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Abstract—Designing an appropriate regularizer is of great
importance for accurate optical flow estimation. Recent works
exploiting the nonlocal similarity and the sparsity of the motion
field have led to promising flow estimation results. In this paper
we propose to unify these two powerful priors. To this end, we
propose an effective flow regularization technique based on joint
low-rank and sparse matrix recovery. By grouping similar flow
patches into clusters, we effectively regularize the motion field
by decomposing each set of similar flow patches into a low-rank
component and a sparse component. For better enforcing the low-
rank property, instead of using the convex nuclear norm, we use
the log det(·) function as the surrogate of rank, which can also
be efficiently minimized by iterative singular value thresholding.
Experimental results on the Middlebury benchmark show that
the performance of the proposed nonlocal sparse and low-rank
regularization method is higher than (or comparable to) those
of previous approaches that harness these same priors; and is
competitive to current state-of-the-art methods.

Index Terms—Optical flow, low-rank, sparse representation,
nonlocal self-similarity.

I. INTRODUCTION

Optical flow estimation concerning the dense pixel corre-
spondences between consecutive image frames is a funda-
mental problem in computer vision, and has many important
applications in computer vision, such as 3D reconstruction,
visual tracking, video enhancement, etc. Similar to other
image restoration problems, optical flow estimation is also
an ill-posed problem due to the aperture problem. Moreover,
the problem is further complicated by many other issues,
including: 1) the pixel intensity constancy assumption does
not always hold; 2) optical flows in textureless regions are
undefined; 3) pixels near motion boundaries may be occluded

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The work was supported in part by the Major State Basic Research De-
velopment Program of China (973 Program) under Grant 2013CB329402, in
part by the Natural Science Foundation of China under Grant 61227004, Grant
61471281, and Grant 61100154, in part by the Program for New Scientific and
Technological Star of Shaanxi Province under Grant 2014KJXX-46, in part by
the Fundamental Research Funds of the Central Universities of China under
Grant BDY081424, and in part by the open project of Beijing Multimedia
and Intelligent Software Key laboratory in Beijing University of Technology.

W. Dong and G. Shi are with School of Electronic Engineering, Xid-
ian University, Xi’an, 710071, China (e-mail: wsdong@mail.xidian.edu.cn;
gmshi@xidian.edu.cn).

X. Hu is with School of Information Science and Technology, University
of Science and Technology of China, China (e-mail: hxc@mail.ustc.edu.cn).

Y. Ma is with the School of Information Science and Technology, Shang-
haiTech University, China. He is also affiliated with the Electrical and Com-
puter Engineering Department, University of Illinois at Urbana-Champaign,
USA (e-mail: mayi@shanghaitech.edu.cn).

in the next frame, hence no valid matching exists. To success-
fully recover the dense optical flow, designing an appropriate
flow regularization that incorporates the prior knowledge of
the flow field is of great importance.

In the past decades, various optical flow estimation tech-
niques have been proposed. Modern flow methods originating
from the seminal work of Horn and Schunck (HS) [1] estimate
the optical flow by minimizing an energy functional, which
consists of a data term and a regularization term. The data
term measures the matching error between the corresponding
pixel pairs and the regularization term typically penalizes the
horizontal and vertical deviations of the flow. In the work of
[1], the `2-norm was used for both data and regularization
terms. Since the `2-norm is not robust to data outliers caused
by the brightness inconsistency and occlusions, it tends to
generate over-smoothed flow results. In recent years, the
flow estimation accuracy has been significantly improved by
employing robust penalty functions for data and regularization
terms. Various robust penalty functions, such as the convex
`1-norm (or its variants, e.g., Charbonnier function) and non-
convex `p-norms have been widely used [2]–[5]. Instead of
using an arbitrarily selected robust function, attempts have
also been made to learn the data term and the regularization
term [6], [7]. In [6] the prior probability model of optical flow
was learned using the Field-of-Expert model, and the learned
model was used to regularize the spatial smoothness of the
flow field. Furthermore, in [7] Sun et al. proposed to learn
both the prior models of the data matching error and the flow
field using the Gaussian Scale Mixture (GSM) model.

Motivated by the recent advances in nonlocal image restora-
tion [8], nonlocal first order spatial regularization terms have
also been proposed to exploit the nonlocal self-similarity
[5], [9], [10]. In these works the nonlocal weights defining
the similarity between the flow vector pairs were computed
based on the color similarity. By exploiting the nonlocal
redundancy, promising optical flow estimation results on the
Middlebury dataset have been achieved. However, despite
their effectiveness, only the pair-wise nonlocal dependencies
are exploited in these works, leaving the rooms for further
improvements. As another promising direction for flow field
regularization, sparse representation based flow regularization
techniques have also been proposed [11]–[13]. Compared to
the conventional first-order spatial regularization, the sparse
representation based regularizer can better model the local
motion structures. It has been shown in [12] that the dictionary
learned from a training flow dataset can lead to better flow
estimation results than the off-the-shelf dictionaries. However,
these sparsity-based flow estimation methods code each flow
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patch individually and thus cannot exploit the dependencies
between nonlocal similar flow patches. It has also been known
that the sparse decomposition under a redundant dictionary is
potentially not robust.

