit the correlations across
the third dimension, leading to unsatisfied results. Another
more effective extension is to use the multidimension patch-
es. By representing the multidimension patches into a very
high-dimension 1-dimensional (1D) image vector, the spar-
sity and low-rank methods can then be applied to the mul-
tidimensional data. However, due to the very large size of
the vector, e.g., 5× 5× 30 = 750 for a multispectral image
(MSI) consisting of 30 spectral bands, it is difficult to train
a very large dictionary or construct a low-rank matrix due
to the lack of enough similar samples.

In this paper, we propose a high order low-rank approx-
imation method with Laplacian Scale Mixture (LSM) mod-
eling for multidimensional image denoising, which gener-
alized the popular nonlocal low-rank matrix approximation
method to multidimensional data. First, overlapping 3D
patches are extracted from the input volumetric data. Then,
for each exemplar 3D patch, a set of similar 3D patches
are grouped. As the group of 3D patches contain similar
structures, they can be well approximated by a low-rank
”tensor”. The high order SVD (HOSVD) technique is used
for the low-rank approximation. By thresholding the result-
ing coefficient array, the noise can be effectively removed.
Instead of choosing the shrinkage function manually, we
propose to use the Laplacian Scale Mixture distribution to
model the coefficient array. The sparse coefficients estima-
tion is then formulated as a Maximum a Posterior (MAP)
estimation problem. We show that both the sparse coeffi-
cients and the scalar variables can be jointly estimated vi-
a alternative optimization. Experimental results show that
the proposed HOSVD method substantially outperforms the
current state-of-the-art volumetric data denoising methods,
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e.g., the recent tensor dictionary learning method [18] and
the BM4D method [13].

2. Related Works
In this section, we will briefly review the related sparse

and low-rank methods, as well as some recently developed
tensor based image denoising methods.

The sparse methods exploit the fact that natural image
patches can be well approximated by a linea combination
of a small set of atoms from a dictionary. Instead of us-
ing the off-the-shelf dictionaries, it has been shown that
adapting to the local image structures via dictionary learn-
ing can substantially improve the denoising performance
[8, 15, 24]. The sparse methods can become even more
effectively by considering the nonlocal self-similarity [3]
between the similar patches [5, 14, 6]. For volumetric im-
ages, processing each band/frame separately obviously ig-
nores the rich correlations across the third dimension. A
better extension is to use the 3D patches. By representing
the 3D patches as high-dimension 1D vectors, existing s-
parse methods can be used. However, for the volumetric
images containing a number of bands/frames, the dimen-
sion of the 1D vectors will become too high to find enough
samples to learn a large dictionary, leading to the decrease
of the denoising performance.

The low-rank methods recover the clean images by
low-rank matrix approximation [7, 10]. Similar image
patches are first grouped for each exemplar patch to form
a data matrix Y. As each patch contains similar structures,
the rank of Y is low. Then, the noiseless data matrix can
be accurately reconstructed via singular value threholding
X̂ = USτ (Σ)V>, where UiΣiV

>
i is the SVD of Yi. By

designing an appropriate shrinkage function Sτ (·), sate-of-
the-art image denoising performances have been achieved
[7, 10]. For volumetric data, a straightforward extension of
the low-rank methods is to use 3D patches. By grouping
similar 3D patches, we can also form the data matrix Y,
where each column of Y corresponds to the 1D vector rep-
resentation of the 3D patch. Then, the volumetric data can
also be reconstructed via singular value thresholding. How-
ever, this doesn’t mean the noiseless matrix can be accurate-
ly estimated as in the case of natural images. The reason is
that in the low-rank matrix reconstruction the left singular
vectors U and the right singular vectors V are statistically
determined by the covariance matrix Y>Y and YY>, re-
spectively. Since the dimension of the column vectors of Y
is very high for volumetric data, it is difficult to estimate the
covariance matrixes accurately due to the lack of sufficient
similar samples. Consequently, the denoising performance
of the low-rank method will be decreased.