Contribution of this paper. In this paper, to benefit both
from the nonlocal spatial regularization and the sparsity-based
regularization, we propose to unify the effective nonlocal and
sparsity regularization into a unified variational framework. To
exploit the nonlocal sparsity nature of optical flow, we propose
to regularize the flow field by nonlocal flow patch grouping
and low-rank and sparse matrices decomposition. Specifically,
for each exemplar flow patch we group a set of similar flow
patches to form a matrix, denoted by U = [u1,u2, · · · ,um],
where ui denote a flow patch vector. Since each matched flow
patch should represent similar motion pattern, the flow patches
without outliers should live in a low-dimension space and
thus U should be well approximated by a low-rank matrix.
Moreover, to deal with the outliers in the patches caused by
occlusions or patch matching error, we propose to decompose
U into a low-rank component and a sparse component. Such
low-rank and sparse decomposition problem can be efficiently
solved via convex optimization [14]–[16]. To better minimize
the rank of the flow matrix, instead of using the nuclear norm,
we propose to use the log det(·) function as a smooth surrogate
of the rank and achieve better flow estimation performance. To
the best of our knowledge, we are the first one to introduce
the low-rank and sparse model for optical flow estimation.

Patch-based nonlocal sparse model has been successfully
used for image denoising, e.g., the BM3D [17], the LSSC [18]
and our previous CSR model [19], where image is denoised by
patch matching and collaborative sparse coding. The nonlocal
structure tensor TV regularization, which extends the local
structure tensor TV (ST-TV) regularization [20], has also been
proposed in [21] to promote a low-rank representation of
the multi-component similar patches, showing very promis-
ing color image restoration results. However, the proposed
nonlocal low-rank and sparse regularization model differs
from previous nonlocal sparse models in that: 1) instead of
using the simultaneous sparse model / ST-TV, the log det(·)
based low-rank model is used to effectively exploit the non-
local sparsity of the motion field; 2) the nonlocal low-rank
and sparsity model is integrated into the variational optical
flow estimation framework, whereas the nonlocal sparsity-
based image denoising as a post-processing of the estimated
flow field cannot achieve satisfied flow estimation results; 3)
coupled with the non-convex penalty functions, the resulted
optimization problem is much more challenging.

Similar to the work in [11], [12] we also incorporate the
first-order spatial regularization into the proposed flow esti-
mation framework to further stabilize the estimation process.
To deal with large motion, we embed the proposed algorithm
into the conventional coarse-to-fine framework. Experimental
results on Middlebury benchmark show that the performance
of our method is higher than (or comparable) to those of the
recently proposed nonlocal and sparsity-based flow estimation
approaches [5], [10]–[13], [22], and is competitive with cur-
rent state-of-the-art flow estimation methods.

II. RELATED WORK

In this section, we briefly review previous optical flow
estimation works that are related to our work.

A. Data term

Under the brightness constancy assumption, modern optical
flow estimation methods estimate the dense optical flow by
minimizing an energy functional, which is defined as

E(u) = ED(u) + λES(u), (1)

where u = [ux,uy]
> ∈ R2N denotes the motion field to

be estimated, N denotes the number of image pixels and λ
is a regularization parameter. To simplify the notations, we
will use uz to refer to ux and uy , where z ∈ {x, y} denotes
both the horizontal and vertical directions. The data term that
measures the matching error between the consecutive frame
images I1 and I2 is defined as ED(u) =

∑
x φD(|I1(x) −

I2(x + u)|2), where φD is a penalty function, and x ∈ Z2

denotes a 2D coordinate. Various penalty functions have been
proposed, including the convex `2 norm, the `1 norm or its
variant (e.g.,

√
x2 + ε2), and the non-convex `p norm or its

variant, called Generalized Charbonnier (GC) function (x2 +
ε2)α [5]. It has been shown in [5] that the GC function with
α = 0.45 generally leads to the best results.

When the change of the motion flow u is small, we can
approximate the prediction residual ρ(x) = I2(x+u)−I1(x)
by linearizing about the current estimate of u as ρ(x) = It+
∇I>2 (u − u0), where It = I2(x + u0) − I1(x) denotes the
temporal derivation,∇I2 denotes the derivation of I2 at x+u0,
and u0 denotes the current estimate of u.

In addition to the brightness constancy, other constancy
constraints can also been imposed, e.g., the gradient constancy
constraint [23]. The gradient constancy constraint has advan-
tages in overcoming the illumination change but does a poor
job in smooth regions. Recent studies [24], [25] show that
the combination of the brightness constancy and the gradient
constancy constraints can lead to better flow estimation results.

B. Spatial regularization term

Due to the well-known aperture problem, optical flow
estimation is an ill-posed inverse problem and prior knowledge
of the flow field is required to regularize the flow field.
The widely used first-order spatial regularization techniques
that penalize the deviation of the flow field in both hori-
zontal and vertical directions can be defined as ES(u) =∑
x φS(|∇ux(x)|2 + |∇uy(x)|2), where φS is a penalty

function. The quadratic first-order spatial regularization tends
to generate over-smoothed flow field. Combined with the
robust penalty functions, the motion discontinuities can be
better preserved. To better deal with the data outliers, in
[13] Chen et al. proposed to decompose the flow gradients
into the sparse component and the non-sparse component,
which represent the motion discontinuities and dense Gaussian
noise, respectively. By sparse and non-sparse modeling, their
approach can better preserve the motion boundaries.

Attempts have been made to construct nonlocal flow regu-
larization term. In [5], [9], [10], [22] the nonlocal TV model
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was used to regularize the flow field. Let the spatial locations
of the nonlocal similar neighbor of pixel at x be defined as
x ∼ q, q ∈ Z2. Then, the nonlocal TV regularizer can be
expressed as

ENonl(u) =
∑
x∼q

wqφN (ux − uq), (2)

where wq are the bilateral filter coefficients computed using
the color pixels, and φN denotes a robust penalty function.
By exploiting the nonlocal redundancy, promising flow es-
timation results on the Middlebury benchmark dataset have
been achieved. However, only the first order nonlocal spatial
statistics are exploited in the above nonlocal TV model.

Motivated by the compressive sensing theory [26], sparsity-
based regularization models have also been proposed for flow
estimation [11], [12]. These approaches regularize the flow
field by pursuing a sparse representation of the flow using
either an off-the-shelf dictionary [11] or a learned dictionary
[12]. In the patch-based sparsity regularization, the flow field
is first partitioned into multiple flow patches of size

√
n×
√
n

with overlapping region. Then each flow patch is sparsely cod-
ed with respect to an overcomplete dictionary. The sparsity-
based regularization term can be formulated as

ESpar(u) = µ

P∑
i=1

‖Riu−Dαi‖22 + τ
∑
i

‖αi‖1, (3)

where Ri ∈ R2n×2N denotes a matrix extracting a patch flow
at position xi ∈ Z2, D = [Dx 0;0 Dy] ∈ R2n×2p (p ≥ n)
and αi ∈ R2p denote the dictionary and the representation
coefficient vector of the i-th flow patch, respectively. In
general, the flow patches can be extracted uniformly along
the horizontal and vertical directions with overlapping region.
With an appropriately designed dictionary, the sparsity-based
approaches have shown improvements in preserving the local
motion structures. However, current sparsity-based flow esti-
mation methods code each flow patch individually and cannot
utilize structural correlation between the sparse codes.

To effectively exploit the local and nonlocal structural de-
pendencies of the flow, in this paper we propose a novel optical
flow regularization model by nonlocal sparse and low-rank
matrix decomposition. The key idea is to group a set of similar
flow patches for each exemplar flow patch and decompose
the matrix formed by the similar patches into a low-rank
component and a sparse error component, as explained in the
following sections.

III. LOW-RANK AND SPARSE REGULARIZATION OF THE
OPTICAL FLOW FIELD

There are two key components in the proposed low-rank
and sparse regularization technique: (1) Flow patch grouping;
(2) decomposing the grouped flow matrices into low-rank and
sparse components.

A. Flow patch grouping

As a first step of our method, we need to group a set
of similar flow patches for each extracted exemplar flow

patch. Since the ground truth flow field is unavailable, patch
matching using the truth flow field is impossible. Instead, we
can perform flow patch grouping using initial recovered optical
flow. However, due to estimation error such patch grouping
may not be robust. In this paper, we propose to perform the
flow patch matching by using the color images. The basic
assumption is that similar local image structures tend to have
similar motions. Though this assumption may not be always
true, our experimental results show that patch matching using
color images works well in our experiments.

Let ui ∈ R2n denote local flow patches of size
√
n ×√

n (horizontal component) centered at positions xi, i =
1, 2, · · · , P . Let pi ∈ R3n denote local color image patches
centered at positions xi. For each extracted color image patch
pi, we search for a set of similar patches across the whole
image by patch matching. To save computational complexity,
we can limit the search region to a large neighborhood (e.g.,
a 40× 40 window). The patch matching can be expressed as

Gi = {j|‖pi − pj‖22 ≤ T}, (4)

where T is a pre-defined threshold and Gi contains the
coordinates of the similar patches. Equivalently, we can also
select the similar patch if it is within the first m (m = 30 in
our implementation) most similar patches to pi. After patch
matching, we can then obtain a set of flow patches similar to
ui, denoted by uj , j ∈ Gi.

B. Low-rank and sparse matrices decomposition

Using the patch matching approach described above, for
each exemplar flow patch ui we can collect a set of similar
flow patches to form a matrix Ui = [u1,u2, · · · ,um] ∈
R2n×m, where uj = [ux,j ,uy,j ]

> ∈ R2n, j = 1, 2, · · · ,m.
To simplify the low-rank and sparse matrix decomposition
problem, we treat the horizontal and vertical component
separately. Let Uz,i ∈ Rn×m, z ∈ {x, y} denote both the
horizontal and vertical components of Ui. Then we will use
Uz,i as an example to present the low-rank and sparse matrix
decomposition method. We assume that these flow patches
represent similar motion structures and thus they should live in
a low dimensional subspace. In practice, the matrix Uz,i may
be corrupted by some errors. If the matrix Uz,i only contains
Gaussian noise, then Uz,i can be accurately approximated by
a low-rank matrix using principle component analysis (PCA).
However, due to the illuminance change and occlusions, the
estimated flow may also contain large sparse errors. Since
PCA is sensitive to large errors, directly approximate Uz,i
with PCA may not be robust. Motivated by the recent works
on low-rank matrix recovery [14]–[16], we propose to model
the flow matrix Uz,i as: Uz,i = Lz,i + Sz,i +Wz,i, where
Lz,i denotes the low-rank matrix, Sz,i denotes the sparse error
matrix and Wz,i denotes the Gaussian noise matrix. Note
that Sz,i may also contain the misalignment error of the flow
patch vectors. Lz,i and Sz,i can be recovered by solving the
following minimization problem:

min
Lz,i,Sz,i

rank(Lz,i)+λ‖Sz,i‖1, s.t. ‖Uz,i−Lz,i−Sz,i‖2F ≤ σ2
n,

(5)
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where ‖ · ‖2F denotes the Frobenious norm and σ2
n is the

variance of the Gaussian noise. Since the rank-minimization
problem is in general an NP-hard problem, we cannot directly
solve Eq.(5) efficiently. As a convex surrogate of the rank, the
nuclear norm ‖·‖∗ (sum of the singular values) has been widely
used to approximate the rank minimization problem. Using the
nuclear norm, the rank minimization problem can be easily
solved by the singular value thresholding (SVT) [27], with
good theoretical guarantee of correctness [15]. Nevertheless,
recent studies show that empirically non-convex surrogates of
the rank minimization may lead to better recovery results. In
this paper, instead of using the nuclear norm, we consider
a smooth but non-convex surrogate of the rank. In [28] it
has been shown that for a symmetric positive semidefinite
matrix X ∈ Rn×n, the rank minimization problem can be
approximated by minimizing the following functional:

E(X, ε)
.
= log det(X + εI), (6)

where ε is a small regularization parameter. Note that this
function E(X, ε) approximates the sum of the logarithm of
the singular values (up to a scale). Thus, the function E(X, ε)
is not convex, though it is smooth.