The tensor methods have also been proposed for vol-
umetric data denoising. In [21, 12], by treating the whole
multispectral image (MSI) as a tensor, the low-rank tensor

approximation methods have been proposed for MSI de-
noising. These methods can fully exploit correlations across
the spectral bands. However, they ignore the rich nonlocal
repetitive structures among MSI. Recently, Peng et al. [18]
proposed an effective MSI denoising method using nonlocal
tensor dictionary learning. To exploit the nonlocal redun-
dancy, the 3D MSI patches are clustered into many cluster-
s via k-means clustering. Each set of similar 3D patches
are then linearly approximated by low-rank tensor approx-
imation. Specifically, the AIC/MDL criteria [22] is used
to determine the ranks for each model of the tensor. The
HOSVD has also been used for natural image denoising
[20], where the similar patches are stacked into a 3D array
and the HOSVD is applied for low-rank tensor approxima-
tion. Similar to BM3D method, the coefficient array is first
processed with a hard thresholding followed by the Wiener
filtering in the second denoising stage. Our proposed low-
rank tensor approximation differs from both the methods of
[18, 20] in that an adaptive sparse estimation is developed
for the estimation of the coefficient array using the Lapla-
cian Scale Mixture distribution. Experimental results show
that the proposed method performs substantially better than
the current state-of-the-art methods, i.e., [13, 18].

3. Low-rank Tensor Approximation with
Laplacian Scale Mixture Modeling

In this section, we first introduce the low-rank tensor
approximation method for multidimensional image denois-
ing, and then present the proposed Laplacian Scale Mixture
Modeling for nonlinear low-rank tensor approximation.

3.1. Nonlocal low-rank tensor approximation

Nonlocal low-rank based image denoising consists of t-
wo steps: patch grouping and low-rank approximation. For
a noisy 3D image of sizeH×W×L, 3D patches are extract-
ed. For each exemplar 3D patch Pi of size

√
n×
√
n×L ex-

tracted at spatial position i, we search for the similar patches
via the k-nearest neighbor (k-NN) search in a large window
(e.g., 40× 40), i.e.,

Gi = {ij |‖Pi − Pij‖ < T}, (1)

where T is the predefined threshold and Gi denotes the col-
lection of the positions of the similar patches. Alternatively,
we can also formGi by selecting the patches that are within
the first m closest to Pi (including Pi itself). After patch
grouping, we can combine the similar 3D patches into a 3rd

order tensor by representing the matrix slices of each 3D
patch into vectors, i.e., Yi ∈ Rn×m×L1. Given the noisy

1Instead of forming a 4th order tensor for the set of similar 3D patch-
es, we found that combining them into a 3rd order tensor leads to better
denoising performance.
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tensor Yi, its HOSVD is given as follows [11, 2],

Yi =
n∑
r=1

m∑
c=1

L∑
l=1

S̃i(r, c, l)ui,r × vi,c ×wi,l

= S̃i ×1 Ui ×2 Vi ×3 Wi,

(2)

where Ui = [ui,1, · · · ,ui,n] ∈ Rn×n, Vi =
[vi,1, · · · ,vi,m] ∈ Rm×m and Wi = [wi,1, · · · ,wi,L] ∈
RL×L are orthogonal matrixes, S̃i ∈ Rn×m×L is the 3D
coefficient array (also called core tensor), S̃i(r, c, l) are
the components of S̃i, × denotes the tensor product, i.e.,
x × y = xy>, and ×j denotes the j − th model tensor
product. The orthogonal matrixes Ui, Vi and Wi are com-
puted from the SVD of the model-j (j = 1, 2, 3) flattening
of Yi, respectively. Since the similar patches contain similar
structures, Yi can be approximated with a low-rank tensor,
i.e.,

X̂i =
r1∑
r=1

r2∑
c=1

r3∑
l=1

Ŝi(r, c, l)ui,r × vi,c ×wi,l

= Ŝi ×1 Ûi ×2 V̂i ×3 Ŵi,

(3)

where Ûi = [ui,1, · · · ,ui,r1 ] ∈ Rn×r1 , V̂i =

[vi,1, · · · ,vi,r2 ] ∈ Rm×r2 and Ŵi = [wi,1, · · · ,wi,r3 ] ∈
RL×r3 are the thin matrices associated with Ui, Vi and
Wi, respectively, r1 ≤ n, r2 ≤ m and r3 ≤ L, and
Ŝi ∈ Rr1×r2×r3 denotes the smaller core tensor. The triple
(r1, r2, r3) is called the multirank of Yi. To estimate the
multirank of the tensor, the Akaike’s Information Criteri-
on (AIC)/Minimum Description Length(MDL) method has
been used for different modes flattening of the tensor [22].
With the estimated rank parameters (r1, r2, r3), the low-
rank tensor approximation can be easily obtained by setting
the last n− r1, m− r2 and L− r3 slices along the different
modes in S̃i to be zero matrices.

Instead of explicitly estimate the multirank parameters,
we can also obtain the low-rank tensor approximation by
inducing the sparsity on the coefficient array, as

Ŝi =argmin
Si

ψ(Si),

s. t., ||Yi − Si ×1 Ui ×2 Vi ×3 Wi||2F ≤ σ2
w,

(4)

where ψ(·) is a sparse regularization function that induces
the sparsity in the components of Si, Ui, Vi and Wi are the
orthogonal matrices obtained via HOSVD of Yi. Due to the
orthogonality of the matrices, Eq. (4) can be reexpressed as

Ŝi = argmin
Si

ψ(Si), s. t., ||S̃i − Si||2F ≤ σ2
w, (5)

where S̃i = Yi×1 U>i ×2 V>i ×3 W>
i . The above problem

is often formulated in Lagrangian form,

Ŝi = argmin
Si

||S̃i − Si||2F + λψ(Si). (6)

Common choices of ψ(·) include the pseudo-norm `0 and
the `1 norm, which exactly lead to the hard thresholding and
soft thresholding of the coefficients array S̃i, respectively.
Generally, the selection of the thresholds λ is a non-trial
task. For better performance, in [20] a heuristic two-stage
method has been proposed for natural image denoising. The
hard thresholding is first applied to threshold the coefficient
array for initial image denoising, followed by the Wiener
filtering in the second stage.

3.2. Laplacian scale mixture modeling for low-rank
tensor approximation

Form Eq. (6), we can see that the selection of the s-
parsity regularization function ψ(·) is critical for the low-
rank tensor approximation. In this subsection, we propose
a Maximum a Posterior (MAP) estimation method to esti-
mate Si from S̃i. For simplicity, we will drop the subscript
index i and let s̃ ∈ Rn·m·L and s ∈ Rn·m·L denote the
one-dimensional representations of S̃ and S, respectively.
s is the noiseless version of s̃, i.e., s̃ = s + n, where
n ∈ Rn·m·L denotes additive Gaussian noise. The MAP
estimation of s from s̃ amounts to solve the following opti-
mization problem

s = argmin
s
{−logP (s̃|s)− logP (s)}, (7)

where logP (s̃|s) is given as the Gaussian distribution, i.e.,

P (s̃|s) ∝ exp(− 1

2σ2
w

||s̃− s||22), (8)

and a prior distribution on s is given with the form

P (s) ∝
∏
j

exp(−ψ(sj)
θj

). (9)

It is easy to verify that the MAP estimator leads to the fol-
lowing weighted `1 norm minimization problem when P (s)
is chosen to be an IID Laplaican prior,

s = argmin
s
||s̃− s||22 + 2σ2

w

∑
j

1

θj
|sj |, (10)

where θj denotes the standard derivation of sj . It has been
shown that the weighted `1 norm is more effective than `1
norm in sparse estimation [4]. Now the task is how to es-
timate the variance parameters θj . Generally, it is difficult
to accurately estimate the variance θj for each sj from the
noisy observation s̃.

In this paper, we propose a Laplacian Scale Mixture
(LSM) prior to model s. With LSM prior, we decompose
s into the point-wise product of a Laplacian vector α and a
positive hidden scalar multiplier θ with probability P (θj),
i.e., sj = θjαj , which is analogue to the Gaussian Scale

3
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Mixture [19]. Conditioned on θj , sj is Laplacian with stan-
dard devriation θj . Assume that θj and αj are independent,
the LSM prior of s can be expressed as

P (s) =
∏
i

P (sj), P (sj) =

∫ ∞
0

P (sj |θj)P (θj)dθj .

(11)
It should be note that for most choices of P (θj) there is no
analytic expression of P (s). Thus, it is difficult to compute
the MAP estimates of s with the LSM prior. However, such
difficulty can be overcome by using the joint prior model
P (s,θ). By substituting P (s,θ) into the MAP estimator of
Eq. (7), we obtain

(s,θ) = argmin
s,θ

{−logP (s̃|s)− logP (s|θ)− logP (θ)}.

(12)
In this paper we adopt a factorial distribution for the multi-
pliers. Specifically, the noninformative Jeffrey’s prior, i.e.,
P (θj) = 1

θj
is adopted. With this Jeffrey’s prior, Eq. (12)

can be expressed as

(s,θ) = argmin
s,θ

||s̃−s||22+2
√
2σ2

w

∑
j

|sj |
θj

+2σ2
w

∑
j

logθj .