To minimize the rank of Lz,i, we slightly modify Eq.(6) as

L(Lz,i, ε)
.
= log det((L>z,iLz,i)

1/2 + εI), (7)

which is a surrogate function of rank(Lz,i), as obtained by
setting X = (L>z,iLz,i)

1/2. Now we can solve for Lz,i by
minimizing

min
Lz,i,Sz,i

L(Lz,i, ε)+λ‖Sz,i‖1, s.t. ‖Uz,i−Lz,i−Sz,i‖2F ≤ σ2
n.

(8)
Instead of solving this constrained minimization problem, we
solve it in its Lagragian form, as

min
Lz,i,Sz,i

1

2µ
‖Uz,i−Lz,i−Sz,i‖2F+L(Lz,i, ε)+λ‖Sz,i‖1. (9)

With a proper selection of µ, Eq.(9) is equivalent to Eq.(8).
For each exemplar flow patch, we can obtain the matrix Uz,i
and decompose it into two components by solving Eq.(9).

C. Proposed flow regularization

Now the problem is how to estimate the whole flow field
using this patch-wise low-rank and sparse regularization. In
this paper we propose the following objective function for
optical flow estimation

E(u,Lx,i,Sx,i,Ly,i,Sy,i) = ED(u)+∑
z∈{x,y}

P∑
i=1

{ 1

2µ
‖R̃iuz −Lz,i − Sz,i‖2F+

L(Lz,i, ε) + λ‖Sz,i‖1
}
,

(10)

where R̃iuz = [R1uz,R2uz, · · · ,Rmuz] denotes the matrix
formed by the set of similar patches grouped using the method
described above.

The data term ED(u) is defined as

ED(u) =
∑
x

φD(|It + Ixdux + Iyduy|2), (11)

where Ix and Iy denotes the horizontal and vertical gradients
of image I , respectively, and dux = ux − u0

x and duy =
uy−u0

y denotes the small change of ux and uy , respectively.
For the robust penalty function φD, we use the generalized
Charbonnier penalty function (with α = 0.45) [5].

The proposed low-rank and sparse regularization in Eq.(10)
exploits both the nonlocal redundancies and the joint sparsity
of these similar local flow patches. However, the assumption
that similar image structures undergo similar motion may
become invalid. Incorrect patch clustering will increase the
rank of the matrix Ui and thus decrease the performance of
the proposed method. For robustness, we further incorporate
the first-order spatial regularization into our objective function,
leading to the following objective function

E(du,Lx,i,Sx,i,Ly,i,Sy,i) =
∑
x

φD(|It + Ixdux + Iyduy|2)

+
∑

z∈{x,y}

P∑
i=1

{ 1

2µ
‖R̃iuz −Lz,i − Sz,i‖2F + L(Lz,i, ε)

+ λ‖Sz,i‖1
}
+
∑
x

ηφS(|∇ux(x)|2 + |∇uy(x)|2),

(12)

where η is a constant controlling the contribution of the first-
order spatial regularization and the robust penalty function φS
is also the generalized Charbonnier penalty function.

IV. OPTIMIZATION ALGORITHM

A standard approach to minimize the objective function of
Eq.(12) is to alternatively optimizing the flow filed u and the
set of low-rank matrices Lz,i and the sparse matrices Sz,i.

A. Low-rank and sparse matrix optimization

For an initial estimate of the flow u, we first cluster the
flow patches into many groups using the method described in
section III.A, and then solve for the low-rank matrix Lz,i and
the sparse matrix Sz,i by minimizing:

min
Lz,i,Sz,i

1

2µ
‖R̃iuz −Lz,i − Sz,i‖2F + L(Lz,i, ε) + λ‖Sz,i‖1,

(13)
which can be solved by alternatively optimizing Lz,i and Sz,i.
For fixed Lz,i, Sz,i can be solved by minimizing

min
Sz,i

1

2µ
‖R̃iuz −Lz,i − Sz,i‖2F + λ‖Sz,i‖1, (14)

which can be easily solved by soft-thresholding:

Ŝz,i = Sλµ(R̃iuz −Lz,i), (15)

where Sλµ denotes the soft-thresholding operator with thresh-
old λµ.

For fixed Sz,i, Lz,i is solved by minimizing

min
Lz,i

1

2µ
‖R̃iuz −Lz,i − Sz,i‖2F + L(Lz,i, ε). (16)
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Note that L(Li, ε) is approximately the sum of the logarithm
of the singular values (up to a scale). Therefore, Eq.(16) can
be rewritten as

min
Lz,i

1

2µ
‖Yz,i −Lz,i‖2F +

n0∑
j=1

log(σj(Lz,i) + ε). (17)

where Yz,i = R̃iuz − Sz,i, n0 = min{n,m} and σj(Lz,i)
denotes the jth singular value of Lz,i. For simplicity, we
use σj to denote the jth singular value of Lz,i. Though∑n
j=1 log(σj + ε) is non-convex, we can efficiently solve it

using a local minimization method [28] for a local minimum.
Let f(σ) =

∑n
j=1 log(σj + ε). We can approximate f(σ) by

first order Taylor expansion, as

f(σ) = f(σ(k)) + 〈∇f(σ(k)),σ − σ(k)〉, (18)

where σ(k) is the solution obtained in the kth iteration. Thus,
one can solve Eq.(17) by iteratively minimizing

L
(k+1)
z,i = argmin

Lz,i

1

2µ
‖Yz,i −Lz,i‖2F +

n0∑
j=1

σj

σ
(k)
j + ε

, (19)

where we have used ∇f(σ(k)) =
∑n0

j=1
1

σ
(k)
j +ε

and ignored

the constants in Eq.(18). Eq.19 can be solved by the singular
value thresholding algorithm:

L
(k+1)
z,i =DSτ (k)(Σ̃)V > (20)

where DΣ̃V > is the SVD of Yz,i, Sτ (k) denotes the soft
threshold operator with threshold τ (k)j = µ/(σ

(k)
j + ε). In our

implementation, we choose σ(0)
j = 1 and the first iteration is

equivalent to solving a un-weighted nuclear norm minimiza-
tion problem.

A special case of the log det(·) leads to the popular
reweighted `1-norm when the matrix Lz,i is a vector [29]. It
has been shown in [29] that the reweighted `1-norm is better
than `1-norm in approximating the `0-norm. Our experimental
results show that the log det(·) can lead to better flow estima-
tion results than the nuclear norm.

B. Optical flow optimization

For fixed Li and Si, we estimate the flow field by mini-
mizing

(dux, duy) = argmin
dux,duy

∑
x

φD(|It + Ixdux + Iyduy|2)

+
∑

z∈{x,y}

P∑
i=1

1

2µ
‖R̃i(duz + u

0
z)−Lz,i − Sz,i‖2F

+
∑
x

ηφS(|∇(ux + u0
x)|2 + |∇(uy + u0

y)|2),

(21)

where we have replaced uz with duz+u0
z . The minimization

of Eq. (21) is generally difficult due to the non-convexity of the
robust functions φD and φS used in Eq.(21). For robustness,
we adopt the graduate non-convexity (GNC) scheme [7] to find
a local minimum. Specifically, we start the iterative process
by replacing the non-convex robust functions φD and φS
with quadratic functions. The initial solution of the quadratic

objective function serves as the starting point for the next non-
convex minimization stage.

In practice, we first obtain an initial estimate of the flow
field by using the first-order TV regularizer. Using the initial
estimate of the flow, we perform the flow patch grouping
for each exemplar and then solve for the sparse and low-
rank matrices by minimizing Eqs. (14) and (16). The obtained
Lz,i and Sz,i are then used to improve the flow estimation
by solving Eq.(21). With an improved flow estimation, the
low-rank and sparse matrices can be updated. Such process
is iterated until convergence. We start this iterative process
with a large value of µ, and then gradually decrease the value
of µ by setting µ(k+1) = γµ(k), where γ < 1 is a pre-
determined constant. For fixed Lz,i and Sz,i, we propose to
use the iterative reweighted least-square (IRLS) algorithm to
solve Eq.(21). The details of the IRLS for solving Eq.(21)
are presented in Appendix A. The overall algorithm for flow
estimation via sparse and low-rank regularization (FESL) are
summarized in Algorithm 1.

We empirically found that the algorithm converges even
when the inner loop only executes one iteration. This will
much save the computational complexity of the proposed
algorithm. Thus, we set J = 1 in our implementation.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the proposed flow estimation
method on the widely used Middlebury benchmark dataset
[30]. To deal with the illuminance change issue, we use the
structure decomposition method in [31] to pre-process the
input image frames. To handle large motions we integrate
the proposed flow estimation method into a coarse-to-fine
warping framework. This also helps to effectively optimizing
the large scale non-convex objective function [32]. We use
the downsampling factor of 0.8 to construct the pyramids.
For each pyramid we conduct 4 warping steps. In each
warping step, we execute K = 30 iterations in the outer
loop of Algorithm 1. In our implementation, we tuned the
algorithm parameters on the Middlebury training set for better
performance and use the same parameters for all experiments
presented in this paper. The parameters are set as follows:
µ = 1, γ = 0.83, η = 0.5 and λ = 0.45. The flow patch
size
√
n×
√
n is set to 5× 5, and total m = 30 similar flow

patches are collected for each exemplar flow patch. To speed
up the computation, we only use exemplars every four pixels
along both horizontal and vertical directions. This also much
saves the computational complexity of the proposed algorithm
without decrease of the performance.

A. Effectiveness of the low-rank and sparse regularization
To verify the effectiveness of the proposed sparse and

low-rank regularization, we implement four variants of the
proposed flow estimation methods. Let ”SR” denote the flow
estimation methods using spatial regularization, which mini-
mizes the following objective function

E(du) =
∑
x

φD(|It + Ixdux + Iyduy|2)

+
∑
x

ηφS(|∇ux(x)|2 + |∇uy(x)|2).
(22)
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Algorithm 1 Flow estimation via sparse and low-rank regularization
• Initialization:

- Compute an initial flow field using the first-order spatial regularization;
- Clustering color image patches into many groups for Gi;

• Outer loop: for k = 1, 2, ......,K
- Inner loop (Low-rank and Sparse decomposition): for j = 1, 2, · · · , J
◦ Update the sparse matrix Sz,i via Eq.(15);
◦ Update the low-rank matrix Lz,i via Eq.(20);

- Update the optical flow u by solving Eq.(21);
- µ→ γµ.

Let ”SR-LR-NN” denote the flow estimation method that reg-
ularizes the flow field by minimizing the following objective
function

E(du,Lx,i,Ly,i) =
∑
x

φD(|It + Ixdux + Iyduy|2)

+
∑

z∈{x,y}

P∑
i=1

{ 1

2µ
‖R̃iuz −Lz,i‖2F + ||Lz,i||∗

+
∑
x

ηφS(|∇ux(x)|2 + |∇uy(x)|2)
}
.