(13)
Note that in LSM we have s = Λα, where Λ = diag(θj) ∈
Rn·m·L×n·m·L. Then Eq. (13) can be rewritten as

(α,θ) = argmin
s,θ

||s̃−Λα||22 + 2
√
2σ2

w

∑
j

|αj |

+ 4σ2
w

∑
j

log(θj + ε),
(14)

where ε is a small constant for numerical stability. From Eq.
(14), we can see that with LSM prior the sparse estimation
of s has been translated into the joint estimation of α and
θ.

3.3. Alternative Optimization

A straightforward approach to solve Eq.(14) is to adop-
t the alternative optimization, which consists of the itera-
tions of solving two sub-problems. Specifically, both sub-
problems admit closed-form solutions. For an initial esti-
mate of α, we solve for θ by optimizing

θ = argmin
θ
||s̃−Aθ||22 + 4σ2

w

∑
j

log(θj + ε), (15)

where A = diag(α). Equivalently, Eq. (15) can also be
rewritten as

θ = argmin
θ

∑
j

{ajθ2j + bjθj + clog(θj + ε)}, (16)

where aj = α2
j , bj = 2αj s̃j and c = 4σ2

w. Thus, Eq. (16)
can be solved by solving a sequence of scalar minimization

problem

θj = argmin
θj

ajθ
2
j + bjθj + clog(θj + ε), (17)

which can be solved by taking df(θj)
dθj

= 0, where f(θ) de-

notes the right hand side of Eq. (17). By taking df(θj)
dθj

= 0,
two stationary points can be obtained, i.e.,

θj,1 = − bj
4aj

+

√
b2j
16
− c

2aj
, θj,2 = − bj

4aj
−

√
b2j
16
− c

2aj
(18)

when b2j/(16a
2
j )−c/(2aj) ≥ 0. Thus, the global minimizer

of Eq. (17) can be obtained by comparing f(0), f(θj,1) and
f(θj,2).

When b2j/(16a
2
j )− c/(2aj) < 0, there are no stationary

points in the range of [0,∞). Since ε is a very small positive
constant, g(0) = bj + c/ε is always positive. Therefore,
f(0) is the global minimizer for this case. The solution to
Eq. (17) can then be written as

θj =

{
0, if b2j/(16a

2
j )− c/(2aj) < 0,

tj , otherwise
(19)

where tj = argminθj{f(0), f(θj,1), f(θj,2)}.
For fixed θ, α can be solved by solving

α = argmin
α
||s̃−Λα||22 + 2

√
2σ2

w

∑
j

|αj |, (20)

which admits a closed-form solution, as

αj = Sτj (
s̃j
θj

), (21)

wherein Sτj (·) denotes the soft-thresholding function with

threshold τj =
√
2σ2

w

θ2j
.

By alternatively solving the sub-problems of Eqs.(15)
and (20), the sparse coefficients s can be estimated as
ŝ = Λ̂α̂, wherein Λ̂ and α̂ denotes the estimates of Λ
and α, respectively. Then, the reconstructed tensor can be
obtained by

X̂ = Ŝ ×1 U×2 V ×3 W, (22)

where Ŝ is the coefficient array correspond to ŝ.

4. Multidimensional Image Denoising with
Low-rank Tensor Approximation

In this section, we apply the proposed low-rank tensor
approximation to multidimensional image denoising. Here,
without loss of generality, we only consider the volumetric
image. Let the noisy multidimensional image be denoted as

4
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Y = X + N , where X ∈ RH×W×L and N ∈ RH×W×L
denote the noiseless multidimensional image and additive
noise, respectively. Let Yi = R̃iY denote the 3rd tensor
formed by the set of similar 3D patches to exemplar patch
Pi, where R̃i denotes the operator grouping the set of patch-
es similar to Pi into a 3rd tensor. Then, the image denoising
of the whole multidimensional image can be expressed by

(X , {Si}) = argmin
X ,{Di},{Si}

||Y − X ||2F

+ η
∑
i

||R̃iX − Si ×1 Ui ×2 Vi ×3 Wi||2F

+ 2
√
2σ2

w

∑
i

||Λisi||1 + 2σ2
w

∑
i

logθi,

(23)

where Ui,Vi,Wi denotes the set of orthogonal matrixes
computed via HOSVD. Similar to the matrix SVD-based
image denoising methods [7, 9, 10], the orthogonal ma-
trixes Di are also computed from the noisy input tensor
Yi. Adopting the alternative optimization approach again,
we solve for the whole multidimensional image denoising
problem by solving the following two sub-problems.