(23)

where || · ||∗ denotes the nuclear norm. The third variant,
denoted by ”SR-LR-Logdet”, regularizes the flow field by
solving the following objective function

E(du,Lx,i,Ly,i) =
∑
x

φD(|It + Ixdux + Iyduy|2)

+
∑

z∈{x,y}

P∑
i=1

{ 1

2µ
‖R̃iuz −Lz,i‖2F + L(Lz,i, ε)

+
∑
x

ηφS(|∇ux(x)|2 + |∇uy(x)|2)
}
,

(24)

The last variant denoted by ”SR-LRS-Logdet”, solves for the
flow field by minimizing the following energy

E(du,Lx,i,Sx,i,Ly,i,Sy,i) =
∑
x

φD(|It + Ixdux + Iyduy|2)

+
∑

z∈{x,y}

P∑
i=1

{ 1

2µ
‖R̃iuz −Lz,i − Sz,i‖2F + L(Lz,i, ε)

+ λ‖Sz,i‖1 +
∑
x

ηφS(|∇ux(x)|2 + |∇uy(x)|2)
}
.

(25)

The ”SR-LRS-Logdet” method can be implemented by Algo-
rithm 1, while the other three variants can be implemented by
modifying slightly Algorithm 1. Applying the four variants to
the training part of Middlebury dataset, we show the average
endpoint error (AEPE) and average angle error (AAE) results
in Table I. From Table I, we can see that the low-rank
regularization leads to better results than the TV-based spatial
regularization. By replacing the nuclear norm with the logdet
function as a surrogate of the rank, further improvements can
be obtained. By combining the sparse term, the SR-LRS-
logdet methods can achieve further improvements. However,
the improvements are not significant. This is mainly because
the data term in our approach still cannot handle well the

(a) SR (b) SR-LR-NN (c) SR-LR-Logdet

(d) SR-LRS-Logdet (e) Ground truth (f) Color code

Fig. 1. Parts of color coded flow results of sequences Grove3 using the four
variants of the proposed method. Optical flow fields are visualized using the
color code in (f).

occlusions, though the sparse term can well handle the outliers
in the flow field. Some parts of the color coded flow fields of
training sequence Grove3 are shown in Fig. 1. To visualize
the optical flow, the color-coding scheme of [30] are used.
The color and intensity code the orientations and magnitudes
of optical flow, respectively.

B. Comparison with other state-of-the-arts

We first conducted the experiments using the training part
of Middlebury dataset, and compared to other flow estimation
methods, including the improved TV-l1 method [31], the
nonlocal TV method (denoted as NL-TV-NCC) [10] and the
classic+NL method [5] that exploits nonlocal redundancy,
the sparse and nonsparse method [13], the learned sparse
method (LSM) [12] that exploits the local sparsity with learned
redundant dictionaries, and the efficient nonlocal regularization
method (denoted as Efficient-NL) [22] 1. By developing an
efficient optimization algorithm, the Efficient-NL method [22]
can efficiently minimize the nonlocal regularization terms of
any given spatial extent, achieving much better results than
previous nonlocal regularization methods.

1We thank the authors of [5], [22] for providing their source code or
experimental results.
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TABLE I
AEPE AND AAE RESULTS OF THE FIVE VARIANTS OF THE PROPOSED METHOD ON THE MIDDLEBURY TRAINING DATASET.

method
AEPE results

RubberWhale Hydrangea Dimetrodon Grove2 Grove3 Urban2 Urban3 Venus average

SR 0.081 0.159 0.121 0.108 0.534 0.246 0.410 0.228 0.236
SR-LR-NN 0.074 0.167 0.115 0.097 0.452 0.252 0.350 0.228 0.217

SR-LR-Logdet 0.070 0.161 0.118 0.095 0.434 0.253 0.345 0.223 0.212
SR-LRS-Logdet 0.067 0.155 0.122 0.092 0.423 0.246 0.344 0.223 0.209

AAE results
SR 2.566 1.857 2.348 1.567 5.425 1.970 2.972 3.050 2.719

SR-LR-NN 2.299 2.029 2.228 1.398 4.607 1.945 2.559 3.028 2.512
SR-LR-Logdet 2.144 1.952 2.296 1.356 4.377 1.982 2.529 2.977 2.452

SR-LRS-Logdet 2.057 1.909 2.369 1.313 4.294 1.904 2.524 2.916 2.411

Table II shows the average endpoint error (AEPE) and
average angle error (AAE) results obtained by the competing
methods, respectively. From Table II, we can see that the
proposed low-rank and sparse method achieves substantial im-
provements over the TV method, NL-TV-NCC method and the
classic+NL method. The proposed method also outperforms
the sparsity based methods, i.e., the Sparse-NonSparse method
and the LSM method. The proposed method is comparable to
the Efficient-NL method with respect to AEPE metric, and is
better than the Efficient-NL method in terms of AAE metric.
The proposed method outperforms Efficient-NL method on
relative smooth motions (e.g., Venus, RubberWhale), while
becomes worse than Efficient-NL method on larger motion
(i.e., Urban2), in which case the proposed method may fail to
find enough similar flow patches via image patch matching.
In addition to the better AEPE and AAE performances, the
proposed regularization technique also enjoys advantages in
preserving the motion boundaries. Fig. 2 shows parts of the
color coded flow fields of training sequences Venus, Grove3
and Urban3. From Fig. 2, we can see that the Efficient-NL
method preserves the details of the motion structures much
better than the Classic+NL method. The proposed method
performs slightly better than Efficient-NL method in preserv-
ing large motion boundaries (e.g., Venus and Urban3), while
is slightly inferior to Efficient-NL method in recovering fine
details of motion structures (e.g., Grove3). In Fig. 3 we give
the color coded flow results of 8 sequences in the training
Middlebury set.

C. Overall performance assessment

We also ran the proposed flow estimation method on the
Middleblury test dataset and submitted our results to Mid-
dlebury website. Fig. 4 shows the comparison results with
other leading flow estimation methods. At the moment of
paper submission, our results rank nine according to AAE and
seven according to AEPE. From Fig. 4, we can see that our
approach outperforms the methods that exploit similar priors
for flow regularization, including the nonlocal TV methods [5]
and the learned sparse method [12]. Our approach performs
better than the Efficient-NL method [22] with respect to AEPE
metric, while worse than Efficient-NL method with respect
to AAE metric. Note that the top methods nLayers [33] and

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Parts of color coded flow results of sequences Venus (top row), Grove3
(middle row), and Urban3 (bottom row). From left to right: Classic+NL
[5]; Efficient-NL [22]; Proposed; Ground truth. (Please view this figure
on screen)

its previous version Layers ++ [34] use a graphic model to
explicitly address the depth order issue and thus can handle the
occlusions much better; moreover nLayers [33] uses multiple
frame images, which can provide further improvements; MDP-
Flow [25] addresses the issue of large displacement motions
by using extended flow initialization. In Fig. 5, we show the
color coded flow results of 8 sequences in the Middlebury test
dataset.

In this work, we intentionally stay within a very basic and
simple formulation, and do not explicitly model or address
additional factors such as depth-order, multi-layer multi-frame,
and large displacement. Our goal is to develop a global
flow regularizer by exploiting the nonlocal self-similarity and
sparsity, and to demonstrate its effectiveness. Despite the
rankings, using this regularization alone, our method already
performs closely to the top systems. If needed, the proposed
low-rank and sparse flow regularizer can be combined with
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TABLE II
AEPE AND AAE RESULTS COMPARISON ON THE MIDDLEBURY TRAINING DATASET.

method
AEPE results

RubberWhale Hydrangea Dimetrodon Grove2 Grove3 Urban2 Urban3 Venus average

TV-l1 [31] 0.092 0.147 0.190 0.154 0.665 0.319 0.630 0.260 0.335
NL-TV-NCC [10] 0.080 0.150 0.160 0.140 0.540 0.350 0.430 0.290 0.268

Classic+NL [5] 0.077 0.151 0.117 0.098 0.464 0.210 0.421 0.232 0.221
LSM [12] 0.072 0.151 0.129 0.105 0.473 0.221 0.375 0.235 0.220

Sparse-NonSparse [13] 0.070 0.140 0.120 0.100 0.480 0.210 0.370 0.230 0.215
Efficient-NL [22] 0.074 0.155 0.119 0.097 0.425 0.217 0.351 0.243 0.210

Proposed 0.067 0.155 0.122 0.092 0.423 0.246 0.344 0.223 0.209
AAE results

NL-TV-TNCC [10] 2.550 1.920 3.210 1.940 6.050 2.920 3.360 4.270 3.278
Classic+NL [5] 2.402 1.824 2.280 1.410 4.930 2.029 3.164 3.289 2.666

LSM [12] 2.285 1.803 2.541 1.511 5.005 2.004 2.599 3.297 2.631
Efficient-NL [22] 2.345 1.924 2.330 1.374 4.408 2.021 2.602 3.487 2.561

Proposed 2.057 1.909 2.369 1.313 4.294 1.904 2.524 2.916 2.416

(a) Dimetrodon (2.369/0.122) (b) Grove2 (1.313/0.092) (c) Grove3 (4.294/0.423) (d) Hydrangea (1.909/0.155)

(e) RubberWhale (2.057/0.067) (f) Urban2 (1.904/0.246) (g) Urban3 (2.524/0.344) (h) Venus (2.916/0.223)

Fig. 3. Color coded flow results of Middlebury training set. The AAE and AEPE values are given in brackets (AAE/AEPE).

the other more detailed flow estimation techniques (e.g., those
in [25], [33], [34]) to further improve the flow estimation
accuracy on the test dataset.

D. Parameters selection

To evaluate the sensitivity of the proposed algorithm with
respect to the main parameters, i.e., µ, λ and η, we varied the
parameters µ, λ and η. Fig. 6 plots the curves of the average
AAE and EPE metrics as functions of the parameters on the
Middlebury training dataset.

The parameter µ controls the low-rank and sparse regular-
ization of the optical flow. An excessively small µ yields a
small penalty of the low-rank and sparse regularization and
thus fails to regularize the optical flow estimation process,
while an excessively large µ leads to overly heavy penalty
of the low-rank and sparse regularization and hence decreases
the estimation accuracy. As shown in Fig. 6 (a) and (b), the

performance of the proposed algorithm is insensitive to the
choices of µ when 0.7 < µ < 8.4. The parameter λ controls
the contributions of the sparse regularization term. A small λ
yields more nonzero components in the sparse matrixes, while
large λ yields less nonzero components in the sparse matrixes.
From Fig. 6 (c) and (d), we can see that the performance of
the proposed method didn’t vary significantly when varying
λ in the range of (0.14, 0.74). The parameter η controls
the contribution of the first-order spatial regularization. From
Fig. 6 (e) and (f), it can be seen that the integration of the
spatial regularization with a small regularization parameter can
slightly improve the performance. However, an excessive large
η decreases the performance.

E. Running time

The proposed algorithms were implemented with Matlab
language. The running time of the proposed algorithms on
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Fig. 4. Performance comparison with leading optical flow estimation methods on Middlebury test dataset. (Screenshot of website
http://vision.middlebury.edu/flow)

(a) (b) (c)

(d) (e) (f)

Fig. 6. Average angle error and average endpoint error on Venus sequence
of Middlebury training set with varying (a) and (b) µ; (c) and (d) λ; (e) and
(f) η.

the Urban sequence of the Middlebury test set are reported
in Table III. By developing a new optimization algorithm
to efficiently handle the nonlocal regularization term , the
Efficient-NL method [22] is even faster than the Classic+NL
method [11]. The running time of the proposed algorithm
is generally 8 ∼ 10 times of that of Efficient-NL method
[22] due to the high computational complexity of the low-

TABLE III
RUNNING TIME (SEC) ON THE Urban DATASET OF MIDDLEBURY

BENCHMARK (EXPERIMENTS PERFORMED ON INTEL CORE I7-3770 CPU).