4.1. Solving for whole image

Let X̂i = Xi×1Ui×2Vi×3Wi denote the reconstructed
low-rank tensor with initial estimate of Si. Then, for fixed
{Si}, the whole image X can be estimated by solving the
following `2-minimization problem

X = argmin
X

||Y − X ||2F + η

N∑
i=1

||R̃iX − X̂i||2F , (24)

which is equivalent to the following equation by represent-
ing the tensors into long vectors

x = argmin
x
||y − x||22 + η

N∑
i=1

||R̃ix− x̂i||22, (25)

where y ∈ RH·W ·L,x ∈ RH·W ·L, x̂ ∈ R
√
n·
√
n·L corre-

spond to the vector representations of the tensors Y,X , X̂i,
respectively, and R̃i

.
= [R̃i0 , R̃i1 , · · · , R̃im−1 ] denotes the

operator extracting the patches similar to yi. Eq. (25) can
be solved in a closed-form, as

x = (I + η

N∑
i=1

R̃>i R̃i)
−1(y + η

N∑
i=1

R̃>i x̂i), (26)

where the matrix to be inverted is diagonal and can be cal-
culated easily. Similar to the K-SVD approach, Eq. (26)
can be computed by averaging the reconstructed 3D patch-
es sets X̂i.

4.2. Solving for {si} and {θi}

For fixed X , Eq. (23) reduces to a set of sequence of
low-rank tensor approximation problems for each exemplar
3D patch, i.e.,

(si,θi) = argmin
si,θi

||s̃i−si||22+2
√
2
σ2
w

η
||Λisi||1+2

σ2
w

η
logθi,

(27)
where we have used S̃i = Xi ×1 U>i ×2 V>i ×3 W>

i . This
is exactly the problem we have studied in previous section.

The overall multidimensional image (MDI) denoising al-
gorithm based on nonlocal low-rank tensor approximation
with Laplacian Scale Mixture (NLTA-LSM) is summarized
in Algorithm 1. We found that the inner iteration converges
in just a few iterations (J = 2 in our implementation).
In Algorithm 1, we used the iterative regularization. The
noise as well as the removed image details are fed back to
the denoised image. The amount of noise is controlled by a
small positive parameter δ.

Algorithm 1 NLTA-LSM based MDI denoising
• Initialization:

(a) Set the initial estimate X̂ = Y and the parameter η;
(b) Obtain the set of tensors {Xi} from X̂ via k-NN

search for each exemplar patch.
• Outer loop: for k = 1, 2, . . . ,Kmax do

(a) Tensor dataset Xi construction: grouping a set of
similar 3D patches into a 3rd tensor for each exemplar
patch;

(b) Inner loop (Low-rank tensor approximation by
solving Eq. (27)): for j = 1, 2, . . . , J do

(I) Compute θi for fixed αi via Eq.(19);
(II) Compute αi for fixed θi via Eq.(21);
(III) Output si = diag(θi)αi if j = J .

End for
(c) Reconstruct {Xi} from {Si} via Eq.(22).
(d) Reconstruct the whole image X̂ (k+1) from {Xi} by

solving Eq.(26).
(e) If k < Kmax set X̂ (k+1) = X̂ (k+1)+δ(Y−X̂ (k+1))

End for
• Output X̂ (k+1)

5. Experimental results
We have implemented the proposed algorithm under

MATLAB. Both the multispectral images and the MR im-
age sequences are used to verify the denoising performance
of the proposed algorithm with comparison to existing state-
of-the-art denoising methods. There are only a few param-
eters needed to be set in the proposed algorithm: block
size 5 × 5 × L (L denotes the number of spectral bands or
the number of MRI frames), the number of similar patches
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m = 60, the regularization parameter δ = 0.12, and itera-
tion numbers Kmax = 7 and J = 2.

5.1. Multispectral image denoising

The CAVE database [23] consisting of 32 hyperspec-
tral images of common objects are used to verify the per-
formance of the proposed method. The images of size
512 × 512 × 31 are captured with the wavelengths in the
range of 400 − 700 nm at a interval of 10 nm. We select
10 hyperspectral images as the test set. Both the additive
Gaussian noise and the mixed noise of Gaussian and Pois-
son noise used in [18] are used to simulate the noisy spectral
images. Two sets of experiments are conducted. In the first
experiment, the additive Gaussian noise with different stan-
dard derivations is added to the hyperspectral images to sim-
ulate the noisy images. In the second experiment, the mixed
noise of additive Gaussian and Poisson noise is added. In
this setting, the standard derivations of the Gaussian noise
are varied from 10 to 100, and the Poisson noise is fixed
with variance y/2k, wherein k = 5. We compared the pro-
posed method with several recently developed multispec-
tral image denoising methods, including the tensor dictio-
nary learning (TensorDL) method [18], the BM4D method
[13], the PARAFAC method [12], the low-rank tensor ap-
proximation (LATA) method [21], the ANLM3D method
[17] and the band-wise BM3D method [5] 2. For the mix-
ture noise, we applied the variance-stabilizing transforma-
tion (VST) [16] to the noisy spectral images before applying
a test method, followed by the inverse VST after denoising,
as done in [18].