Classic+NL LSM Efficient-NL SR-LR-NN SR-LRS-Logdet

225.1 1615 183.4 1476.7 1904.5

rank and sparse matrix decomposition. When the nuclear norm
is used, the running time of the proposed algorithm can be
much reduced as less iterations are required for the low-rank
and sparse matrix decomposition. As the low-rank and sparse
matrix decompositions for each set of similar flow patches can
be performed in parallel, the running time of the proposed
algorithms can be significantly reduced if the proposed algo-
rithms are implemented with parallel computation technique,
and this will remain as the future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an effective joint low-rank and
sparse decomposition model for optical flow estimation. By
grouping similar flow patches across a large neighborhood,
we regularize the flow field effectively by decomposing the
formed matrix into a low-rank component and a sparse com-
ponent. The low-rank matrix represents the common similar
motion pattern, while the sparse component represents the
outliers. To better approximate the rank minimization problem
and thus further improve the flow estimation performance,
we use the log det(·) function as a non-convex surrogate



IEEE TRANS. IMAGE PROCESSING 10

(a) Army (b) Mequon (c) Schefflera (d) Wooden

(e) Army (f) Mequon (g) Schefflera (h) Wooden

(i) Grove (j) Urban (k) Yosemite (l) Teddy

(m) Grove (n) Urban (o) Yosemite (p) Teddy

Fig. 5. Color coded flow results of Middlebury test set. The odd rows show the ground truth from the Middlebury website; the even rows show the estimated
flow results by the proposed method.

of the rank. The resulting energy minimization problem is
efficiently solved by an alternatively minimization algorithm.
Experimental results on the Middlebury dataset demonstrate
that the proposed method is very competitive to the current
leading nonlocal and sparsity based regularization techniques.

In this paper we mainly to show the effectiveness of the
low-rank and sparse decomposition for flow estimation. The
performance could be further improved by addressing other
complementary issues, such as the depth order and large
displacement motion issues. Another possible way to further
improve the proposed method is to adopt a more robust flow
patch grouping method. Currently, we simply do the patch
matching using the color images, without considering the
occlusion issue and thus is not yet optimal. We will address
these issues in future works.
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APPENDIX A
ITERATIVE REWEIGHTED LEAST SQUARE (IRLS) SOLVER

The main idea of IRLS is to compute dux and duy by
taking [∂E/∂dux; ∂E/∂duy] = 0, where E denotes the right
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hand side of Eq.(21). We derive

∂E

∂dux
=
∑
x

φ′D(fx)(I
2
xdux + Ix(It + Iyduy))+

η
∑
x

φ′S(gx)(D
>
xDx +D

>
y Dy)(dux + u

0)+

µ

2

∑
i

R̃>i (R̃i(dux + u
0
x)−Lx,i − Sx,i),

(26)

where fx and gx are defined as fx = |It + Ixdux + Iyduy|2
and gx = |∇ux(x)|2 + |∇uy(x)|2, respectively. Let Ix =
diag(Ix), Iy = diag(Iy), I2x, Ψ′ = diag(φ′D(fx)), and Φ′ =
diag(φ′S(gx)) be the diagonal matrixes. Then Eq.(26) can be
rewritten in matrix form:
∂E

∂dux
=(Ψ′I2x + ηL+ µ

∑
i

R̃>i R̃i)dux + Ψ′IxIyduy+

Ψ′IxIt + ηLu0
x + µ

∑
i

R̃i
>
(R̃iu

0
x −Lx,i − Sx,i),

(27)

where L is defined as

L =D>x Φ′Dx +D
>
y Φ′Dy. (28)

Similarly, we can also derive

∂E

∂duy
=(Ψ′I2y + ηL+ µ

∑
i

R̃>i R̃i)duy + Ψ′IxIydux+

Ψ′IyIt + ηLu0
y + µ

∑
i

R̃i
>
(R̃iu

0
y −Ly,i − Sy,i).

(29)

Since both ∂E
∂dux

and ∂E
∂duy

contain nonlinear functions φ′D(fx)
and φ′S(gtx), [

∂E
∂dux

; ∂E
∂duy

] = 0 can be solved by the following
fixed-point iterations:

Algorithm 2 IRLS for solving Eq.(21)
(1) Initialize dux = 0, duy = 0;
(2) Compute the diagonal matrix Ψ′ and Φ′ using the current
estimate dux and duy;
(3) Solve the following linear equation:[

Axx Axy

Axy Ayy

] [
dux
duy

]
= −

[
bx
by

]
(30)

(4) Stop if dux and duy converge; otherwise, go to (2).

In Eq.(30), Axx, Axy , Ayy, bx and by are defined as

Axx =(Ψ′I2x + ηL+ µ
∑
i

R̃>i R̃i)

Ayy =(Ψ′I2y + ηL+ µ
∑
i

R̃>i R̃i)

Axy =Ψ′IxIy

bx =Ψ′IxIt + ηLu0
x + µ

∑
i

R̃i
>
(R̃iu

0
x −Lx,i − Sx,i)

by =Ψ′IyIt + ηLu0
y + µ

∑
i

R̃i
>
(R̃iu

0
y −Ly,i − Sy,i)

(31)

In the above algorithm, we iteratively update the weighting
matrixes Ψ′ and Φ′ based on the current estimates of dux
and duy , and solve the linear equation using the conjugate
gradient algorithm.
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