The average PSNR results for each noise level are report-
ed in Table 1. From Table 1, it can be seen that the proposed
method consistently outperforms other competing methods.
The average PSNR improvements over the TensorDL and
BM4D methods, which are respectively among the 2nd and
3rd best methods in the comparison study group, are larg-
er than 2 dB. In Fig. 1 we show the parts of the denoised
images at 410nm band of Toy and Painting with Gaussian
noise of σw = 10. It can be seen that the other five test
methods tend to generate visual artifacts. Clearly, the pro-
posed method reconstructed the images with much less ar-
tifacts than the other methods.

5.2. 3D MRIs denoising

We also applied the proposed method for 3D MRIs de-
noising. The T1-weighted 3D MRIs are obtained from the
Brainweb database3. The 3D MRIs is of size 181×181×10
with 1 × 1 × 1mm3 resolution. Additive Gaussian noise
with different noise levels σw is added to simulate the noisy

2We thank the authors of [18, 13, 12, 21, 17, 5] for providing their
source codes in their websites.

3http://brainweb.bic.mni.mcgill.ca/brainweb/

3D MRIs 4 The proposed method is compared with some
recently developed 3D MRIs denoising methods, including
the ANLM3D method [17], the band-wise BM3D method
[5], and the BM4D method [13]. The LATA [21] and Ten-
sorDL [18] methods for spectral images denoising are also
included for comparison study.

Table 2 show the PSNR results for each noise level.
From Table 2 we can see that the BM4D method [13] per-
forms much better than the TensorDL method [18]. The rea-
son is that the correlations between the slices are not strong
and smaller 3D patches (i.e., 4× 4× 4) used in BM4D can
better exploit the local correlations. Even though the full
slices 3D patches (i.e., 5 × 5 × 10) are used, the proposed
method still outperforms the BM4D [13] for all noise lev-
els. The PSNR gain over BM4D method can be up to 1.13
dB. Parts of the reconstructed MRI by the test methods are
shown in Fig. 2. We can see that the MRI reconstructed by
the propose method contains less visual artifacts than other
methods.

6. Conclusions
In this paper we proposed a low-rank tensor approxima-

tion approach for multidimensional image denoising. To
fully exploit the correlations across all the dimensions, 3D
image patches are extracted and grouped into 3rd tensors,
which can be effectively approximated with low-rank ten-
sors by HOSVD followed by the thresholding of the result-
ing coefficient arrays. For adaptive low-rank tensor approx-
imation, we propose a new sparse regularization term for
the sparse coefficient array using the Laplacian scale mix-
ture model (LSM). With LSM modeling, the low-rank ten-
sor approximation problem is translated into the alternative
optimization of the sparse coefficient array and the scalar
variables. We show that both subproblems can be solved in
closed-form. Experimental results on both the hyperspec-
tral images and the MRI volumetric data show that proposed
method performs significantly better than existing methods.
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Table 2. The PSNR results of the test methods for additive Gaussian noise on the 3D MRIs.

method Dynamic MRI sequence
σw = 10 σw = 20 σw = 30 σw = 50 σw = 100
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(a) Ori image (b) Noisy image (c) ANLM3D [17] (d) LRTA [21]

(e) BwBM3D [5] (f) BM4D [13] (g) TensorDL [18] (h) NLTA-LSM

Figure 2. (a) The original MRI (the 3rd slice); (b) The noisy MRI (σw = 30, PSNR=18.58dB); denoised MRI by (c) ANLM3D [17]
(PSNR=27.30dB); (d) LRTA [21] (PSNR=27.08dB); (e) BwBM3D [5] (PSNR=29.78dB); (f) BM4D [13] (PSNR=31.06dB); (g) TensorDL
[18] (PSNR=28.48dB); (h) Proposed NLTA-LSM (PSNR= 31.83 dB).
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